ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

УІТУ / 2-ТУ
Н.С.Борисов, Л.Н.Глонти, М.Ю.Казаринов,
Ю.М.Казаринов, Ю.Ф.Киселев, В.С.Киселев,
В.Н.Матафонов, Г.Г.Мачарашвили, Б.С.Неганов,
И.Страхота, В.Н.Трофимов, Ю.А.Усов,
Б.А.Хачатуров, М.Р.Хаятов

11 11 11

5- 825

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ ПОЛЯРИЗАЦИЙ С_{пп} В УПРУГОМ **РР**-РАССЕЯНИИ ПРИ ЭНЕРГИЯХ 550 И 630 МЭВ

17/+-17 P1 - 10755

P1 - 10755

Н.С.Борисов, Л.Н.Глонти,¹ М.Ю.Казаринов, Ю.М.Казаринов, Ю.Ф.Киселев, В.С.Киселев, В.Н.Матафонов, Г.Г.Мачарашвили,¹ Б.С.Неганов, И.Страхота, В.Н.Трофимов, Ю.А.Усов, Б.А.Хачатуров, М.Р.Хаятов²

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ ПОЛЯРИЗАЦИЙ С_{ПП} В УПРУГОМ **РР**-РАССЕЯНИИ ПРИ ЭНЕРГИЯХ 550 И 630 МЭВ

Направлено в ЖЭТФ

¹Тбилисский государственный университет.

² Бухарский филиал Ташкентского политехнического института. Борисов Н.С. и др.

Измерение коэффициента корреляции поляризации С_{ПП} в упругом рр-рассеянии при энергиях 550 и 630 МэВ

Измерены коэффкциенты корреляции поляризаций С_{ШП} в упругом рр -рассеянии при энергиях 550 и 630 МэВ на четырех углах рассеяния. Для определения С_{ШП} использовано рассеяние пучка протонов с поляризацией 0,34-0,36 на "замороженной" поляризованной протонной мишени с максимальной поляризацией 0,98±0,03.

Результаты измерений показывают, что в исследованном интервале энергий С_{пп} слабо зависит от угла и энергии.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Преприят Объединенного института ядерных исследований. Дубна 1977

Borisov N.S. et al.

P1 - 10755

Measurement of the Spin Correlation Parameter $C_{\rm HH}$ in Elastic pp Scattering at 550 and 630 MeV

The spin correlation parameter $C_{\rm HH}$ has been measured in elastic pp-scattering at 550 ± 15 MeV and 630 ± 10 MeV. A polarized proton beam ($P_{\rm b}=0,36\pm0,02$) and a "frozen" polarized proton target ($P_{\rm tmax}=0,98\pm0,03$) have been used.

The results are compared with the data published before and discussed in the frame of the weak spin-orbit interaction model.

Preprint of the Joint Institute for Nuclear Research, Dubna 1977

Для изучения энергетической и угловой зависимостей коэффициента корреляции поляризаций Спи в интервале 550-630 МэВ выполнены измерения С_{ин} при 550±15 и 630±10 МэВ на углах рассеяния $\theta = 41, 69, 77, 91$ и 40,6; 69,6; 78, 92 °/с.ц.м./ соответственно. Постановка эксперимента и характеристики аппаратуры подробно описаны ранее 1. В эксперименте использован поляризованный протонный пучок с поляризацией 0,34-0,36 и протонная поляризованная мишень /ППМ/ "замороженного" типа с максимальной поляризацией О,98+О,ОЗ. Для определения С ин измерялись интенсивности пучка рассеянных протонов, возникающего при рассеянии поляризованного пучка протонов на ППМ при различных направлениях поляризации пучка и мишени: І,, І, , І, , І, , І, , І, , где первый индекс указывает направление поляризации мишени, второй - пучка, относительно нормали к плоскости левого рассеяния.

