СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

13/11-78

P1 - 11158

1220/9-78

A-23

Н.М.Агабабян, М.Р.Атаян, А.А.Байрамов, Ю.А.Будагов, Ш.Валкар, А.Г.Володько, Н.Г.Григорян, Н.Р.Гулканян А.М.Дворник. В.П.Джелепов, Ю.Дубински, А.Р.Канецян, Ж.К.Карамян. З.А.Киракосян, Л.П.Кишиневская, С.А.Корчагин, Ю.Ф.Ломакин, Г.Мартинска, В.Б.Флягин, Ю.Н.Харжеев, Д.И.Хубуа Л.Шандор

ОПРЕДЕЛЕНИЕ СЕЧЕНИЙ ПРОЦЕССОВ ТИПА ДВОЙНОЙ ПЕРЕЗАРЯДКИ **π**-мезонов На ядрах углерода при 5 гэв/с

P1 - 11158

Н.М.Агабабян,¹ М.Р.Атаян,¹ А.А.Байрамов,² Ю.А.Будагов, Ш.Валкар, А.Г.Володько, Н.Г.Григорян,¹ Н.Р.Гулканян,¹ А.М.Дворник,³ В.П.Джелепов, Ю.Дубински,⁴ А.Р.Канецян,¹ Ж.К.Карамян,¹ З.А.Киракосян,¹ Л.П.Кишиневская,¹ С.А.Корчагин,¹ Ю.Ф.Ломакин, Г.Мартинска,⁵ В.Б.Флягин, Ю.Н.Харжеев, Д.И.Хубуа,⁶ Л.Шандор ⁴

ОПРЕДЕЛЕНИЕ СЕЧЕНИЙ ПРОЦЕССОВ

типа двойной перезарядки **π**-мезонов

НА ЯДРАХ УГЛЕРОДА ПРИ 5 ГЭВ/С

- ²Институт физики АН АзССР.
- ³Гомельский государственный университет.
- Институт экспериментальной физики САН,
- г. Кошице, ЧССР.
- Университет им. Шафарика, г. Кошице, ЧССР.
- 6 Тбилисский государственный университет.

¹ Ереванский физический институт.

Агабабян Н.М. и др.

(1)

Определение сечений процессов типа двойной перезарядки мезонов на ядрах углерода при 5 ГэВ/с

На основе материала, полученного с метровой пропановой пузырьковой камеры, определены сечения процессов типа двойной перезарядки *п*-мезонов на ядрах углерода при 5 ГэВ/с:

$$\pi^{-} \mathbf{C}^{12} \rightarrow \pi^{+} + \mathbf{m}_{1} \mathbf{p} + \mathbf{m}_{2} \gamma + \mathbf{C}'.$$

Сечение реакции (1) $\sigma = 3,4\pm0,4$ мб. Сечение реакции (1), идушей без образования π° -мезонов, $a_0 = 1,25\pm0,45$ мб. Сечение реакции (1), соответствующее "упругой" двойной перезарядке, σ упр = 0,26 ± 0,07 мб.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследования. Дубиа 1977

Agababian N.M. et. al.

Cross Sections of the Double Charge Exchange Like Processes in π^- -Carbon Interactions at 5 GeV/c

The cross section of the double charge exchange like processes

$$\pi^{-}C^{12} \rightarrow \pi^{+} + m_{1}p + m_{2}\gamma + C'$$
(1)

in π -carbon interactions was obtained: $\sigma_1 = 3.4 \pm 0.4$ mb. The cross section of the processes (1) with no $\pi^{0.78}$ produced is $\sigma_0 = 1.25 \pm 0.45$ mb. The cross section of "elastic" double charge exchange processes (energetic π^+ in forward direction) is $\sigma_{el}' = 0.26 \pm 0.07$ mb.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1977

Процессы двойной перезарядки пионов на ядрах, открытые в ЛЯП ОИЯИ^{/1/}, широко исследованы в области энергий до 500 МэВ ^{/1,2/}. При более высоких энергиях подробных исследований не проводилось, за исключением нескольких работ, в которых эти процессы рассматривались в инклюзивном подходе ^{/3/}. Однозначной интерпретации экспериментальных данных не имеется. Используется несколько моделей, основанных на изобарном, двухступенчатом и резонансном механизмах ^{/4/}.

