ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

5-707

1/1111 74 P1 - 10658

2936/2-77 О.Е.Горчаков, А.В.Купцов, Л.Л.Неменов

11 11

ОЦЕНКА ИНТЕНСИВНОСТИ ПУЧКОВ (*π* – *µ*) -АТОМОВ НА УСКОРИТЕЛЯХ ВЫСОКИХ ЭНЕРГИЙ

P1 - 10658

О.Е.Горчаков, А.В.Купцов, Л.Л.Неменов

ОЦЕНКА ИНТЕНСИВНОСТИ ПУЧКОВ (*π* – *μ*) -АТОМОВ НА УСКОРИТЕЛЯХ ВЫСОКИХ ЭНЕРГИЙ

Направлено в ЯФ

Горчаков О.Е., Купцов А.В., Неменов Л.Л.

P1 - 10658

Оценка интенсивности пучков (*п-µ*)атомов на ускорителях высоких энергий

Методом Монте-Карло рассчитаны интенсивности и энергетические спектры (*π*-µ)-атомов, образующихся в процессе К°_L → А_{*πµ*} + ν̄, для циклических ускорителей с энергиями протонов 10, 30, 70, 400, 1000 ГэВ в интервале углов, под которыми установлен канал, - от 0° до 15°.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного виститута ядерных исследований. Дубна 1977

Gorchakov O.E., Kuptsov A.V., P1 - 10658 Nemenov L.L.

Estimation of the $\pi-\mu$ Atom Beam Intensities at High-Energy Accelerators

By the Monte-Carlo method there were calculated the intensities and energy spectra of $\pi - \mu$ atoms, produced in the process $K_L^{\circ} \cdot A_{\pi\mu} + \bar{\nu}$ for the cyclic accelerators with the proton energies of 10, 30, 70, 400 and 100 GeV in the channel angles range from 0° to 15°.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research, Dubna 1977

🕑 1977 Объединенный инспитут ядерных исследований Дубна

ВВЕДЕНИЕ

В работе ^{/1/}был рассмотрен атомный распад К^о -мезона

 $\mathbf{K}_{\mathbf{L}}^{\circ} \to \mathbf{A}_{\pi\mu} + \overline{\nu} ,$

(1)

где $A_{\pi\mu}$ - связанное состояние двух нестабильных частиц π и μ -мезонов, и рассчитана его вероятность как функция формфакторов. Отношение вероятности этого процесса к полной вероятности распада K°_{L} -мезона оказалось равным - 10⁻⁷. В 1976 году Шварц и др. /2/сообщили о наблюдении -20 (π - μ)-атомов.

Исследование процесса (1) и характеристик $A_{\pi\mu}$ представляет интерес по двум причинам. Во-первых, вероятность (1) пропорциональна квадрату волновой функции $A_{\pi\mu}$ на малых расстояниях $|\psi(0)|^2$. Во-вторых, в работе /2/указан способ измерения лэмбовского сдвига L между 2S-и 2P-уровнями атома, который также пропорционален $|\psi(0)|^2$. При хорошей точности измерения L возможно определение радиуса π -мезона r_{π} . Измерение L с погрешностью 0,1% позволяет определить r_{π}

В настоящей работе рассмотрена зависимость выхода $A_{\pi\mu}$ от энергии ускорителя, угла, под которым детектируются атомы, и условий эксперимента. В ранее опубликованных работах эти вопросы не обсуждались.

Атомы A_{пµ} можно выделить по регистрации п- и µ мезонов, которые разваливаются при прохождении тонкого слоя вещества; п- и µ-мезоны при развале атома имеют одинаковую скорость и малый угол разлета. Основ-

ными элементами экспериментальной установки для регистрации процесса (1) являются: 1) мишень, на которую сбрасывается пучок протонов; 2) вакуумный канал, в котором распадаются вылетевшие из мишени K_L° -мезоны, имеющие сравнительно большое время жизни; 3) устанавливаемая в конце канала фольга для развала $A_{\pi\mu}$ и 4) магнитный спектрометр для регистрации продуктов развала атома.

