СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

ПРЕДЕЛЬНОЕ ПОВЕДЕНИЕ АССОЦИАТИВНЫХ ВЕЛИЧИН В **π** - р ВЗАИМОДЕЙСТВИЯХ

Л.И.Журавлева, Н.К.Куциди, И.С.Саитов

tessand al if it unness

2868 2-77

C323.5a

210-911

1977

118-74

P1 - 10643

P1 - 10643

Л.И.Журавлева, Н.К.Куциди,* И.С.Саитов

ПРЕДЕЛЬНОЕ ПОВЕДЕНИЕ АССОЦИАТИВНЫХ ВЕЛИЧИН В **π** - р ВЗАИМОДЕЙСТВИЯХ

.

06%Charlen is herenyt Thepully of herengents BHEHMATEKA

* Тбилисский государственный университет.

Журавлева Л.И., Куциди Н.К., Саитов И.С.

Предельное поведение ассоциативных величин в *п*⁻р -взаимодействиях

На основе данных с пузырьковых камер в $\pi^- p$ -взаимодействиях при 5, 40 и 205 ГэВ/с исследовано поведение нормированной ассоциативной множественности как функции квадрата недостающей массы M_x^2 , быстроты у* и поперечного импульса р_ выделенных частиц, а также поведение ассоциативных моментов высших порядков в зависимости от M_x^2 . Получены указания на предельное поведение нормированной ассоциативной множественности в масштабе M_x^2/s для случая выделенного протона и π^- -мезона. Исследован аналог КНО-скейлинга для ассоциативных множественностей от M_x^2 . Полученные экспериментальные результаты не противоречат предсказаниям автомодельного поведения функции $\psi(z) =$ = $< n(\vec{p}) > \frac{d\sigma_n/d\vec{p}}{d\sigma/d\vec{p}}$ в пространстве быстрот и поперечных импульсов.

Работа выполнена в Лаборатории высоких энергий и Лаборатории ядерных проблем ОИЯИ.

Zhuravleva L.I., Kutsidi N.K., Saitov I.S. Pl - 10643

Asymptotic Behaviour of Associative Values in π^-p -Interactions

On the basis of the data on π^-p -interactions at 5, 10 and 205 GeV/c obtained with hydrogen bubble chambers the behaviour of the associative multiplicity is investigated as a function of missing squared mass M_x^2 , rapidity y^{*} and transverse momentum p_\perp of selected particles as well as the behaviour of associative momenta of higher orders. An evidence of asymptotic behaviour of the enormalized associative multiplicity on a scale of M_x^2/s is obtained for the case of selected proton and π^- -meson. An analogue of the KNO-scaling for the associative multuplicities as functions of M_x^2 is investigated. The experimental data available do not contradict to the predictions of the automodel behaviour of the function $\psi(z) = < n(\vec{p}) > \frac{d\sigma_n/d\vec{p}}{d\sigma/d\vec{p}}$ in the space of rapidities and transverse momenta.

Communication of the Joint Institute for Nuclear Research. Dubna 1977

© 1977 Объединенный инспипут ядерных исследований Дубна

Гипотезы о существовании предельного поведения для распределений по множественности при асимптотических энергиях /так называемый КНО-скейлинг /1/ /, а также о предельном поведении полуинклюзивных распределений /скейлинг типа КНО-II^{/2/} / привели к предположению о возможном предельном поведении ассоциативных распределений.

В работах ^{/3,4/} были получены предсказания относительно асимптотического поведения нормированных ассоциативных моментов

$$\langle n \frac{k}{l}(\xi) \rangle \equiv \frac{\langle n^{k}(\xi, s) \rangle}{\langle n(s) \rangle^{k}} \xrightarrow[s \to \infty]{s \to \infty} f(\xi), \qquad /1/$$

где ξ - кинематическая переменная, характеризующая выделенную частицу:

$$\xi \equiv \mathbf{x}, \mathbf{y}, \mathbf{p}_{\perp}, t, \mathbf{M}_{\mathbf{x}}^2$$
.

