ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

21/4-27 P1 - 10841

У561/2-77 Т.Анджелеску, Ф.Балестра, Р.Гарфаньини, В.И.Ляшенко, А.Михул, Ф.Никитиу, Г.Пираджино, Д.Б.Понтекорво, М.Г.Сапожников, И.В.Фаломкин, Ю.А.Щербаков

A-651

новые данные о рассеянии пионов на ядрах³ не и⁴ не

P1 - 10841

Т.Анджелеску, Ф.Балестра, Р.Гарфаньини, В.И.Ляшенко, А.Михул, Ф.Никитиу, Г.Пираджино, Д.Б.Понтекорво, М.Г.Сапожников, И.В.Фаломкин, Ю.А.Щербаков

НОВЫЕ ДАННЫЕ О РАССЕЯНИИ ПИОНОВ 3 4 НА ЯДРАХ НЕ И НЕ

Направлено на VII Международную конференцию по физике высоких энергий и структуре ядра, Цюрих, 1977.

Институт атомной физики, Бухарест.

² Институт физики Туринского университета, Национальный институт ядерной физики, Туринская секция, Италия.

Анджелеску Т. и др.

Новые данные о рассеянии пионов на ядрах ³ не и ⁴ не

Приводятся новые экспериментальные данные по дифференциальным сечениям упругого рассеяния пионов на ядрах гелия при энергиях 68, 120 и 174 МэВ. Сечения измерены с помощью гелиевой стримерной камеры высокого давления. Вычислены чисто ядерные сечения упругого рассеяния.Экспериментальные угловые распределения сравниваются с расчетами по оптической модели. Получены новые данные о константе взаимодействия f² (π^{3} He³H).

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препрянт Объединенного виститута ядерных исследований. Дубна 1977

Angelescu T. et al.

P1 - 10841

New Data on Pion-Nucleus Scattering on ³He and ⁴He

New experimental data on differential cross sections of pion-helium scattering at energies 68, 120 and 174 MeV are presented. The experiment has been carried out using a high pressure streamer chamber filled with helium. Nuclear elastic cross sections are calculated. Experimental angular distributions are compared with the optical model calculations. New estimate of the $f^2(\pi^3 \text{He}^3\text{H})$ coupling constant is also presented.

The investigations has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research, Dubna 1977

С 1977 Объединенный институт ядерных исследований Дубна.

Новые измерения

Результаты наших измерений дифференциальных сечений упругого рассеяния заряженных пионов на ядрах гелия-3 и гелия-4 при различных энергиях в районе первого барионного резонанса опубликованы в статьях ^{/1-2}! Измерения были выполнены с помощью гелиевой стримерной камеры высокого давления на синхроциклотроне Лаборатории ядерных проблем. К настоящему времени с помощью той же методики получены некоторые новые результаты.

Определены дифференциальные сечения упругого рассеяния пионов в реакции

 π^+ + ⁴He $\rightarrow \pi^+$ + ⁴He

при энергии 120 МэВ (379 событий упругого рассеяния) и в реакции

 π^- + ⁴He $\rightarrow \pi^-$ + ⁴He

при энергии пионов 174 МэВ (улучшена статистика, всего измерено 781 событие).

Определены также дифференциальные сечения упругого рассеяния пионов на ядрах гелия-3 в реакции

 $\pi^- + {}^3\text{He} \rightarrow \pi^- + {}^3\text{He}$

при энергии пионов 68 МэВ (250 событий).

Разброс значений энергии пионов в пучке составлял 57%, величина средней энергии определена с точностью 2 3 МэВ. Энергия (импульс) пионов в пучках находилась по измерениям радиусов кривизны следов в дополнительной стримерной камере в магнитном поле, по измерениям пробежных кривых в меди и с помощью черенковского счётчика полного поглощения.

Результаты новых измерений приведены в табл. 1 и на рис. 1,2 и 3. На рисунках показаны кривые, являюшиеся результатами расчётов по оптической модели. Расчёты выполнены с использованием потенциала Кисслингера и потенциала с лапласианом, модифицированных с учётом ферми-движения нуклонов ядра^{/3}/Кривая, обозначенная точками, является результатом вычислений R.H. Landau^{/4/}.

В новых измерениях характер соответствия экспериментальных и теоретических результатов сохраняется таким же, как и в наших предыдущих работах ^(1,2) В области малых углов теоретические значения превышают экспериментальные. Теория правильно показывает положение минимума. В области больших углов наблюдается соответствие расчётов экспериментальным данным. По имеющимся данным довольно трудно сделать выбор между различными расчётными кривыми.

