ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

96/2-78

2/1-78 P1 - 10937

К.-Ф.Альбрехт, В.К.Бирулев, Г.Вестергомби, А.С.Вовенко, В.И.Генчев, Я.Гладки, Т.С.Григалашвили, Б.Н.Гуськов, М.Захвиц, И.М.Иванченко, В.Д.Кекелидзе, В.Г.Кривохижин, В.В.Кухтин, М.Ф.Лихачев, А.Майер, И.Манно, М.Новак, А.Прокеш, Х.-Э.Рызек, Ю.И.Саломатин, И.А.Савин, А.Е.Сеннер, Л.В.Сильвестров, В.Е.Симонов, Г.Г.Тахтамышев, П.Т.Тодоров, Л.Урбан

ТРАНСМИССИОННАЯ РЕГЕНЕРАЦИЯ НЕЙТРАЛЬНЫХ КАОНОВ НА ДЕЙТРОНАХ И НЕЙТРОНАХ В ИНТЕРВАЛЕ ИМПУЛЬСОВ 10 - 50 ГэВ/с

P1 - 10937

К.-Ф.Альбрехт, В.К.Бирулев, Г.Вестергомби,

А.С.Вовенко, В.И.Генчев, Я.Гладки,

Т.С.Григалашвили, Б.Н.Гуськов, М.Захвиц,

И.М.Иванченко, В.Д.Кекелидзе⁵, В.Г.Кривохижин,

В.В.Кухтин, М.Ф.Лихачев, А.Майер, И.Манно,

М.Новак, А.Прокеш, Х.-Э.Рызек, Ю.И.Саломатин,

И.А.Савин, А.Е.Сеннер, Л.В.Сильвестров,

В.Е.Симонов, Г.Г.Тахтамышев, П.Т.Тодоров, Л.Урбан

ТРАНСМИССИОННАЯ РЕГЕНЕРАЦИЯ НЕЙТРАЛЬНЫХ КАОНОВ НА ДЕЙТРОНАХ И НЕЙТРОНАХ В ИНТЕРВАЛЕ ИМПУЛЬСОВ 10 - 50 ГэВ/с

Сотрудничество: Берлин - Будапешт - Дубна - Прага - Серпухов - София - Тбилиси.

Направлено в ЯФ

¹ ИФВЭ АН ГДР /Цойтен/. ² ЦИФИ ВАН /Будапешт/. ³ФИ ЧСАН /Прага/. ⁴ИЯИЯЭ БАН /София/. ⁵ Тбилисский государственный университет.

Альбрехт К.-Ф. и др.

Трансмиссионная регенерация нейтральных каонов на дейтронах и нейтронах в интервале импульсов 10+50 ГэВ/с

Приводятся результаты исследования амплитуд трансмиссионной регенерации нейтральных каонов на дейтронах и нейтронах в интервале импульсов каонов 10+50 ГэВ/с.

Молули модифицированных амплитуд регенерации в зависимости от импульса каонов изменяются по законам $A_j \cdot P^{-n_j}$, где A_j и $n_j(j \neq d,n)$ -константы, причем $A_d = (2,88\pm0,04)$ мб, $n_d = 0,546\pm0,030$ для дейтронов и $A_n = (1,97\pm0,14)$ мб, $n_n = 0,530\pm0,019$ для нейтронов. Фазы амплитуд не зависят от импульса каонов и равны: $\overline{\phi}_d^c =$ $= (-130,9\pm2,7)^\circ$; $\overline{\phi}_n^\circ = (-132,3\pm1,7)^\circ$. Среднее значение отношения разностей полных сечений взаимодействий К° и К° на нейтронах и протонах $\Lambda \sigma (K^\circ n) / \Delta \sigma (K^\circ p) = 2,000\pm0,066$. Значения вычетов парциальных $\omega - u - \rho$ -амплитуд, дающих вклад в К-нуклонные амплитуды взаимодействий, и их отношения равны: $\beta_{Kp}^\omega = (7,2\pm0,1)$ мб, $\beta_{Kp}^\rho = (2,0\pm0,4)$ мб, $\beta_{Kp}^\omega / \beta_{Kp}^\rho = 3,6\pm0,7$.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1977

Albrecht K.-F.