В частности, предсказывалось, что

$$\langle n_1^k(M_x^2) \rangle \xrightarrow[s \to \infty]{} f(M_x^2/s)$$
 /2/

при $M_x^2 >> m_c^2$, где m_c^- масса выделенной частицы, т.е. в пределе асимптотически больших энергий для достаточно больших значений M_x^2 нормированная ассоциативная множественность от M_x^2 будет являться функцией только одной переменной M_x^2 /s. Имеются указания на существование подобного типа скейлинга в реакции

 $pp \rightarrow p + X^+$

/3/

в области энергий от 28 до 3О3 *ГэВ* для значений $M_x^2/s \le 0.3^{-4/2}$.

В данной работе представлены результаты исследования зависимости некоторых ассоциативных моментов от различных кинематических переменных выделенной частицы в π^- р - взаимодействиях при 5^{/5}/и 40^{/6,7}ГэВ/с. В некоторых случаях использованы опубликованные данные при 205 ГэВ/с^{/8/}. /Часть результатов при 5 ГэВ/с получена авторами настоящей работы на основе данных с 1-метровой ВПК ЛВЭ ОИЯИ/.

На *рис. 1а* приведены значения нормированной ассоциативной множественности

$$< n_{1}(M_{x}^{2}) > \equiv \frac{< n_{x}(M_{x}^{2}, s_{x}) >}{< n_{x}(s_{x}) >}$$
 /4/

в реакции

 $\pi^- p \rightarrow p + X^-$ /5/

при 5, 40 и 205 ГэВ/с.

Как видно, в области значений $M_x^2/s \ge 0.05$ нормированная ассоциативная множественность является функцией только отношения M_x^2/s , т.е. наблюдается скейлинг для этой величины в широком диапазоне энергий. Несколько большие значения $\langle n_1(M_x^2) \rangle$ при 40 ГэВ/с для очень малых M_x^2/s могут быть связаны с тем, что эти данные получены на пропановой пузырьковой камере, где имеется примесь взаимодействий на ядрах углерода, характеризующаяся большей множественностью и особенно значительная в области малых M_x^2 .

Нормированная ассоциативная множественность как функция отношения M²_{*}/s в реакции

 $\pi^- p \rightarrow \pi^- + X^+$ /6/

при 5 и 40 ГэВ/с представлена на рис. 16.

Рис. 1. Нормированная ассоциативная множественность как функция отношения M_x^2/s : a/s реакции /5/ при 5, 40 и 205 ГэВ/с; б/ в реакции /6/ при 5 и 40 ГэВ/с.

В области $M_x^2/s \ge 0,4$ здесь также наблюдается зависимость только от отношения M_x^2/s , т.е. в реакции /6/ скейлинговое поведение начинается в области бо́льших M_x^2/s , чем в реакции /5/. Это может быть обусловлено различным поведением распределений $d\sigma_n / dM_x^2$ в области небольших M_x^2 , связанных, в частности, с наличием нуклона в системе X^+ в реакции /6/.

В отличие от случая зависимости <n₁ (M_x)>, нормированная ассоциативная множественность как функция других кинематических переменных не проявляет свойств предельного поведения при тех же энергиях.

Нами были получены данные для зависимости <n _(p_)> и <n _(y*) > в реакциях

$$\pi^- p \rightarrow \pi^{\pm} + (n-1)_{3ap.} + \dots /7/$$

Для приведения данных при разных энергиях к одному масштабу по быстроте у* использовалась величина у'= $\frac{y^*}{Y^*}$ /где Y* = y* = $ln \frac{\sqrt{s}}{m}$ - кинематически максимально воз-

можная быстрота выделенной частицы в с.ц.и./. Как видно из рис. 2 и 3, при энергиях 5 и 40 ГэВ не наблюда-

Рис. 3. Нормированная ассоциативная множественность как функция приведенной быстроты $y' = \frac{y^*}{Y^*}$ /где $Y^* \equiv$ $\equiv y^*_{max} = \ln \frac{\sqrt{s}}{m}$ - максимальная быстрота в с.ц.и./ для выделенных π^{\pm} -мезонов при 5 и 40 ГэВ/с.

