СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

13/11-78

P1 - 11168

А.М.Балдин, В.К.Бондарев, Л.Б.Голованов, В.Л.Мазарский, А.Н.Манятовский, Н.С.Мороз, Ю.А.Панебратцев, А.А.Повторейко, С.В.Рихвицкий, В.С.Ставинский, А.Н.Хренов, А.П.Цвинев

КУМУЛЯЦИЯ ЛЕГКИХ ЯДЕР

14168

1194/2-78

C343e2

5-202

P1 - 11168

А.М.Балдин, В.К.Бондарев, Л.Б.Голованов, В.Л.Мазарский, А.Н.Манятовский, Н.С.Мороз, Ю.А.Панебратцев, А.А.Повторейко, С.В.Рихвицкий, В.С.Ставинский, А.Н.Хренов, А.П.Цвинев

КУМУЛЯЦИЯ ЛЕГКИХ ЯДЕР

OGT WINDOWLAS UNGTRUT REPORT INCOMPOSIT

Балдин А.М. и др.

Кумуляция легких ядер

Исследована предельная фрагментация легких ядер (дейтерия и гелия), облучаемых протонами с импульсом 8,6 ГэВ/с. Фрагменты (пионы, протоны и дейтроны) регистрировались в интервале углов вылета 50-180° относительно первичных протонов и в импульсном интервале 150-800 МэВ/с. Наблюдаемые фрагменты, согласно кинематике столкновения первичного протона с покоящейся мишенью, соответствуют массе мишени до 3 ГэВ. Таким образом, полученная информация соответствует кумуляции до третьего порядка кумулятивности.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубиа 1977

Baldin A.M. et al.

PI - 11168

.

e.

Cumulation of Light Nuclei

Limit fragmentation of light nuclei (deuterium, helium) bombarded with 8.6 GeV/c protons was investigated. Fragments (pions, protons and deuterons) were detected within the emission angle 50-150[°] with regard to primary protons and within the pulse range 150-180 MeV/c. By the kinematics of collision of a primary proton with a target at rest the fragments observed correspond to a target mass upto 3 GeV. Thus, the data obtained correspond to the cumulation upto the third order.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1977

© 1977 Объединенный инспипут ядерных исследований Дубна

Исследована предельная фрагментация легких ядер (дейтерия и гелия), облучаемых протонами с импульсом 8,6 ГэВ/с. Фрагменты (пионы, протоны и дейтроны) регистрировались в интервале углов вылета 50-180° относительно первичных протонов и в импульсном интервале 150-900 МэВ/с. Наблюдаемые фрагменты, согласно кинематике столкновения первичного протона с покоящейся мишенью, соответствуют массе мишени до 3 ГэВ. Таким образом, полученная информация соответствует кумуляции до третьего порядка кумулятивности.

В работе^{/1/}была высказана гипотеза о том, что спектры вторичных частиц высоких энергий при столкновении релятивистских ядер определяются локальными свойствами адронной материи, а не геометрическими характеристиками сталкивающихся объектов (формфакторами). Эта гипотеза фактически означает распространение масштабной инвариантности на столкновение релятивистских ядер.

Первые эксперименты с релятивистскими дейтронами^{/2/} подтвердили эту гипотезу, а дальнейшие исследования кумулятивного эффекта обнаружили новые закономерности: А -зависимость объемного характера и экспоненциальный вид зависимости инвариантного сечения рождения частиц от их кинетической энергии^{/3,4/}.

Масштабно-инвариантный характер взаимодействия с частью ядра означает, что это взаимодействие должно характеризоваться новой константой – вероятностью кумуляции части ядра (группы нуклонов). Очевидно, что закономерности образования подобных "капель" ядерной материи и их свойства целесообразно с точки эрения

современных представлений о структуре ядерных объектов изучать на легчайших ядрах (дейтерия и гелия). В этом смысл данного эксперимента.

Эксперимент выполнен методикой сцинтилляционных и черенковских детекторов. Вторичные частицы в импульсном интервале $\frac{\Delta p}{p} = \pm 5\%$ и телесном угле ~ 2.10⁻⁴ ср выделялись по времени пролета на базах 4 и 1,0 м с разрешением ± 150 пс, а также по потерям энергии на ионизацию и амплитуде вспышки излучения Вавилова-Черенкова.

В качестве мишеней использовалась специально разработанная криогенная мишень ^{/5/}, в которой в одном вакуумном кожухе размещены сосуды из майлара с жидким водородом, дейтерием и гелием. Майларовые окна вакуумного кожуха позволяют регистрировать вторичные частицы в интервале углов вылета 0-180°.