P1 - 10937

الموادية الم

Neutral Kaon Transmission Regeneration on Deutrons and Neutrons in Kaon Momentum Region of 10-50 GeV/c

Results of an investigation of the neutral kaon transmission regeneration amplitudes on deutrons and neutrons in a kaon momentum region of 10-50 GeV/c are presented. The moduli of modified transmission amplitudes are momentum-dependent within the law $A_j \cdot P^{-n_j}$, where A_j and $n_j (j \equiv d, n)$ are constants equal to $A_d = (2.88 \pm 0.04)$ mb, $n_d = 0.546 \pm 0.030$ for deutrons and $A_n = (1.97 \pm 0.14)$ mb, $n_n = 0.530 \pm 0.019$ for neutrons. The phases do not depend on the kaon momentum and are equal to $\phi_d = (-130.9 \pm 2.7)^\circ$; $\phi_n = (-132.3 \pm 1.7)^\circ$. The mean value of the ratio of the total cross section differences for K° and \overline{K}° interactions with neutrons and protons equals $\Delta\sigma(K^\circ n)/\Delta\sigma(K^\circ p) = 2.000 \pm 0.066$. The residues for the partial ω and ρ -amplitudes which contribute to the kaon-nucleon interaction amplitudes, and their ratio are equal to $\beta_{Kp}^\omega = (7.2 \pm 0.1)$ mb, $\beta_{Kp}^{\rho} = (2.0 \pm 0.4)$ mb

Preprint of the Joint Institute for Nuclear Research. Dubna 1977

© 1977 Объединенный инспитут ядерных исследований Дубна

1. Введение

Измерения амплитуд трансмиссионной регенерации нейтральных каонов на нуклонах и дейтронах и изучение их энергетической зависимости дают возможность проверить соответствующие следствия теоремы Померанчука ^{/1/}. теории комплексных угловых моментов /КУМ/ ^{/2-4/}, дисперсионных соотношений /ДС/ ^{/5-7/}, а также некоторые выводы теории симметрий /ТС/ ^{/8/}.

Модифицированной амплитудой трансмиссионной регенерации ^{/9/} К[°]_L – К[°]_S мезонов в веществе называется величина

$$F_{j}(P) = \frac{1}{k} \left[f^{\circ}(P) - \overline{f}^{\circ}(P) \right]_{j} = \frac{2}{k} \left| f^{\circ}_{21}(P) \right|_{j} \cdot \exp\left[i \cdot \phi^{\circ}_{j}(P) \right], /1/$$

где $f^{\circ}(P)$ и $f^{\circ}(P)$ - соответственно амплитуды упругого рассеяния вперед для K° – и \overline{K}° - мезонов на ядрах данного вещества, k - волновое число, P - импульс каонов в л.с.к. в $\Gamma_{\beta}B/c$, $j \equiv d$, N ; N = p, n для регенерации на дейтронах, протонах и нейтронах.

В рамках теории КУМ, учитывающей в амплитуде рассеяния каонов на нуклонах только вклад полюсных членов, амплитуды представляются суммой парциальных вкладов от ω -, ρ - и ϕ -полюсов. Малость константы связи ϕ NN /10/, "компенсация" вклада ρ -полюса в $F_d(P)$, равенство нулю изотопического спина дейтрона позволяют записать эти амплитуды в виде

Альбрехт К.-Ф. и др.

Трансмиссионная регенерация нейтральных каонов на дейтронах и нейтронах в интервале импульсов 10+50 ГэВ/с

Приводятся результаты исследования амплитуд трансмиссионной регенерации нейтральных каонов на дейтронах и нейтронах в интервале импульсов каонов 10+50 ГэВ/с.

Молули модифицированных амплитуд регенерации в Зависимости от импульса каонов изменяются по законам Ај · Р^{-п}ј, где Ај и п_ј(j=d,n) -константы, причем Аd = (2,88±0,04)мб, nd = 0,546±0,030 для дейтронов и А_n = (1,97±0,14)мб, n_n = 0,530±0,019 для нейтронов. Фазы амплитуд не зависят от импульса каонов и равны: $\overline{\phi}_{d}^{c}$ = = (-130,9±2,7)°; $\overline{\phi}_{n}^{c}$ = (-132,3±1,7)°. Среднее значение отношения разностей полных сечений взаимодействий К° и К° на нейтронах и протонах $\Lambda \sigma$ (K°n)/ $\Delta \sigma$ (К°р) = 2,000±0,066. Значения вычетов парциальных ω - и ρ -амплитуд, дающих вклад в К-нуклонные амплитуды взаимодействий, и их отношения равны: β_{Kp}^{ω} = (7,2±0,1)мб, β_{Kp}^{ρ} = (2,0±0,4)мб, $\beta_{Kp}^{\omega}/\beta_{Kp}^{\rho}$ = 3,6±0,7.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1977

Albrecht K.-F.