Вычисление ядерных сечений упругого рассеяния пионов на ядрах гелия-4

Полагаем, что в первом порядке по кулоновскому параметру п полусумма дифференциальных сечений положительных и отрицательных пионов зависит только от чисто ядерной амплитуды ($n = \frac{z_1 z_2 \mu a}{k}$, где $\mu = \frac{m_1 m_2}{m_1 + m_2}$, z_1 и z_2 - заряды, а $m_1 \mu$ m_2 - массы частиц, k - импульс пиона, <math>a = 1/137). Для вычисления ядерных сечений упругого рассеяния необходимо проинтегрировать усредненные указанным образом дифференциальные сечения. Эти сечения измерены в интервале углов рассеяния пионов $25^{\circ} < \theta_{\pi} < 165^{\circ}$. Необходима экстраполяция в область углов, для которой отсутствуют измерения. С этой целью усредненные дифференциальные сечения ал-проксимировались при каждой энергии пионов с помощью ряда из ортогональных полиномов Форсайта,и Затем производилось интегрирование по всем углам.

Таблица 1

Дифференциальные сечения упругого рассеяния пионов на ядрах Не и ⁴Не при различных энергиях

we upa pao.	IN ANDIA S		
^{7−3} He, 68 M∋B			
$\frac{\mathrm{d}\sigma}{\mathrm{d}\sigma}$,	ε,		
άΩ мб/ср.	мб/ср.		
8,44	I, 94		
6,20	I,26		
5,75	I,07		
3,37	0,75		
2,12	0;59		
I,89	0,60		
I,34	0,47		
1,02	0,43		
0,64	0,31		
0,63	0,33		
0,70	0,33		
0,48	0,28		
0,53	0,31		
0,31	0,22		
I,23	0,47		
0,68	0,32		
I,I4	0,45		
0,44	0,26		
0,87	0,36		
0,62	0,32		
I,30	0,47		
I, 9I	0,54		
I,97	0,58		
0,60	0,31		
1,09	0,39		
0,94	0,37		
I, 67	0,52		
I,4 8	0,57		
2,13	I,0 8		
	$\frac{d\sigma}{d\Omega}, \frac{d\sigma}{d\Omega}, \frac{d\sigma}{d\Omega}, \frac{d\sigma}{M6/cp}, \frac{d\sigma}{M6/$		

<i>θ</i> с.ц.м.,	$\frac{d\sigma}{d\Omega}$,	ε,
град.	мб/ср.	мо/ср.
29,3	25,2I	4,84
34,6	25,30	3,75
39,9	20,20	2,95
45,I	11,91	2,01
50,4	8,87	I, 65
55,6	6,09	I,40
60,8	3 ,0 I	I,00
65,9	I,I 5	0,62
7I,0	I,4I	0,68
76,2	I,I6	0,63
8I , 2	I , 79	0,79
86,3	0,42	0,37
9 I ,3	0,42	0,37
96,3	2,43	0,88
IOI,3	2,81	0,96
106,2	3,65	· I,08
III,I `	3,35	I,04
II6,0	3,66	1,09
120,8	3,14	I,02
125,7	3,21	I,04
I30, 5	3,02	0,98
135,3	3,85	I,IO
I 4 0,0	4,54	I,2I
I44,8	3,73	I,II
149,5	2,76	.0,95
154,2	2,97	0,97
158,9	2.79	0,96
163.6	I.84	0.85

6

+

	1 80 1	$^{-4}$ He, 174	МэВ		
	θ _{C II} .M.	$\frac{\mathrm{d}\sigma}{\mathrm{d}\sigma}$,	ε,		
	град.	dΩ мб/ср.	мб/ср.		
	29,7	41,63	3,24	:	
	35,0	29,45	2,24		
	40,3	22,4I	I,73	· .	
	45,6	II,53	I,II		
	50,9	8,66	0,90		
	56,2	3,48	0,56		
	61,4	2,65	0,50		
	66,6	I,08	0,32		
	71,8	0,50	0,22		
	76,9	0,54	0,22		
	82.0	0,70	0,26		
	87.0	0,54	0,23		
	92.0	0,33	0,19	•	
	97.0	0,73	0,27		
	102.0	I,06	0,33		
	106.9	0,51	0,22		
	III.8	I.04	0,32		
	II6,6	0,35	0,20		
	121.5	0,20	0,15		
	126.3	0.22	0,15		
	131.0	0,22	0,14		
	135.8	0.26	0.15		
	140.5	0,14	0,12		
•	145.2	0,42	0,20		
	149.9	0.28	0.16		
	154.5	0,24	0.16		
	159.2	0.16	0.13		
	163.8	0,26	0.22		
	I68 .5	0.26	0.22		
					7

Рис.1. Дифференциальные сечения упругого рассеяния пионов на ядрах ³Неи ⁴Не при различных энергиях. Приведенные кривые – результаты расчётов по оптической модели с использованием модифицированного потенциала Кисслингера (сплошная кривая) и потенциала с лапласианом (пунктирная кривая).