Измерения проводились пятиминутными экспозициями. При этом знак поляризации мишени менялся через 8-12 ч работы; знак поляризации пучка - через 16-24 ч работы. Фон от сложных ядер, содержащихся в ППМ /пропандиол $C_2 H_8 O_2$ /, измерялся при рассеянии неполяризованного протонного пучка на безводородном эквиваленте ППМ /активированный древесный уголь/. Угловое разрешение детекторов составляло $\pm O.75^{\circ}$ /л.с./. Контроль за стабильностью условий эксперимента и запись результатов осуществлялись с помощью ЭВМ HP2116.

Измерение четырех интенсивностей: I₊₊, I₊₋, I₋₊, I₋₋, I

С 1977 Объединенный инспинут ядерных исследований Дубна

независимых величины, например, І₀ - интенсивность рассеяния неполяризованного пучка на неполяризованной мишени, С_{пп}, поляризацию мишени и поляризацию пучка. Таким образом, задача определения С_{ПП} может быть решена методом наименьших квадратов без привлечения данных о поляризации пучка Р_в и мишени Р_т. В практике, однако, при измерении знака поляризации пучка и мишени не всегда удается сохранить абсолютное значение этих величин без изменения. При этом число неизвестных увеличивается до шести и для определения их необходимо получать дополнительные данные, например, измерять поляризации Р_т и Р_в. В нашем случае Р_т измерялась методом ЯМР и при энергии 630 МэВ была проверена по упругому pp-рассеянию на угол 20°/л.с./. Измерение поляризации пучка Р проводилось специальным поляриметром /1/ по асимметрии в упругом pp-рассеянии на угол 20°/л.с./.

Четыре значения интенсивности I, измеренные в эксперименте при разных направлениях Р_В и Р_Т, дают возможность определить следующие асимметрии:

$$\begin{aligned} \epsilon_{+-,+-} &= (I_{++} + I_{--} - I_{+-} - I_{-+})(I_{++} + I_{--} + I_{+-} + I_{-+})^{-1} \\ \epsilon_{+-,-} &= (I_{+-} - I_{--})(I_{+-} + I_{--})^{-1} \\ \epsilon_{+-,+} &= (I_{++} - I_{-+})(I_{++} + I_{-+})^{-1} \\ \epsilon_{+,+-} &= (I_{++} - I_{+-})(I_{++} + I_{+--})^{-1} \\ \epsilon_{-,+-} &= (I_{--} - I_{-+})(I_{-+} + I_{-+})^{-1} \\ \end{aligned}$$

Равенство в пределах ошибок значений С_{ПП}, найденных по разным типам асимметрий /1/, должно указывать на отсутствие в эксперименте заметных систематических ошибок.

Результаты

Найденные значения асимметрий є +-',+- приведены в табл. 1

В табл. 2 приведены значения С $_{\Pi\Pi}$, найденные по измеренным асимметриям ϵ_{+-} :

$$C_{IIII} = \frac{\epsilon_{+-,+-} [1-0.5(\beta P_{B} + r P_{T})\vec{P}_{pp}\vec{n}]}{P_{B} P_{T} [(1-0.5\beta)(1-0.5r) - 0.25\beta r\epsilon_{+-,+-}]}, \qquad /2/$$

где Р_{рр} - поляризация в упругом рр - рассеянии,

 $\tau = 1 - P_T^+ / P_T^-$, $\beta = 1 - P_B^+ / P_B^-$, $P_B^- = P_B^-$, $P_T^- = P_T^-$,

Р⁺_т(Р⁻_т). Р⁺_в(Р⁻_в) - величины поляризаций мишени и пучка соответственно при положительном /отрицательном/ направлении этих поляризаций относительно нормали п к плоскости левого рассеяния.

В ошибки, указанные в *табл.* 2, кроме статистических, включены ошибки измерения поляризации мишени $/\Lambda P_T/P_T =$ = 0,03/ и поляризации пучка $/\Lambda P_B/P_B =$ 0,06/. Для сравнения в *табл.* 2 указаны также значения С_{IIII} (fit), которые получаются, если описывать совокупность асимметрий /1/ методом наименьших квадратов, считая С_{IIII}, *т* и β свободными параметрами.