P1 - 10937

میں ، ، ، ،

7

Neutral Kaon Transmission Regeneration on Deutrons and Neutrons in Kaon Momentum Region of 10-50 GeV/c

Results of an investigation of the neutral kaon transmission regeneration amplitudes on deutrons and neutrons in a kaon momentum region of 10-50 GeV/c are presented. The moduli of modified transmission amplitudes are momentum-dependent within the law $A_j \cdot P^{-n_j}$, where A_j and $n_j(j \equiv d, n)$ are constants equal to $A_d = (2.88 \pm 0.04)$ mb, $n_d = 0.546 \pm 0.030$ for deutrons and $A_n = (1.97 \pm 0.14)$ mb, $n_n = 0.530 \pm 0.019$ for neutrons. The phases do not depend on the kaon momentum and are equal to $\phi_d = (-130.9 \pm 2.7)^\circ$; $\phi_n = (-132.3 \pm 1.7)^\circ$. The mean value of the ratio of the total cross section differences for K° and \overline{K}° interactions with neutrons and protons equals $\Delta \sigma(K^\circ n) / \Delta \sigma(K^\circ p) = 2.000 \pm 0.066$. The residues for the partial ω and ρ -amplitudes which contribute to the kaon-nucleon interaction amplitudes, and their ratio are equal to $\beta_{Kp}^{\omega} = (7.2 \pm 0.1)$ mb, $\beta_{Kp}^{\rho} = (2.0 \pm 0.4)$ mb $\beta_{Kn}^{\omega} / \beta_{Kn}^{\rho} = 3.6 \pm 0.7$.

Preprint of the Joint Institute for Nuclear Research. Dubna 1977

© 1977 Объединенный инспинут ядерных исследований Дубна

1. Введение

Измерения амплитуд трансмиссионной регенерации нейтральных каонов на нуклонах и дейтронах и изучение их энергетической зависимости дают возможность проверить соответствующие следствия теоремы Померанчука ^{/1/}. теории комплексных угловых моментов /КУМ/ ^{/2-4/}, дисперсионных соотношений /ДС/ ^{/5-7/}, а также некоторые выводы теории симметрий /ТС/ ^{/8/}.

Модифицированной амплитудой трансмиссионной регенерации ^{/9/} К[°]_L – К[°]_S мезонов в веществе называется величина

$$\mathbf{F}_{j}(\mathbf{P}) = \frac{1}{k} \left[\mathbf{f}^{\circ}(\mathbf{P}) - \overline{\mathbf{f}}^{\circ}(\mathbf{P}) \right]_{j} = \frac{2}{k} \left| \mathbf{f}^{\circ}_{21}(\mathbf{P}) \right|_{j} \cdot \exp\left[\mathbf{i} \cdot \boldsymbol{\phi}^{\circ}_{j}(\mathbf{P}) \right], /1/2$$

где $f^{\circ}(P)$ и $f^{\circ}(P)$ - соответственно амплитуды упругого рассеяния вперед для K° – и \overline{K}° - мезонов на ядрах данного вещества, k - волновое число, P - импульс каонов в л.с.к. в $\Gamma_{\mathcal{B}}B/c$, $j \equiv d$, N ; N = p, n для регенерации на дейтронах, протонах и нейтронах.

В рамках теории КУМ, учитывающей в амплитуде рассеяния каонов на нуклонах только вклад полюсных членов, амплитуды представляются суммой парциальных вкладов от ω -, ρ - и ϕ -полюсов. Малость константы связи ϕ NN /10/, "компенсация" вклада ρ -полюса в $F_d(P)$, равенство нулю изотопического спина дейтрона позволяют записать эти амплитуды в виде

$$\mathbf{F}_{N}(\mathbf{P}) = \frac{1}{2\pi} \{ \beta_{Kp}^{\omega} [\operatorname{tg}(\frac{\pi}{2} \alpha_{\omega}(0)) + \mathbf{i}] \cdot \mathbf{P}^{\alpha_{\omega}(0) - 1} = \pm \frac{1}{2\pi} \{ \beta_{Kp}^{\omega} [\operatorname{tg}(\frac{\pi}{2} \alpha_{\omega}(0)) + \mathbf{i}] \cdot \mathbf{P}^{\alpha_{\omega}(0) - 1} \}$$

 $\pm \beta^{\rho}_{\mathrm{Kp}}[\operatorname{tg}(\frac{\pi}{2} \cdot \alpha_{\rho}(0)) + \mathrm{i}] \cdot \mathrm{P}^{\alpha_{\rho}(0) - 1} \}$