В данной работе методом Монте-Карло рассчитаны интенсивности и энергетические спектры $A_{\pi\mu}$ для циклических ускорителей с энергиями протонов 10, 30, 70, 400 и 1000 ГэВ в интервале углов, под которым установлен канал, - от 0° до 15°. Расчеты проведены применительно к экспериментальной установке, схема которой изображена на рис. 1. Исследовались два варианта: а) без фильтра 4 (рис. 1) и б) при введенном фильтре. Длина канала при вычислениях бралась равной 50 м, а его сечение - 0,2x0,2 м².

Рис. 1. Схема экспериментальной установки для регистрации атомов. 1 – пучок протонов, 2 – мишень, 3 – вакуумный канал, 4 – фильтр, 5 – фольга для развала атомов, 6 – магнит, 7 – детекторы.

Для описания угловой и энергетической зависимости K_L° -мезонов, образующихся в р-ядерных соударениях, использовались соответствующие зависимости $^{/4/}$ в (p-p) -взаимодействиях. Поглощением K_L° -мезонов в ядре пренебрегалось. Эффективный метод моделирования процесса (1) с учетом способа регистрации $A_{\pi\mu}$ изложен в работе $^{/5/}$.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ ДЛЯ КАНАЛА БЕЗ ФИЛЬТРА

Полученные данные об интенсивностях и импульсных спектрах $A_{\pi\mu}$ приведены на рис. 2-9.

На рис. 2 представлена зависимость числа мезонных атомов N_A , регистрируемых экспериментальной установкой, от угла $\theta_{\rm л.с.}$ под которым установлен канал, для энергий ускоренных протонов 10,30, 70, 400 и 1000 ГэВ. Число $A_{\pi\mu}$ приведено в расчете на 10¹² провзаимодействовавших протонов. Из рис. 2 видно, что различие в интенсивностях атомов для энергий протонов $E \ge 70$ ГэВ в интервале углов $2^\circ \le \theta_{\rm л.с.} \le 15^\circ$ мало и лишь в области $\theta_{\rm л.с.} \le 2^\circ$ наблюдается расхождение. Из этого рисунка следует, например, что на ускорителе ИФВЭ за 100 часов работы можно регистрировать - 2400 атомов, если экспериментальную установку расположить под углом $\theta_{\rm л.с.} = 5^\circ$ к пучку протонов.

На рис. З в относительных единицах приведено число регистрируемых $A_{\pi\mu}$ в зависимости от расстояния между мишенью и областью канала, в которой происходят распады K_{L}° -мезонов. Кривая 1 получена для энергии протонов E = 70 ГэВ и при угле $\theta_{\pi,C} = 6^{\circ}$; она является характерной для всех энергий при $\theta_{\pi,C} \ge 2^{\circ}$; кривая 2 – для энергии E = 70 ГэВ и $\theta_{\pi,C} = 1,5^{\circ}$; кривая 3 – для E = 1000 ГэВ и $\theta_{\pi,C} = 1,5^{\circ}$; кривая 3 – для E = 1000 ГэВ и $\theta_{\pi,C} = 1,5^{\circ}$. Кривая 1 соответствует низкоэнергетичной части спектра K_{L}° -мезонов, кривые 2 и 3 – высокоэнергетичной их части.

Для выяснения зависимости интенсивности $A_{\pi\mu}$ от сечения канала были проведены расчеты для канала сечением 0,4x0,4 м². Интенсивность увеличилась примерно в 8+9 раз во всем интервале энергий и углов, за исключением области E = 1000 ГэВ и $\theta_{\rm A.C.} \leq 1,5^{\circ}$, где интенсивность возросла в 4 раза. Таким образом, зависимость N_A от сечения S имеет вид N_A~S^{3/2} (~S при E = 1000 ГэВ и $\theta_{\rm A.C.} \leq 1,5^{\circ}$).

На рис. 4-8 приведены импульсные спектры А_{πµ} для энергий протонов 10, 30, 70, 400 и 1000 ГэВ в расчете на 10¹² провзаимодействовавших протонов.