Значения С_{IIII} при энергии 63О *МэВ* были использованы для уточнения фазового анализа PP -рассеяния при энергии 63О *МэВ*²⁷. При этом оказалось, что набор В отбрасывается по χ^2 -критерию χ^2/χ^2 =1,24 при χ^2 = 246, уровень достоверности (С.L.) равен О,ОО6, если фазовый анализ проводить по данным, использованным для этого ранее в работе 2^{2} .

Если же включить в фазовый анализ данные по дифференциальным сечениям упругого pp-рассеяния на малые углы из работ групп Воробьева и Зулькарнеева $^{/3,4/, TO}$ описание экспериментальных данных ухудшается настолько, что оба набора могут быть отброшены по χ^2 критерию.

На рис. 1 представлена зависимость коэффициента корреляции поляризаций при рассеянии на угол 90° С_{ПП} /90°/ от энергии. Из этого рисунка видно, что

5

			- - - - - - -	550 M3	B				
Ne	Тип	Be	ичина	асиммет	иид	У слов	ия экспер	имента	
сеан - са	асимме і-	$\theta = 41$	69	77	91	ւ ե	Р _в -	r	β
1. ^ć +	1 +. !	0,174 <u>+</u> 0,012	0,171 <u>+</u> 0,004	0,186 <u>+</u> 0,005	0,164 <u>+</u> 0,004	0,89 <u>+</u> 0,03	0,36 <u>+</u> 0,02	0	0
				630 Məl	8	•			
		$\theta = 40, 6$	69,6	78	92				
1. +	+		0,143 +0,007	0,174 <u>+</u> 0,006	0,179 <u>+</u> 0,005	0,89 <u>+</u> 0,03	0,322 <u>+</u> 0,016	0,03 +0,02	0,17 <u>+</u> 0,05
2. +-	! +	0,129 <u>+</u> 0,010	0,165 <u>+</u> 0,005	0,171 +0,005	0,192 <u>+</u> 0,005	0,93 <u>+</u> 0,03	0,34 <u>+</u> 0,02	-0,03 <u>-</u> 0,02	0,12 <u>+</u> 0,05
₽ *	1							A	
				550	ВєМ			Таблица	7
№ cea н- ca	θ (c.μ.м.)	41		69		77		91	
-	C _{III} C _{III}	0,54 <u>+</u> (0,5	0,05 7	0,58±0 0,59	90,0	0,53 <u>+</u> 0,04 0,55	0	51 <u>+</u> 0,04 0,53	
				630	МэВ				
	<i>θ</i> (с.н.м.)	40	9,	69,6		78		92	
1. 2.	С _{пп} С _{пп} среднее С _{пп} (fit)	0,44+(0,44+(0,4),05 ,05	0,55 <u>+</u> 0, 0,54 <u>+0,</u> 0,54 <u>+0</u> , 0,56	06 05 04	0,66+0,06 0,56+0,05 0,60+0,04 0,63	000	69±0,05 64±0,05 66±0,04 0,68	

Таблица I

6

7

,

Рис. I. Зависимость коэффициента корреляции поляризаций $C_{\rm HH}$ в упругом pp-рассеянии на угол 90°/с.ц.м./ от энергии. 5 - усредненные данные: 307, 330′5′ 315′6′, 320′7′ МэВ; 5 - усредненные данные: 382′8′, 386 и 415′5′, 399′9′ МэВ; 5 - 449 МэВ′9′, 575 МэВ′10′, 650 МэВ′11′ 683 МэВ′12′ 745 и 1190 МэВ′13′; 5 -- 610 МэВ′1, 550 и 630 - данная работа.

при изменении энергии от 550 до 630 $M extsf{3B}$ наблюдается некоторый рост С_{ПП}, примерно на 3,5 ошибки. К сожалению, данные в области больших энергий имеют недостаточную точность для того, чтобы сделать определенные заключения об энергетической зависимости коэффициента корреляции поляризаций в интервале от 630 до 1000 $M extsf{3B}$.