Мониторирование абсолютной интенсивности первичного пучка осуществлялось методом измерения наведенной активности углерода (<u>+</u>5%).

На рис. 1 приведены полученные экспериментальные величины сечений рождения положительных пионов на ядрах водорода, дейтерия и гелия в зависимости от кинетической энергии пионов, вылетающих под углом 180° к направлению первичных протонов. В таблице приведены величины сечений как для положительных, так и отрицательных (не показанных на рисунке) пионов. Верхняя шкала на рисунке дает масштаб кумулятивного числа Q (в первом приближении шкала линейная).

Из рисунка видно, что сечения рождения пионов на ядрах водорода и дейтерия в некумулятивной области (Q<1) практически совпадают. Сечение рождения пионов на ядрах гелия имеет примерно в три раза большую величину. Энергетическая зависимость всех трех величин имеет подобный характер. В кумулятивной области (Q>1) энергетические зависимости имеют также экспоненциальный характер. Выход пионов от ядер гелия примерно на порядок превышает выход от ядер дейтерия.

Рис. 1. Экспериментальные величины сечений рождения положительных пионов на ядрах водорода (ф), дейтерия (ф) и гелия (ф) в зависимости от кинетической энергии пионов, вылетающих под углом 180° к направлению первичных протонов.

Из таблицы видно, что сечения рождения отрицательных пионов на ядрах дейтерия и гелия по порядку величины совпадают с сечением рождения положительных пионов, а для ядер водорода эти величины существенно различаются.

4

AST. and

CONVAN?

Таблица

P+P-JI+X; P = 8,6 Fab/c

продолжение таблицы

$$P + P \rightarrow \mathcal{T}^- + X$$
; $P_0 = 8, 6 \Gamma_{0B/C}$

Рл	011+	E क्रि (ज्र)	₽л+	оπ•	$E\frac{d}{dE}(\pi^{*})$		 ₽Л⁻
150	180	9,38 ± I	300	8I ⁰	4,32 ± 0,8	3	200
175	_"_	7,47 ± 0,5	- "-	80 ⁰	$5,022 \pm 0,15$		
200	*	$3,92 \pm 0,25$	*-	79 ⁰	5,39 ± 0,5		250
225		$1,97 \pm 0,16$	- * -	780	$4,89 \pm 0,4$		300
200 275	-~	$1,47 \pm 0,1$	-"-	772	$5,23 \pm 0,8$		
300	_*_	$0,95 \pm 0,08$		76° 75 ⁰	$6,31 \pm 0,1$		PP
325	_*_	0.64 ± 0.05		200	7,3 ± 0,4		
340	_*_	0.32 ± 0.03	600	7770	$0, 72 \pm 0, 3$	÷	500
350	_*_	$0,21 \pm 0,02$	_"_	75 ⁰	0.65 ± 0.08		-*-
360	-*-	0,13 + 0,015	_"_	.740	0,59 + 0.08		*-
370	-"-	0,II3 ± 0,05	_"_	73 ⁰	07I ± 0,08		
500	60 ⁰	3,63 ± 0,08	-*-	72 ⁰	0,83 ± 0,08		 ₽π⁺
500	55 ⁰	5,I ±0,I	_"_	71 ⁰	0,83 ± 0,08		
500	50 ⁰	7,16 ± 0,2	_"_	70 ⁰	0,99 + 0,08		150
300	175 ⁰	0,6 ± 0,13	_"_	68 ⁰	0.19 ± 0.08		175
30 0	1700	0,71 ± 0,13	*_	66 ⁰	$I_{33} \pm 0.08$		200
."	165 ⁰	0,87 ±0,I	_"_	64 ⁰	$I_{1,74} \pm 0.08$		22 5
."	160 ⁰	0,79 ± 0,1	900	68 ⁰	0.11 + 0.13		250
."	155 ⁰	0,83 ± 0,1	_*_	67 ⁰	0.14 + 0.008		275
."_	150 ⁰	$0,95 \pm 0,09$	_*_	66 ⁰	0.19 ± 0.02		300
.•	145 ⁰	0,98 ± 0,12	= `	65 ⁰	0.19 + 0.02		325
.•_	I40 ⁰	0,85 ± 0,09	_"_	64 ⁰	0,24 + 0.02		350
.*_	85 ⁰	4,067 ± 0,4	-*-	63 ⁰	0.25 + 0.02	4	400
."	84 ⁰	3,98 ± 0,4	_*_	62 ⁰	0.34 + 0.03		450
. #	83 ⁰	4,32 10,8	-*-	60 ⁰	0.39 + 0.03		500
•_	82 ⁰	4,067 ± 0,8	-"-	570	0,56 + 0.03	•	550