/знак (+) для нейтронов, (-) - для протонов / и

$$\mathbf{F}_{d}(\mathbf{P}) = \frac{\delta}{\pi} \cdot \beta_{Kp}^{\omega} [\operatorname{tg}(\frac{\pi}{2} \cdot a_{\omega}(\mathbf{0})) + \mathbf{i}] \cdot \mathbf{P}^{a_{\omega}(\mathbf{0})} - \mathbf{i} , \qquad /3,$$

где δ - коэффициент, учитывающий "глауберовскую" поправку, а β_{Kp}^{ω} , β_{Kp}^{ρ} и $a_{\omega}(0)$, $a_{\rho}(0)$ соответственно значения вычетов амплитуд в перекрестном канале и траекторий ω - и ρ - полюсов при переданном импульсе t = 0. Из /3/ видно, что в модели КУМ $|F_{d}(P)|$ и $\phi_{d}(P)$ связаны через интерсепт ω -траектории, а именно

$$|\mathbf{F}_{d}(\mathbf{P})| \sim \mathbf{P}^{a_{\omega}(0)-1}$$
 H $\phi_{d}(\mathbf{P}) = -\frac{\pi}{2}(1+a_{\omega}(0)).$ **/4**/

Отсюда очевидны зависимость модуля амплитуды трансмиссионной регенерации каонов на дейтронах и независимость ее фазы от импульса каонов.

Выводы ТС в комбинации с теорией КУМ устанавливают, в частности, связь между вычетами амплитуд

$$\beta_{\rm Kp}^{\omega} / \beta_{\rm Kp}^{\rho} = 3$$
 /5/

и разностями полных сечений взаимодействий К^о и К^о на нейтронах и протонах

$$\Delta \sigma (\mathbf{K}^{\circ} \mathbf{n}) / \Delta \sigma (\mathbf{K}^{\circ} \mathbf{p}) = 2.$$
 (6)

Предсказания ДС для амплитуд трансмиссионной регенерации каонов в случае выполнимости теоремы Померанчука совпадают с предсказаниями теории КУМ.

Данные о $F_d(P)$ позволяют вычислить дифференциальные сечения регенерации и $\Delta \sigma(K^{od})$. т.к.

$$\left(\frac{d\sigma_{d}}{dt}\right)_{t=0} = \frac{\pi \cdot |F_{d}(P)|^{2}}{4(\ln c)^{2}} \quad \mathbf{H} \quad \Delta \sigma (\kappa \cdot d) = 4\pi \cdot \operatorname{Im} F_{d}(P), \quad /7/$$

где

.

/2/

$$-\Delta \sigma (\mathbf{K}^{\circ} \mathbf{d}) = \sigma_{\text{tot}} (\mathbf{K}^{\circ} \mathbf{d}) - \sigma_{\text{tot}} (\mathbf{K}^{\circ} \mathbf{d}),$$

а в сочетании с данными на протонах^{/11/} - получить аналогичные величины для взаимодействий на нейтронах. Из 2,3 и 7 следует, что

$$\Delta \sigma (\mathbf{K}^{\circ} \mathbf{n}) = \Delta \sigma (\mathbf{K}^{\circ} \mathbf{d}) / \delta - \Delta \sigma (\mathbf{K}^{\circ} \mathbf{p}) .$$
(8/

В данной работе амплитуды $F_d(P)$ определялись по интенсивности двухпионных распадов K_L^o - и K_S^o -мезонов, происходивших в пространстве за мишенью-регенератором /MP/, помещенной в падающий пучок чистых K_L^o мезонов. Плотность распределения числа этих распадов, зарегистрированных установкой, описывается известной интерференционной формулой /см., например, работу /11//.

Первоначальные данные о трансмиссионной регенерации $K_L^{\circ} - K_S^{\circ}$ на дейтронах содержатся в работе $^{/12/}$. Здесь приводятся окончательные результаты, полученные в интервале импульсов 10-50 Γ_{3B}/c , и их сравнение с данными при меньших энергиях $^{/13/}$.

Эксперимент выполнен на серпуховском ускорителе с помощью бесфильмового искрового магнитного спектрометра $^{/14/}$. Так же как в $^{/11/}$ измерения проведены при двух положениях МР /геометрия 1 и 2/, в которых зарегистрировано около О,5 и 1 миллиона событий, соответственно. В качестве МР использовалась трехметровая жидкодейтериевая мишень $^{/15/}$ с толщиной дейтерия на пути частиц 51,12 г/см² и полной толщиной майларовых окон O,1O5 г/см².