В работе ^{/16/} ранее было показано, что в случае, когда все спиновые эффекты в pp-рассеянии есть peзультат слабого спин-орбитального взаимодействия, справедливо соотношение:

$$\frac{C_{\text{HII}}(s,t)}{P_{\text{DD}}^{2}(s,t)} = f(t), \qquad /3/$$

где s и t - переменные Мандельштама. Хотя вряд ли можно надеяться на то, что предположения, которые были использованы в 16 для получения соотношения /3/, окажутся справедливыми при энергиях 550-630 МэВ;

полученные значения $C_{\Pi\Pi}$ при энергиях 550, 610 $^{/1/}$ и 630 МэВ были использованы для проверки этого соотношения. Проверка показала, что значения функции f(t) при θ =41°/t =0,25/ вполне удовлетворительно подтверждают скейлинговое поведение соотношения $C_{nn}(s,t)/P_{pp}^2(s,t)$ уже начиная с наших энергий 550-630 МэВ. С ростом угла рассеяния значения отношения $C_{nn}(s,t)/P_{pp}^{2}(s,t)$ начинают заметно отклоняться от величин, полученных в / 16/ при более высоких энергиях. Это, впрочем, можно объяснить тем, что при t = - MT , где М - масса протона, а Т - его кинетическая энергия, поляризация в pp - рассеянии обращается в нуль / $\theta = 90^{\circ}$ /, в то время как коэффициент корреляции поляризаций остается конечным. Для того чтобы исключить влияние этой особенности в f(t), мы рассмотрели зависимость отношения С $/P_{\rm pp}^2$ от угла рассеяния θ для всех известных в настоящее время данных по Р_Ш и С_Ш , начиная с энергии ЗОО МэВ. Полученная при этом зависимость представлена на рис. 2, из которого видно, что большинство значений отношения С₁₁₁₁ / Р²_{pp}, определенных по опубликованным данным, в пределах ошибок вполне удовлетворительно группируются вокруг некоторой общей кривой за исключением, может быть, данных, относящихся к интервалу 600-735 МэВ.

Возможно, что последнее обстоятельство связано с упоминавшейся энергетической зависимостью С //90°/ в интервале 600-735 *МэВ*. Подобное поведение отношения С ПП / Р²_{pp} вряд ли может быть объяснено, как нам кажется, наличием слабого спин-орбитального взаимодействия при столь низких энергиях.

Авторы благодарны профессору Л.И.Лапидусу и Б.З.Копелиовичу за интересные дискуссии.

Литература

- 1. Борисов Н.С. и др. ЖЭТФ, 1977, 72, 405.
- 2. Глонти Л.Н. и др. ОИЯИ, РІ-6339, Дубна, 1972.
- 3. Vorobyov A.A. e.a. Phys.Lett., 1972, 41B, 639.
- 4. Амирханов И.В. и др. ЯФ, 1973, 17, 1222.
- 5. Beretvas A. Phys. Rev., 1968, 171, 1392.
- 6. Василевский И.М. и др. ЖЭТФ, 1963, 45, 474.

- 7. Allaby J.V. e.a. Proc. Phys. Soc., 1961, 77, 234.
- 8. Ashmore A. e.a. Proc. Phys. Soc., 1958, 72, 289.
- 9. Engels E. e.a. Phys. Rev., 1963, 129, 1858.
- 10. Coignet G. e.a. Nuovo Cimento, 1966, A43, 708.
- 11. Головин Б.М., Джелепов В.П., Зулькарнеев Р.Я. ЖЭТФ, 1961, 41, 83.
- 12. Dost H.E. e.a. Phys. Rev., 1967, 153, 1394.
- 13. Cozzika G. e.a. Phys. Rev., 1967, 164, 1672.
- 14. Miller D. e.a.. Phys. Rev. Lett., 1976, 36, 763.
- 15. Abe K. e.a. Phys.Lett., 1976, 63B, 239.
- 16. Durand L., Halzen F. Phys. Rev., 1977, D15, 352.

Рукопись поступила в издательский отдел 15 июня 1977 года.