Рис.2. Дифференциальные сечения упругого рассеяния пионов на ядрах ³ Не и ⁴ Не при различных энергиях. Приведенные кривые – результаты расчётов по оптической модели с использованием модифицированного потенциала Кисслингера (сплошная кривая) и потенциала с лапласианом (пунктирная кривая).

Рис. 3. Дифференциальные сечения упругого рассеяния пионов на ядрах ³Неи⁴ Не при различных энергиях. Приведенные кривые - результаты расчётов по оптической модели с использованием модифицированного потенциала Кисслингера (сплошная кривая) и потенциала с лапласианом (пунктирная кривая), точками показан результат вычислений в работе ^{/4/}.

По-видимому, разложение дифференциальных сечений по полиномам Форсайта дает определенные преимущества по сравнению с разложением, скажем, по полиномам Лежандра:

1) имеется возможность проведения статистического анализа с целью определения максимально значимой степени полинома, которую нужно учитывать в разложении;

2) более точно определяются коэффициенты разложения.

При статистическом анализе критерием выбора максимально значимой степени полинома в разложении является тот факт, что коэффициент при том члене ряда, с которого ряд обрывается, должен удовлетворять определенным условиям. А именно, отношение оценки по методу наименьших квадратов этого коэффициента к оценке его дисперсии должно подчиняться распределению Фишера. Коэффициенты разложения находились по методу наименьших квадратов при помощи программы LSQFIT⁵⁷.

Таким образом, были вычислены ядерные сечения упругого рассеяния пионов на ядрах гелия-4 в интервале 68-156 МэВ (см. табл. 2). При этом были использованы результаты наших измерений^{/1/}.

Пион-ядерная константа взаимодействия $f^2(\pi^3 \text{He}^3 \text{H})$

Ранее были сделаны попытки оценки этой константы двумя различными способами:методом аналитического продолжения дифференциальных сечений⁷⁶⁷ и методом Чу и Лоу⁷⁷⁷.

Однако наиболее мощным методом для определения константы связи, является, по-видимому, использование дисперсионных соотношений для рассеяния вперед, при этом остается некоторая неопределенность, связанная с нефизической областью и кулоновскими поправками.

Для определения константы взаимодействия мы использовали дисперсионные соотношения для реальной части антисимметричной амплитуды рассеяния вперед:

$$\mathbf{F}^{-}(\omega) = \frac{1}{2} \begin{bmatrix} \mathbf{F}_{\pi} - \mathbf{3}_{\mathrm{He}}(\omega) - \mathbf{F}_{\pi} + \mathbf{3}_{\mathrm{He}}(\omega) \end{bmatrix}, \qquad (1)$$

где ω- полная энергия пиона в лабораторной системе координат, то есть

 $\omega = \mathbf{T}_{\pi} + \mathbf{m}_{\pi} \ .$

Реальную часть этой амплитуды мы берем в виде

$$\operatorname{ReF}^{-}(\omega) = -\frac{2\omega f^{2}(\pi^{3}\operatorname{He}^{3}\operatorname{H})}{\omega^{2} - \omega_{p}^{2}} + \frac{2\omega}{\pi} \int_{0}^{\infty} \frac{d\omega' \operatorname{ImF}^{-}(\omega')}{\omega'^{2} - \omega^{2}} \cdot (2)$$

Здесь ω_p – энергия ³Н-полюса, а ω_0 является началом разреза в нефизической области.

Решая уравнение (2) при значении $\omega = m_{\pi}$, соответствующем порогу упругого рассеяния, мы полагали $\omega_0 = 0$ и пренебрегали членами порядка ω_p^2/m_{π}^2 , как это обычно делается при использовании дисперсионных соотношений для пион-ядерной системы ^{/8/} При этом уравнение (2), из которого необходимо найти константу связи, принимает вид

$$\operatorname{Re} \mathbf{F}^{-}(\mathbf{m}_{\pi}) = \frac{2}{\mathbf{m}_{\pi}} f^{2}(\pi^{-3}\operatorname{He}^{-3}\operatorname{H}) + \frac{2\mathbf{m}_{\pi}}{\pi} \int_{0}^{\infty} \frac{d\omega' \operatorname{Im} \mathbf{F}^{-}(\omega')}{\omega'^{2} - \mathbf{m}_{\pi}^{2}} \cdot (3)$$

Величину $\operatorname{ReF}(m_{\pi})$ определим из длин рассеяния, полученных из расчётов /9/:

 $a_{-} = 0,067 + i \cdot 0,035 \Phi_{M},$

a₊ = -0,287+ i · 0,028 Φ_M,

отсюда ReF (m_{π}) = 0,1770 + i · 0,0035 Фм.