		P+P→J	<i>†A</i>		= 0 , 6 198/0	
р <u>л</u> -	ፀ Ĵī -	$E \frac{d F}{d F} (JT)$				
200	180 ⁰	I,I7 ± 0,21				
250	180 ⁰	0,45 ± 0,07				
300	180 ⁰	0,14 ± 0,02				
		P+P-+P+	Х;	Po = 0	8,6 ГаВ/с	
Pρ	Θρ	$E\frac{d}{dP}(P)$				
500	60 ⁰	7,8 ± 0,12				
-*-	55 ⁰	6,6 ± 0,2I				
-"-	50 ⁰	8,05 ± 0,29				
		P+d -> JT	⁻⁺ +X;	Po =	8,6 ГэВ/с	
Pл⁺	ឲរា+	$E \frac{d \sigma}{d P} (\pi^{+})$	Рл⁺	Θπ	Edg (ji	-+)
150	180 ⁰	12,4 ± 1,08	600	180 ⁰	(0,45 ± 0,42) I	:0 -3
175	_*_	8,38 ± 0,46	650	_"-	(0,21 ± 0,06) 1	:0 ⁻³
200	-"-	5,48 ± 0,21	300	175 ⁰	0,97 ± 0,12	
225	_ * _	3,44 ± 0,15	-"-	170 ⁰	0,92 ± 0,1	
250	_*_	2,07 ± 0,075	-"-	165 ⁰	I,09 ± 0,II	
2 75	* *	I,4I ± 0,066	-*-	160 ⁰	I,II ± 0,12	
300	-"-	I,0I ± 0,049	-*-	1 55⁰	1,23 ± 0,12	
325	-"-	0,7 ± 0,039	-*-	150 ⁰	1,27 ± 0,12	
350	_"_	$0,39 \pm 0,032$	-"-	1 45⁰	I,28 ± 0,12	
400	-*-	0,I ± 0,0075	*-	140 ⁰	1,21 ± 0,09	
450	-"-	(2,24 ± 0,16) 10 ⁻²	² 500	60 ⁰	5,53 ± 0,12	
500	_*_	$(0,76 \pm 0,02)$ 10^{-2}	2 _* _	55 ⁰	7,64 ± 0,12	
550	_"_	$(1,8 \pm 0,3) 10^{-3}$		50 ⁰	9,3 ± 0,25	