2. Обработка экспериментальных данных

Обработка экспериментальных данных велась в основном по схеме $^{/11/}$. С помощью программы геометрической реконструкции событий $^{/16/}$ было восстановлено около миллиона событий, большую часть которых составили полулептонные распады K_1° .

Рис. 1 и 2 иллюстрируют суммарные распределения отобранных $\pi^+\pi^-$ -событий по их инвариантной массе

Рис. 1. Распределение событий по эффективной массе двух заряженных частиц в предположении, что обе частицы - пионы. При этом угол рассеяния каона 😁 не превышает трех значений величины разрешающей способности установки по 🐵².

и квадрату угла рассеяния каонов. Суммарные числа отобранных ($K_{S,L}^{\circ} \rightarrow \pi^{+}\pi^{-}$) – распадов равны около 8400 и 10700 для геометрий 1 и 2 соответственно, а ($K_{L}^{\circ} \rightarrow \pi^{+}\pi^{-}$) распадов, моделированных методом Монте-Карло и "зарегистрированных" установкой, - более 5-10⁵.

4

Полное число прошедших сквозь мишень К[°]_L-мезонов /монитор/ и их импульсный спектр были определены из анализа трехчастичных распадов К[°]_L^{17/}, зарегистрированных установкой в этом же эксперименте.

Рис. 2. Распределение событий по квадрату угла рассеяния каона в мишени-регенераторе, для которых $|M(\pi^+\pi^-)-M(K^\circ)|$ меньше трех значений величины разрешающей способности установки по эффективной массе двух пионов.

Первоначально экспериментальные данные о плотности распределения числа двухпионных распадов каонов аппроксимировались интерференционной формулой со свободными параметрами $|F_d(P)|/|\eta_{+-}|$ / η_{+-} - параметр нарушения СР -инвариантности в распадах К° / и $\phi_d(P)$ отдельно для каждой геометрии и каждого импульсного интервала. При этом монитор, оставаясь свободным параметром, по всем импульсным интервалам совпадал в пределах погрешностей со значением, полученным из анализа зарегистрированных установкой К° = и К° - распадов. Результаты аппроксимаций показали, что для обеих геометрий в совпадающих импульсных интервалах значения амплитуд регенерации согласуются между собой. После этого была проведена совместная обработка всех данных.

7

3. Основные результаты

3.1. Окончательные значения модуля и фазы модифицированной амплитуды регенерации $K_L^{\circ} - K_S^{\circ}$ на дейтронах представлены в *табл.* 1 и на *рис.* 3, откуда видно,

Таблица І

Значения $\phi_{d}^{\circ}(P)$ и $|F_{d}(P)|$, полученные при анализе данных отдельно для каждого импульсного интервала. Среднее значение фазы $\overline{\phi}_{d}^{\circ} = /-130,9\pm2,7/^{\circ}$. Всюду $|\eta_{++}| = 2,3\cdot10^{-3}$, остальные константы слабого взаимо-действия табличные $^{/25/}$.

Интервал импульсов каонов, Гев/с	Фаза, Градусы	Модуль, Мкб
12 <u>+</u> 2	-I4I <u>+</u> I6	733 <u>+</u> 87
16 <u>+</u> 2	-133 <u>+</u> 11	64 7 <u>+</u> 70
20 <u>+</u> 2	-I27 <u>+</u> 6	541 <u>+</u> 37
24 <u>+</u> 2	-128 <u>+</u> 6	494 <u>+</u> 29
28 <u>+</u> 2	-126 <u>+</u> 7	4 52 <u>+</u> 26
32 <u>+</u> 2	-I45 <u>+</u> 9	4 52 <u>+</u> 3I
36 <u>+</u> 2	-I 4 8 <u>+</u> I3	435 <u>+</u> 33
40<u>+</u>2	I34 <u>+</u> I7	384 <u>+</u> 30
46±4	-110 <u>+</u> 23	318 <u>+</u> 25

что фаза не обнаруживает явной зависимости от импульса каонов, а модуль убывает по закону, близкому к /4/, как предсказывает простая теория КУМ при условии выполнимости теоремы Померанчука.

3.2. В рамках гипотезы постоянства фазы /4/ модули амплитуды | F_d (P) | вычислены для каждого импульсного интервала.