ется скейлингового поведения нормированных ассоциативных множественностей по переменным р₁ и у*. Однако в случае выделенных лидирующих π^- -мезонов /у́ \geq O,5/ значения < n₁(y*)>при обеих энергиях близки друг к другу / рис. 3/.

Нами была также изучена зависимость нормированных ассоциативных моментов второго и третьего порядков C_2 и C_3^* от переменной M_x^2 в реакциях /5/ и /6/ при

Рис. 2. Нормированная ассоциативная множественность как функция поперечного импульса для выделенных π^{\pm} -мезонов при 5 и 40 ГэВ/с.

^{*}
$$C_{\mathbf{k}} \equiv \frac{\langle \mathbf{n}^{\mathbf{k}}(\boldsymbol{\xi}) \rangle}{\langle \mathbf{n}(\boldsymbol{\xi}) \rangle^{\mathbf{k}}}.$$

6

7

5 и 40 ГэВ/с. Эти данные в масштабе $M_x^{2/s}$ приведены на *рис. 4а,6* вместе со значениями дисперсии распределения по ассоциативной множественности от M_x^2 :

$$D = (\langle n^2 (M_{x}^2) \rangle - \langle n(M_{x}^2) \rangle^2).^{\frac{1}{2}}$$
 /8/

Была проведена аппроксимация зависимости $D(M_x^2)$ аналитическим выражением $^{/8/}$:

 $D = a + b \ln M \frac{2}{x}$. /9/

a /

Численные результаты аппроксимации для реакции /5/ при 40 $\Gamma \mathcal{B}B/c$, а для реакции /6/ - при 5 и 40 $\Gamma \mathcal{B}B/c$ приведены в табл. 1/для сравнения приведены значения коэффициентов а и b, полученные в реакции /5/ при 205 $\Gamma \mathcal{B}B/c$ /8/ /, а также нанесены в виде кривых на рис. 4a, 6.

Рис. 4. Дисперсия распределений по ассоциативной множественности, нормированные ассоциативные моменты второго и третьего порядков как функции отношения M^2/s при 5 и 40 ГэВ/с: а/ в реакции /5/; б/ в реакции /6/.

8

9

б/

Таблица 1

Результаты аппроксимации зависимости дисперсии ассоциативной множественности от M_x^2 согласно выражению $D = a + b \ln M_z^2$ / N - число экспериментальных точек/

Реакция, ГэВ/с		χ^2/N	а	Ь
/5/	40	3,7/11	2,42 <u>+</u> 0,23	0,01 <u>+</u> 0,09
/6/	205		0,2	0,6
/6/	5	8,6/9	0,54 <u>+</u> 0,03	0,32 <u>+</u> 0,02
	40	5,9/13	1,63 <u>+</u> 0,11	0,18 <u>+</u> 0,03

Интересно отметить, что логарифмическая зависимость /9/, предсказываемая моделями мультипериферического типа, успешно воспроизводит поведение дисперсии в реакции /6/ при 5 и 40 ГэВ/с, хотя рост ассоциативной множественности <n (M_x^2) > в этой реакции при тех же энергиях не согласуется с логарифмическим ^{/5,6/}, также предсказываемым в мультипериферической модели.

Как известно, поведение моментов C_k для полных множественностей связано с КНО-скейлингом $^{/4/}$: условие постоянства C_k означает выполнение скейлинга. Это же условие справедливо и для обобщения КНО-скейлинга на случай множественности системы X в реакциях /3/, /5/ и /6/, как уже отмечалось в работах $^{/10-13/}$.