•

6

продолжение таблицы

продолжение таблицы

•		P + d - J	π ⁻ +X;	; Р. = 8,6 ГэВ/с				P+He→ T	-x;	Р. = 8.6 Гэв/с
Pst-	<u> </u>	E 🔐 (Л ⁻)			_	P _{sī} -	Θ <i>դ</i> -	$E \frac{de}{dB} (f_{i}^{-})$		<u></u>
)() 50	180 ⁰ 180 ⁰	4,07 ± 0,33 1,99 ± 0,083			ļ	200	T80 [®]			
00	_"_	$0,95 \pm 0,066$				250	100			
0	_"-	0,088 ± 0,0083	2			200		6,06 + 0,43		
0	_*_	$(0,83 \pm 0,16)$ IC)-4			30 0	-"-	$2,55 \pm 0,2$		
כ	_*_	(0,62 ± 0,47) IC) ⁻³			400	-"-	0,65 ± 0,058		
		D+Ha-	<u>π++</u> ×	• D - 8 6 FeB/a	-	500	_"_	$(7,97 \pm 0,83)10^{-2}$		
		P+ne		, ro = 0,019B/C	_	600	_"_	$(0,54 \pm 0,29)10^{-2}$		
УГ+	61 +	$E \frac{d \sigma}{d P} (\mathcal{T}^{+})$	P31+	$\Theta_{\mathfrak{N}^+} = \bigoplus_{d \neq p}^{\mathcal{O}} (\mathfrak{N}^+)$				P + He → P ·	· x ;	Р. = 8.6 Гэв/с
50	180 ⁰	37,8 ± 2,82	300	155° 3,03 ± 0,37		Pp	Θρ	E d6 (P)	Pp	Op Edg
75 00	_~_ _*_	$28,7 \pm 2,16$ 17.8 ± 0.75	" [#]	150° 3 \pm 0,29		300	1800	20 T + 3 0	500	T790 T 74 . 0
25	_=_	$II_{2} + 0.66$	 "	140° 3.09 + 0.33		400	100	$\infty_{1} \pm 0.0$	-	$170 \ 1,74 \ \pm 0,$
0	_*_	$6,59 \pm 0,36$	500	176° 0.07 ± 0.007		400		6,40 ± 0,34	-"-	$176 1,44 \pm 0,0$
5	_*_	4,03 ± 0,25	_*_	176° 0,08 ± 0,01		50 0	-"-	$1,74 \pm 0,16$	_"_	174 ⁰ 1,56 <u>+</u> 0,0
D	_"_	2,85 ± 0,18	-"-	174° 0,065 ± 0,008		550	-"	1,04 ± 0,16	*_	173 ⁰ I,6 ±0,0
5	_"_	$2,16 \pm 0,12$	-"-	173° 0,055 ± 0,0062		600	_*_	$0,44 \pm 0,04$	_"_	172 ⁰ 1.58 + 0.0
0	-"	$1,29 \pm 0,11$	"	$172^{\circ} 0,072 \pm 0,0062$		650	_"_	0.28 ± 0.02	_"_	170 ⁰ T 66
n n	_*_	$0,65 \pm 0,05$	_~~ #_	170° 0,007 \pm 0,0066		700		0, 12 + 0, 012	91	100 1,00 100,0
-		(F.C 0.05)				000	 TOF 0	0,10 1 0,012		$100^{-}1,02 \pm 0,0$
U		$(5,6 \pm 0,25)$ 10 ~	· ••*•	100° 0,086 ± 0,01		300	175-	20 ± 3,0	-"-	160° I,9 ± 0,0
)	-"-	$(2,04 \pm 0,15)10^{-2}$	· _• _	155° 0, I ± 0,005		-"-	170 ⁰	18,6 ± 3,08	-"-	155 ⁰ 2,04 ± 0,0
)	-*-	(I,75 ± 0,18) 10	·3 -"-	150° 0, I \pm 0,005		_*-	I60°	2 I,8 ± 3,0 8	-"-	I 50⁰ 2, 26 <u>+</u> 0,03
)	-"-	$(0,41 \pm 0,06)$ 10	·3 _*_	145 ⁰ 0,16 ± 0,02		_*_	155 [°]	20,9 ± 2,9	_"_	$I45^{\circ} 2.5 + 0.01$
I	175 ⁰	2,16 ± 0,32	 ,	140° 0,16 ± 0,02		_*_	150°	T9.6 + 2 0	_"_	
*_	170 ⁰	2,59 + 0,3	_*_	60° 13,9 \pm 0,25	4		T45 ⁰	$\frac{1}{2} + \frac{1}{2} + \frac{1}$		$\frac{140}{00} \times \frac{104}{10} \pm 0.03$
-	165 ⁰	2.74 + 0.3	_"_	55° T7.8 + 0.42	1		- 140 140	61,0 I 6,40	-"-	$60^{\circ} 41, 2 \pm 0, 54$
#_	Ten ⁰	3.00 .0.97		50 ⁰ 05 0 . 0 CC	1	-"-	140	22,7 ± 2,48	_"_	$55^{\circ} 39,0 \pm 0,84$
-	100	3,03 + 0,37		ou° 20,3 ± 0,66	4				_"_	50° 43.8 + 1.1(

8

9

 $55^{\circ} 39,0 \pm 0,84$ $50^{\circ} 43,8 \pm 1,16$

 178° I,74 ± 0,066 I76 I,44 ± 0,074 174⁰ 1,56 ± 0,066 173° 1,6 ± 0,066 172⁰ 1,58 ± 0,046 170° 1,66 ±+0,066 165⁰ 1,82 ± 0,058 I60° I,9 ± 0,058 155⁰ 2,04 ± 0,058 150° 2,26 ± 0,05 I45° 2,5 ± 0,058 I40⁰ 2,64 ± 0,058 60° 41,2 ± 0,54