Результаты вычислений представлены в табл. 2 и для сравнения с данными при меньших энергиях - на *рис. Зв.*

Рис. 3. Фаза амплитуды трансмиссионной регенерации К⁰_L, K^o_S на дейтронах в зависимости от импульса каонов /a/: — - данные настоящей работы, — - работы ¹³. Разность сечений взаимодействия К^{od}-K^{od} и К^{on}-K^{on} в зависимости от импульса каонов /б/: ^{21/} - данные настоящей работы; У У- работы ^{21/}; — - работы ^{20/}; Д - работы /^{22/}, соответственно. Зависимость модуля амплитуды трансмиссионной регенерации на дейтронах и нейтронах /в/: — , - - данные настоящей работы, — - работы /^{13/}.

3.3. Из амплитуд $F_d(P)$ и $F_p(P)^{/11/}$ по формулам /2/ и /3/ вычислены $\mathfrak{F}_n^\circ = /-132,3\pm1,7/^\circ$ и $|F_n(P)|$, которые приведены в *табл.* 2. Здесь использовались модель КУМ и поправка Глаубера /19/.

A

8

9

Таблица 2

Значения $|F_j(P)|$ и $\Delta \sigma(K^o j) (j = d, p, n)$ для дейтронов, протонов и нейтронов соответственно), полученные из анализа данных с общими для всех импульсных интервалов фазами.

Интерва	π_IF _i (I	P) ,	nko	\$6(K°j), v	IKO
каонов, ГэВ/с	Дей- трон	Про - тон	Ней - трон	Дей- трон*	Про - тон	Ней - трон*
I2 <u>+</u> 2	726 <u>+</u> 80	-	-	6900 <u>+</u> 6I0	-	-
16 <u>+</u> 2	6 37+ 62	2I4 <u>+</u> 96	458 <u>+</u> 96	6050 <u>+</u> 400	2119+414	4260 <u>+</u> 880
20 <u>+</u> 2	543 <u>+</u> 45	169 <u>+</u> 18	405 <u>+</u> 48	5I60 <u>+</u> 2 3 0	I674 <u>+</u> I76	3760 <u>+</u> 430
24 <u>+</u> 2	50I <u>+</u> 4I	177 <u>+</u> 15	351 <u>+</u> 34	4760 <u>+</u> I90	1751 <u>+</u> 145	3260 <u>+</u> 300
28 <u>+</u> 2	459 <u>+</u> 37	158 <u>+</u> 16	326 <u>+</u> 36	4360<u>+</u>17 0	1558 <u>+</u> 155	3030 <u>+</u> 320
32 <u>+</u> 2	448 <u>+</u> 37	I59 <u>+</u> I4	3I4 <u>+</u> 32	4260 <u>+</u> 180	I564 <u>+</u> I35	2920 <u>+</u> 280
36 <u>+</u> 2	427 <u>+</u> 36	I39 <u>+</u> I3	3I2 <u>+</u> 33	4060 <u>+</u> 180	I368 <u>+</u> I24	2900 <u>+</u> 290
40 <u>+</u> 2	391 <u>+</u> 34	107 <u>+</u> 23	308 <u>+</u> 68	37 20 <u>+</u> 180	1057 <u>+</u> 228	2860 <u>+</u> 630
46 <u>+</u> 4	34I <u>+</u> 32	II4 <u>+</u> I9	246 <u>+</u> 44	3240 <u>+</u> 180	III9 <u>+</u> 187	2290 <u>+</u> 400

*Цифры округлены до десятков.

3.4. Среднее значение фазы амплитуды трансмиссионной регенерации $K_L^{\circ} - K_S^{\circ}$ на дейтронах может изменяться в зависимости от изменения параметров слабых взаимодействий системы нейтральных каонов. Найдено, что это изменение описывается эмпирическим выражением:

$$\vec{\phi}_{d}^{\circ} = (-130.9 \pm 2.7)^{\circ} + 100^{\circ} (\Delta m' - \Delta m) / \Delta m' + + 110^{\circ} (\Gamma_{s}^{\circ} - \Gamma_{s}^{\prime}) / \Gamma_{s}^{\prime} + (\Phi_{+-}^{\circ} - 45^{\circ}),$$
(9)

где $\Delta m' = 0,534 \cdot 10^{10} c^{-1}$ и $\Gamma_S' = (1/0,895) \cdot 10^{10} c^{-1}$. |F_d(P)| в пределах достигнутых экспериментальных точностей от этих параметров слабых взаимодействий не зависит. 3.5. Разности полных сечений взаимодействий нейтральных каонов с дейтронами и нейтронами вычислены, соответственно, по формулам /7/ и /8/. При этом $\Delta\sigma(K^{\circ}p)$ взяты из работы ^{/11/} а "глауберовская" поправка $\delta = 0.95\pm0.01$ найдена способом, изложенным в работе ^{/19/}, с использованием данных работы ^{/20/}. Величины $\Delta\sigma(K^{\circ}d)$ и $\Delta\sigma(K^{\circ}n)$ показаны в табл. 2 и на рис. Зб вместе с данными для заряженных каонов ^{/20-22/}.