Рис. 2. Зависимость числа $A_{\pi\mu}$ (на 10¹² провзаимодействовавших протонов) от угла, под которым установлен канал, для энергий протонов 10, 30, 70, 400 и 1000ГэВ. Длина канала – 50 м, сечение – 0,2х0,2 м².

Рис. 3. Распределение числа атомных распадов K_L° мезонов, регистрируемых установкой, по длине канала (в относительных единицах). 1 - E = 70 ГэВ, $\theta_{\pi.C.} = 6^{\circ}$ 2 - E = 70 ГэВ, $\theta_{\pi.C.} = 1,5^{\circ}$; 3 - E = 1000 ГэВ, $\theta_{\pi.C.} = 1,5^{\circ}$.

РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ ДЛЯ КАНАЛА С ФИЛЬТРОМ

Основным источником фона при регистрации процесса (1) являются распады $K_L^0 \rightarrow \pi \mu \nu$ вблизи разваливающей фольги, а также другие образующиеся в мишени частицы. Устранить его можно введением в канал фильтра 4 (рис.1), который поглощал бы все частицы, траектории которых пересекают входное окно магнита ^{/2/}. Это, естественно, уменьшает интенсивность $A_{\pi\mu}$. На рис. 9 приведено количество атомов, попадающих в детектор, при наличии

Ł

Рис. 4. Спектры (*п-µ*) -атомов на 10¹² протонов с энергией 10 ГэВ для канала 50х0,2х0,2 м³.

Рис. 5. Спектры $(\pi - \mu)$ -атомов на 10 протонов с энергией 30 ГэВ для канала 50х0,2х0,2 м ³.

Рис. 6. Спектры $(\pi - \mu)$ - атомов на 10¹² протонов с энергией 70 ГэВ для канала 50х0,2х0,2 м³.

Рис. 7. Спектры $(\pi-\mu)$ -атомов на 10¹² протонов с энергией 400 ГэВ для канала 50х0,2х0,2 м³.

Рис. 8. Спектры (*п-µ*) -атомов на 10¹² протонов с энергией 1000 ГэВ для канала 50х0,2х0,2 м³.

Рис. 9. Зависимость числа $A_{\pi\mu}$ на 10 ¹² протонов (E = 10, 30, 70, 400 и 1000 ГэВ) от угла, под которым установлен канал, при введенном фильтре.

в канале фильтра 0,1х0,1 м ², установленного на расстоянии 6 м от мишени. При сравнении результатов, представленных на рис. 2 и 9, видно, что при энергии протонов 10 и 30 ГэВ для всего интервала углов $\theta_{n.C.}$ интенсивность $A_{\pi\mu}$ уменьшается примерно в 5 раз. Аналогичное уменьшение имеет место и для энергий 70 и 400 ГэВ, но только при $\theta_{n.C.} \ge 3^{\circ}$. При $\theta_{n.C.} \le 3^{\circ}$ уменьшение более значительное (до 20 раз). Интенсивность $A_{\pi\mu}$ при энергии 1000 ГэВ оказалась ниже, чем при 70 и 400 ГэВ. Если сечение фильтра уменьшить в 4 раза и установить его на расстоянии 3 м от мишени, то число атомов увеличится примерно в 1,5 раза.

При введении фильтра импульсные спектры атомов для всех энергий протонов становятся мягче, особенно в области малых $\theta_{\rm л.C.}$.

ЛИТЕРАТУРА

- 1. Неменов Л.Л. ЯФ, 1972, 16, с.125.
- 2. Coombes R., Fleser R. e.a. Phys. Rev. Lett., 1976, 37, p. 249.
- 3. UZI BAR-GADDA, C.F.CHO. Phys.Lett., 1973, 46B, p.95.
- 4. Коротков В.А., Макеев В.В. Препринт ИФВЭ, 74-94, Серпухов, 1974.
- 5. Горчаков О.Е. ОИЯИ, Р5-10715, Дубна, 1977.

Рукопись поступила в издательский отдел 13 мая 1977 года.