В настоящей работе приводятся предварительные результаты исследования процессов двойной перезарядки *п*-мезонов на ядрах углерода при 5 ГэВ/с. Использованы данные, полученные при обработке около 30 тысяч стереоснимков с метровой пропановой пузырьковой камеры (ПК-200)^{/5/}. Среди *п*-С -событий отбирались такие взаимодействия, в которых среди вторичных частиц нет отрицательно заряженных частиц, т.е.

 $\pi^{-}C^{12} \rightarrow m_{1}\pi^{+} + m_{2}p + m_{3}\gamma + C', \qquad (1)$

где m_1 - количество π^+ -мезонов,* m_2 и m_3 - количество идентифицированных протонов и γ -квантов соответственно. С'включает в себя неидентифицирован-

*В настоящей работе используются события с m₁ = 1. Здесь и далее под π^+ подразумеваются не только идентифицированные π^+ -мезоны, но и неразделенные высокоэнергичные положительно заряженные частицы π^+/p .

© 1977 Объединенный инспинут ядерных исследований Дубна

ное ядро-остаток, нейтроны и не включает нейтральные странные V°-частицы.

Эффективность нахождения событий (1) по данным двойного просмотра составила 65 и 75% для событий с m₃=0 и m₃>1 соответственно.

Отбор событий и идентификация положительно заряженных частиц проводились по стандартной методике, используемой при обработке снимков с пропановых пузырьковых камер⁷⁶⁷. В частности, протоны и π^+ --мезоны по пробегам и ионизации в ПК-200 надежно идентифицируются примерно до 700 МэВ/с. При более высоких энергиях разделение положительных частиц возможно только с помощью δ -электронов.

Сечение реакции (1), вычисленное на основе наших данных, оказалось равным $\sigma = 3,4\pm0,4$ мб.

Одним из основных фоновых процессов по отношению к реакциям типа (1) являются реакции с рождением медленных π^- - мезонов с импульсом менее 70 МэВ/с, которые из-за короткого пробега в пропановой камере (R \leq 3 см) принимаются за протоны. Специальный анализ остановившихся идентифицированных пионов показал, что примерно половина* из них при захвате ядром углерода дает одно- и двухлучевые о -звезды. Таким образом, часть л -мезонов, ошибочно принятых за протоны, могла быть идентифицирована по вторичной *с*-звезде. Анализ примерно 100 событий этого типа показал, что только один протонный след в интервале пробегов 0,2-3,0 см может принадлежать 7 -мезону с характерной *о*-остановкой. Следовательно, примесь фоновых п - мезонов в интервале импульсов ~ (30-70) МэВ/с, присутствующих в событиях типа (1), составляет 2%. Вклад п - мезонов с импульсом меньше 30 МэВ/с не превышает указанной оценки /9/. Таким образом, максимальная примесь фоновых событий с медленными п-мезонами в реакциях (1) не превышает 4%.

*Эта оценка согласуется с результатом, полученным в работе $^{/8/}$.

Представляет интерес выделить из процессов типа (1) такие, которые идут без образования π° -мезонов. Для этого был проведен специальный анализ каждого у -кванта на принадлежность звезде ^{77/}. Средняя эффективность нахождения у-квантов при просмотре составляла $\epsilon_y = 0.79$, а средний "геометрический вес" $\overline{W} = 5.7$. Величина \overline{W} практически не зависит от числа у-квантов в событии. Это позволяет выразить распределение по множественности π° -мезонов через распределение по множественности у-квантов с помощью системы уравнений:

$$N_{n} = \sum_{i=0}^{V_{max}} n_{i} C_{2i}^{k} \epsilon^{k} (1-\epsilon)^{2i-k} , \qquad (2)$$

где k =0,1,2,3; C_{2i}^{k} – число сочетаний из 2i элементов по k; N_m и n_m -соответственно число событий с m у-квантами и π° -мезонами; $\epsilon = \epsilon_{\gamma}$ /W – средняя эффективность регистрации у-квантов.