Формула, по["]которой вычислены эти длины рассеяния, дает очень хорошие значения длин рассеяния в случае других ядер, а именно: ² H, ⁴He, ¹² С и др. Полные сечения для определения мнимой части амплитуды π ³Heвзаимодействия в резонансной области берем из экспериментальной работы ^{/10/} а вне резонансной области - из расчётов по оптической модели и по модели Глаубера /11/.

Мнимая часть амплитуды была представлена в виде [3/4] – паде-аппроксимации^{/12/}и экстраполирована в нефизическую область.

Константа связи вычислялась при различных условиях: с учётом и без учета кулоновских поправок, с учётом и без учета вклада от нефизической области. Для учёта вклада от нефизической области делалось различными способами аналитическое продолжение $\text{Im} F^-(\omega)$ в нефизическую область. Кулоновские поправки меняют значение константы связи на 0,01; учёт нефизической области меняет константу на 0,01 - 0,02. Основной вклад в значение константы связи дает учёт $\text{Re} F^-(\text{m}_{\pi})$. Некоторое среднее значение константы связи, вычисленной таким образом, оказывается равным

 $f^2(\pi^{-3}He^{-3}H) = 0.12 \pm 0.01$,

константы связи.

что согласуется с оценкой $^{/7/}$ (f $_{\pi}^{2}$ $_{3}_{He^{3}H}$ = 0,101<u>+</u> <u>+</u>0,018), где использовались уравнение Чу и Лоу $^{/13/}$ и полуфеноменологический анализ полученных нами дифференциальных сечений π^{\pm} ³Не упругого рассеяния в области энергий 98-156 МэВ $^{/2/}$

Исходя из выполненного анализа можно заключить, что пион-ядерная константа связи в случае гелия-3 оказывается больше, чем в случае пион-нуклонного взаимодействия ($f_{\pi pn}^2 = 0.08$), что согласуется с теоретическими вычислениями /14/.

Неопределенность в оценке константы связи, обусловленную неопределенностью в длинах рассеяния, можно устранить с помощью дальнейших экспериментов по изучению $\pi^{\pm 3}$ Не упругого рассеяния на малые углы. На рис. 4 показана зависимость ReF⁻(ω) от энергии первичного пиона при трех значениях $f_{\pi 3He^3H}^2$ (0; 0,08 и 0,16) с кулоновскими поправками для полных сечений и без них. Из этого рисунка видно, что при ~160 МэВ кулоновские поправки очень малы, поэтому в этой области перспективны эксперименты с целью определения

Авторы благодарны Р.Маху за полезные обсуждения.

Таблица 2

Ядерные сечения упругого рассеяния пионов на ядрах гелия-4. T_{π} - кинетическая энергия пиона в МэВ, σ_{ef} сечения в мб.

Рис.4. Реальная часть антисимметричной амплитуды рассеяния в зависимости от кинетической энергии пиона (л.с.к.) при трех значениях $f_{\pi \ 3}^{2}_{\ 18} g_{He}^{3}_{\ 18}$ (0; 0,08 и 0,16 - кривые 1,2 и 3 соответственно) с кулоновскими поправками (сплошная кривая) и без них (пунктирная кривая).

Литература

1. Shcherbakov Yu.A. e.a. Nuovo Cim., 1976, 31A, 249. 2. Shcherbakov Yu.A. e.a. Nuovo Cim., 1976, 31A, 262. Mach R. Nucl. Phys., 1973, 205A, 56. 3. Mach R., Nichitiu F., Shcherbakov Yu.A. Phys.Lett., 1974, 53B, 133. 4. Landau R.H., Thomas A.W. In: Proc. Int. Conf. on Meson-Nuclear Physics, Pittsburg, 1976. 5. Forsythe G.E. J.Soc.Industr.Appl.Math., 1957.5,74. 6. Dumbrais D.U., Nichitiu F., Shcherbakov Yu.A. JINR, E2-6962, Dubna, 1973. 7. Mach R., Nichitiu F. JINR, E1-9048, Dubna, 1975. Ericson T.E.O., Locher M.P. Nucl. Phys., 8. 1970, 148A, 1. Cheon II-Tong, Von Egidy T. Nucl. Phys., 9. 1974, 234A, 401. Spence C.B. Ph.D.thesis, College of 10. William and Mary in Virginia, 1974. Mach R., Sapozhnikov M.G., Shcherba-11. kov Yu.A. JINR, E4-9579, Dubna, 1976. Baker G.A., jr. Adv. in Theor. Phys., 12. 1965, 1, 1. Chew G., Low F. Phys.Rev., 1956, 101, 13. 1570. 14. Копелиович Б.З. ЯФ, 1973, <u>18</u>, 1157. Рукопись поступила в издательский отдел 12 июля 1977 года.