3.6. Значения $(d\sigma/dt)_{t=0}$ вычисленные по формулам типа /7/, приведены в *табл. 3*.

Таблица З

Значения дифференциальных сечений регенерации $K_L^{o} - K_S^{o}$ на дейтронах, протонах и нейтронах при переданном импульсе $t \ge 0$.

Интервал	$(dG_{i}/dt)_{t=0}$	у мкб (Г	эB/c) ⁻²
каонов, Гэв/с	Дейтрон	Протон	Нейтрон
12 <u>+</u> 2	1063 <u>+</u> 234	-	-
16 <u>+</u> 2	818 <u>+</u> 159	92,4 <u>+</u> 40,6	424 <u>+</u> 177
20 <u>+</u> 2	595 <u>+</u> 99	57,6 <u>+</u> 12,3	330 <u>+</u> 78
24 <u>+</u> 2	506 <u>+</u> 83	63,2 <u>+</u> I0,7	248 <u>+</u> 48
28<u>+</u>2	425 <u>+</u> 69	50,4 <u>+</u> I0,2	214 <u>+</u> 47
32 <u>+</u> 2	4 05 <u>+</u> 67	5I,0 <u>+</u> 9,0	199 <u>+</u> 40
36+2	368<u>+</u> 62	39,0 <u>+</u> 7,3	196 <u>+</u> 41
40 <u>+</u> 2	308 <u>+</u> 54	23,I <u>+</u> 9,9	191 <u>+</u> 85
46 <u>+</u> 4	235 <u>+</u> 44	26,2 <u>+</u> 8,7	I23 <u>+</u> 43

3.7. В табл. 2 и 3 приведены также данные по регенерации К[°]_L-К[°]_S на протонах. Они получены из данных работы^{/11} пересчетом для современных значений констант слабых взаимодействий. В частности, пересчет средней фазы амплитуды регенерации на протонах по

11

формуле типа /9/ (см. формулу /19/ в работе (11)) дает $\bar{\phi}_{p}^{o} = /-128, 1\pm 2, 3^{o}/$, где ошибка есть стандартное отклонение от среднего значения *.

3.8. По данным табл. 2 и 3 определены энергетические зависимости типа А, Р^{- п}ј для модулей амплитуд и дифференциальных сечений регенерации, а также для разностей полных сечений взаимодействий К^о и К^о / табл. 4/. При этом параметры A₁ и n₁ получены в предположении справедливости простой полюсной теории КУМ, которая устанавливает связь между модулем и фазой амплитуды регенерации в виде /2/ и /3/. Эта связь, в частности, приводит к тому, что n₁ зависит от ϕ_i° . Учет этой зависимости в предположении постоянства $\phi_{\downarrow}^{\circ}$ в исследуемом интервале энергий приводит к уменьшению ошибок в параметрах A i и n i по сравнению с ошибками этих параметров в работе 11 которые найдены из анализа | F_p(P) | .

Данные *табл.* 4 позволяют определить вычеты полюсов ω и ρ

$$\beta_{\rm Kp}^{\omega} = /7,2\pm0,1/$$
 mG; $\beta_{\rm Kp}^{\rho} = /2,0\pm0,4/$ mG. /10/

Их отношение $\beta_{\rm Kp}^{\ \omega} / \beta_{\rm Kp}^{\ \rho} = 3,6\pm0,7$ в пределах одного стандартного отклонения согласуется с предсказанием /5/ SU (6) - симметрии и на три стандартных отклонения меньше, чем значение, полученное в работе ⁽²³⁾. С предсказаниями теорий симметрий согласуется также значение отношения /6/, которое равно 2,000±0,066.

3.9. По значению средней фазы $\overline{\phi}_{d}^{\circ}$ и совокупности данных о $F_{d}(P)$ и $F_{p}(P)$ определены интерсепты траекторий ω - и ρ -полюсов: $a_{\omega}(0) = 0,454\pm0,030; a_{\mu}(0) =$ = 0,523±0,114. Эти значения, так же как с значения вычетов /10/, находятся в согласии с результатами феноменологического анализа⁽²⁴⁾ мировых экспериментальных данных.