Система уравнений (2) решалась для двух случаев, когда максимальное число рожденных π° -мезонов $i_{max} = 2$ и 3. Оба варианта дают близкие результаты, что свидетельствует об устойчивости решения уравнений (2) относительно выбора i_{max} . Отношение числа событий без рождения π° -мезонов к числу событий без зарегистрированных γ -квантов равно $n_0/N_0 =$ 0,53±0,17. Число событий с рождением одного и более π° -мезонов составляет 63±12% от всех событий типа (1). Отдельно вклады событий с рождением одного, двух, трех π° -мезонов из-за статистических погрешностей определяются с большими ошибками. Однако решение системы уравнений (2) позволяет определить среднее число π° -мезонов в процессах типа (1):

$< n_{-o} > = 1.37 \pm 0.11$.

Используя полученные результаты, находим сечения реакции типа двойной перезарядки π^- -мезона без рождения π° -мезонов (σ_0) и с рождением одного и более π° -мезонов (σ_{π°):

σ₀ = (1,25<u>+</u>0,45) мб

И

 $\sigma_{\pi^{\circ}} = (2,15\pm0,50)$ MG.

Среднее число π° -мезонов в реакциях с рождением одного и более π° -мезонов равно $<\mathbf{n'}_{\pi^{\circ}}>=2,2\pm0,2$.

На рисунке приведено импульсное распределение π^+ --мезонов для реакции (1). В высокоэнергичную часть ($P_{\pi^+} > 3$ ГэВ/с) этого спектра, сколлимированного в области углов меньше 30° в лабораторной системе, основной вклад дают процессы "упругой" двойной перезарядки π^- -мезонов. Соответствующее им сечение равно $\sigma'_{y п p} = 0,26 \pm 0,07$ мб, а максимальная примесь среди них событий с π° -мезонами не превышает 20%.

ЗАКЛЮЧЕНИЕ

Определено сечение реакции (1) $\sigma = 3,4\pm0,4$ мб. Сечения реакции (1) без образования π° -мезонов $\sigma_0 = 1,25\pm0,45$ мб, а с рождением одного и более π° --мезонов $\sigma_{\pi^{\circ}} = 2,15\pm0,50$ мб. Среднее число π° -мезонов, образуемых в процессах (1), $<n_{\pi^{\circ}}> = 1,37\pm0,11$. Получено сечение "упругой" двойной перезарядки π^{-} --мезонов на ядрах углерода : $\sigma'_{\rm VIID} = 0,26\pm0,07$ мб.

В заключение мы выражаем благодарность лаборантам Лаборатории ядерных проблем и Лаборатории вычислительной техники и автоматизации, принимавшим участие в просмотре и измерении пленок с ПК-200.

7

литература

- 1. Батусов Ю.А. и др. Препринт ОИЯИ, Р-1474, Дубна, 1963; ЖЭТФ, 1964, 46, 817; ЯФ, 1967, 5, 354; ЯФ, 1966, 3, 309; ЯФ, 1966, 9, 378.
- Ляшенко В.И. и др. Сообшение ОИЯИ, Р1-9591, Дубна, 1976; Кулюкин М.М. и др. Препринт ОИЯИ, Р1-7231, Дубна, 1973; Gaille F. e a. Helv.Phys.Acta,1977, v.50,No.2,p.204; Gibbs W.R. e a. Phys.Rev. C,1977,v.15,No.4, p.1384-1395.
- Lundy R.A. e.a. Phys.Rev.Lett., 1968,20,283; Sreedhar V. e a.Nucl. Phys., 1974, B75, No.2, p.285-302; Nucl.Phys., 1975, B88,202-214; Beapre J.V. e a. Phys.Lett., 1971, 37B,432; 1972, 39B, 402.
- 4. Геворкян С.Р., Тарасов А.В., Цэрэн Ч. ЯФ, 1972, 15,55; Kopeliovich B.Z., Tseren Ch. Preprint JINR E2-9913. Dubna, 1976; Germond J.-F., Wilkin C. Helv. Phys. Acta, 1977, v.50, No. 2, p.203.
- 5. Богомолов А.В. и др. ПТЭ, 1964, 1, 61.
- 6. Angelov N.S. e a. Phys.Lett., 1972, 39B, 571.
- 7. Валкар Ш. и др. Сообщение ОИЯИ, 13-6140, Дубна, 1971.
- 8. Демидов В.С., Кириллов-Угрюмов В.Г. и др. ЖЭТФ, 1963, 44, 4, 1144.
- 9. Батусов Ю.А. и др. Препринт ОШЯШ, Р1-10275, Дубна, 1976.

Рукопись поступила в издательский отдел 13 декабря 1977 года.