продолжение таблицы

		P+d-+	P+x;		Ро = 8.6 Гэв
Pp	θρ	E de (P)	P _P	θр	E 쁡 (P)
300	180 ⁰	3,50 ± 0,9	300	160 ⁰	3,6 ± 0,084
40 0	-"-	0,53 <u>+</u> 0,10	*.	155 ⁰	3,38 _ 0,84
500		0,15 _ 0,02	-"-	1 50⁰	4,34 ± 0,84
550	-"-	(7,0 _ I,0)10 ⁻²	-*-	1 45⁰	3,52 0,84
600	_"	(2,6 _ 0,2)10 ⁻²	_*_	140 ⁰	3,64 🗉 0,84
			500	60 ⁰	12,44 _ 0,2
			*	55 ⁰	12,54 ± 0,22
			"	50 ⁰	I4,44 ± 0,42
		P + d	+ d +	Χ;	Po= 8.6 GeV/c
Pa	Ød	Ede			
500	60 ⁰	0,74_0,13			
-"-	55 ⁰	0,96 <u> </u>			
-"-	50 ⁰	1,42 _ 0,18			
		P + He	-+ d+)	(;	Po = 8.6 [3B/0
Pd	Ød	$E \frac{dG}{dB}(d)$	Pd	Ød	$E \frac{de}{dp}(d)$
4 00	180 0	0,81_0,23	50 0	165 ⁰	0,4 _ 0,049
500	-"-	0,23 _ 0,043	-"-	160 ⁰	0,52 _ 0,092
5 50		$(12, 24 - 0, 61)10^{-2}$	-*-	155 ⁰	0,43 _ 0,055
6 0 0	-"-	(3,95 _ 0,67)10 ⁻²	_"-	1 50 ⁰	0,42 _ 0,058
650	_"_	(2,63 _ 0,64)10 ⁻²	_*-	145 ⁰	0,65 ± 0,13
700	_"_	(4,21 - 1,27) 10 ⁻³	-"-	140 ⁰	0,86 _ 0,13
500	178 ⁰	0 ,2 3 _ 0 ,0 87	_"_	60 ⁰	6,47 _ 0,37
-"-	1760	0,43 _ 0,003	-"-	55 ⁰	5,97 _ 0,55
-"-	17 4 0	0,31 _ 0,063	-"-	50 ⁰	5,16 = 0,77
-"-	173 ⁰	0,37 _ 0,092			
-"-	+72 ⁰	0,34 _ 0,058			
-"-	170 ⁰	0,28 _ 0,083			

Рис. 2. Экспериментальные данные по энергетической зависимости сечений фрагментации ядер дейтронов () и гелия () с образованием протонов и сечения фрагментации ядер гелия с образованием дейтронов ().

На рис. 2 (а также в таблице) приведены экспериментальные данные по энергетической зависимости сечений фрагментации ядер дейтронов (до кинематической границы Q ≈ 2) и гелия с образованием протонов и сечений фрагментации ядер гелия с образованием дейтронов (угол вылета фрагментов составляет 180°).

10

Рис. 3. Угловая зависимость сечения рождения положительных пионов с импульсами 300 и 500 МэВ/с в зависимости от угла вылета пионов для различных ядермишеней.

На рис. З представлены сечения рождения положительных пионов с импульсами 300 и 500 МэВ/с в зависимости от угла вылета пионов для различных ядермишеней.

Рис. 4 содержит аналогичные зависимости для случаев с образованием протонов и дейтронов.

Из рисунков видно, что полученные инклюзивные сечения слабо возрастают с уменьшением угла вылета частиц, особенно в области углов,близких к 180⁰. 12

.

Рис. 4. Угловая зависимость сечения рождения протонов и дейтронов с импульсами 300 и 500 МэВ/с в зависимости от угла вылета фрагмента.

В целом представленный в работе экспериментальный материал, на наш вэгляд, содержит достаточно полную информацию как для уточнения механизма кумуляции, так и для расчета возможных вкладов, обусловленных взаимодействием на больших межнуклонных расстояниях, эффектов ферми-движения и перерассеяния.

Авторы работы признательны В.Г.Перевозчикову, М.Н.Шкобиной, О.Ю.Кульпиной за помощь в работе.

ЛИТЕРАТУРА

- 1. Балцин А.М. Краткие сообщения по физике. АН СССР, 1971, №1, с.35.
- 2. Балдин А.М. и др. ОИЯИ, Р1-5819, Дубна, 1971.
- 3. А.М.Балдин и др. ЯФ, 1974, т.20, в.6.
- 4. А.М.Балдин и др. ЯФ, 1975, т.21, в.5.
- 5. Л.Б.Голованов и др. ОИЯИ, 8-10284, Дубна, 1977.

Рукопись поступила в издательский отдел 15 декабря 1977 года.