екие Ские	
ыцих энергетич данных по рег и нейтронах	
, характернзук Ај.Р- ⁿ ј онах протонах	
ения констант симости, типа Коналовито	2
Знач зави К°	L

Tabauya 4

	Aż	, мб			r.	
Функция	Дейтрон	Протон	Нейтрон	Дейтрон	Протон	Нейтрон
I (P)	2,88±0,04	I,05 <u>+</u> 0,04	I,97 <u>+</u> 0,I4	0,546±0,030	0,576±0,026	0,530+0,019
(de/dt) _{t=0}	I6,70 <u>+</u> 0,50	2,3 <u>+</u> 0,2	7,8 ±1,1	I,092±0,060	$1,153\pm0.052$	I,060 <u>+</u> 0,038
AG(K°j)	$27,32\pm0,41$	I0,42+0,39	I8,34±0,77	$0,546\pm0,030$	0,576±0,026	0,530 <u>+</u> 0,019
,						

^{*} В работе /11/ ошибка в $\vec{\phi}_{\rm p}^{\,\circ}$ соответствует двум стандартным отклонениям от среднего.

3.10. Как видно из *рис.* 36, разности полных сечений взаимодействий К° и \overline{K} ° на нуклонах и дейтронах, полученные в настоящей работе и работах ^{/11,12/}, хорошо согласуются с соответствующими данными для заряженных каонов ^{/20/}. Это согласие является дальнейшим экспериментальным доказательством корректности использования изотопической инвариантности и оптической теоремы при анализе сильных взаимодействий каонов.

В заключение авторы благодарят профессоров А.М.Балдина и А.А.Логунова за постоянный интерес и поддержку программы исследования регенерации $K_L^{\circ} - K_S^{\circ}$, выполненной на серпуховском ускорителе.

Литература

- 1. Померанчук И.Я. ЖЭТФ, 1958, 34, с.725.
- 2. Lisin V.I. e.a. Nucl. Phys., 1972, B40, p.298.
- 3. Barger V., Phillips R. Phys.Lett., 1970, 33B, p.425.
- 4. Dass G.V. e.a. Nucl. Phys., 1969, B9, p.549.
- 5. Азнаурян И.Г., Соловьев Л.Д. ЯФ, 1970, 12, с.638.
- Lusignoli M. e.a. Nuovo Cimento, 1966, 45A, p.792; Phys. Lett., 1967, 24B, p.296.
- 7. Вишневский М.Е. и др. ЯФ, 1971, 13, с.855.
- 8. Johnson K., Treiman S.B. Phys. Rev.Lett., 1965, 14, p.189.
- 9. Good R.H. e.a. Phys. Rev., 1961, 124, p.1223.
- 10. Gilman F. I. Phys. Rev., 1968, 171, p.1453.
- Birulev V.K. e.a. Nucl. Phys., 1976, B115, p.249; ЯФ, 1976, 24, с.748.
- 12. Альбрехт К.-Ф. и др. ОИЯИ, 1-7427, Дубна, 1973.
- 13. Frevtag D. e.a. Phys. Rev. Lett., 1975, 35, p.412.
- 14. Басиладзе С.Г. и др. ОИЯИ, Р1-5361, Дубна, 1970.
- 15. Борзунов Ю.Т. и др. ОИЯИ, 8-6958, Дубна, 1973.
- 16. Вестергомби Д. и др. ОИЯИ, Р10-7284, Дубна, 1973.
- 17. Веспергомби Г. и др. ЯФ, 1974, 20, с.371.
- 18. Альбрехт К.-Ф. и др. ОИЯИ, 1-7549, Дубна, 1973.
- 19. Анисович В.В., Стоянова Д.А. ЯФ, 1973, 18, с.447.
- 20. Горин Ю. и бр. ЯФ, 1971, 14, с.998; ЯФ, 1973, 17, с.309.

- 21. Galbrith W. e.a. Phys. Rev., 1965, 138B, p.913.
- 22. Caroll A.S. e.a. Fermilab-Pub-75/151-Exp, 1975.
- 23. Hendick R.E. e.a. Phys. Rev., 1975, D11, \$.536.
- 24. Bouguet A., Diu B. Nuovo Cimento, 1975, 29A, no. 3, b.373.
- 25. Review of Particle Properties. Rev.Mod.Phys., 1976, 48, no. 2, p.24.

Рукопись поступила в издательский отдел 26 августа 1977 года.