Ассоциативный КНО-скейлинг приобретает вид:

$$\Psi(z, M_x^2, s) \equiv \langle n(M_x^2, s) \rangle \xrightarrow{d\sigma_n/dM_x^2}_{d\sigma/dM_x^2} \xrightarrow[s \to \infty]{} \Psi(z), /10/$$

где

$$z = \frac{n-1}{\langle n (M^2, s) \rangle}$$

Имеются указания на выполнение соотношения /10/ для реакции /3/ в широком интервале энергий /10,12-14/. Экспериментальные результаты при 5, 40 и 205 /10/ ГэВ/с для реакции /5/ и при 5 и 40 ГэВ/с для реакции /6/ приведены на *рис. 5а* и 56, соответственно.

В реакции /5/ имеется зависимость моментов C_2 и C_3 от M_x^2/puc . 4*a*/, что приводит к нарушению условия /10/ при всех значениях M_x^2 . Однако значения функции $\Psi(z, M_x^2, s)$ при 40 и 205 ГэВ/с довольно близки между собой / *puc*. 5*a*/.

λ

Иная ситуация имеет место в реакции /6/: здесь для больших M_x^2 наблюдается примерное постоянство моментов в пределах ошибок при 5 и 40 ГэВ/с для значений $M_x^2/s \ge 0.75$ /рис. 46/. Проведенная аппроксимация значений $C_2 \mu C_3$ константой дала следующие усредненные для обеих энергий в указанной области M_x^2/s значения $\overline{C}_2 = 1.179\pm0.005$ и $\overline{C}_3 = 1.535\pm0.008$, при величине χ^2 на одну степень свободы 1,4 и 4,8, соответственно.

Подобное постоянство величин C_2 и C_3 действительно приводит к выполнению условия /10/, по крайней мере, на качественном уровне, как видно из *рис. 5б.* Для количественной оценки выполнения скейлинга экспериментальные данные /в области $M_x^2/s > 0,75/$ аппроксимировались зависимостью

$$\Psi(z) = C\left(\frac{A}{2\pi z}\right)^{\frac{1}{2}} \exp\left[-A(1+z(\ln z-1))\right], \qquad /11/$$

полученной в работах $^{/13/}$ в предположении о существовании дальнодействующих корреляций в системе X /отметим, что применимость соотношения /11/ ограничена областью z > 1/.

Результаты аппроксимации - кривая на *рис.* 56 - говорят об удовлетворительном количественном выполнении ассоциативного КНО-скейлинга. Численные результаты таковы: χ^2 /степень свободы = 1,46; $P(\chi^2) = 0,05$; $C = 2,03\pm0,02$; $A = 4,86\pm0,08$.

Попытка аппроксимировать эти же экспериментальные данные выражением

$$\Psi(z) = \left(\sum_{k=0}^{2} A_{2k+1} z^{2k+1}\right) e^{-Bz}, \qquad (12)$$

10

11

согласно которому были описаны данные по КНО-скейлингу для полных множественностей /15/, привела к неудовлетворительному результату: χ^2 /ст.св. = 15,1.

В рамках иного подхода, основанного только на общих предсказаниях физического подобия, в работе/16/был получен вывод об автомодельном поведении функции

$$\Psi(z) = \langle n(\vec{p}) \rangle \frac{d\sigma_n / d\vec{p}}{d\sigma / d\vec{p}}, \qquad (13)$$

rge $z = \frac{n}{\langle n(\vec{p}) \rangle}.$

Экспериментальная проверка этого соотношения для случаев зависимости ассоциативной множественности от поперечного импульса и быстроты была выполнена в π^- р - взаимодействиях при 40 ГэВ/с⁷⁷. Данные при одной энергии подтвердили автомодельное поведение функции $\Psi(z)$. Эти же данные вместе с результатами

для 5 ГэВ/с в масштабе $z = \frac{n-1}{\langle n(\vec{p}) \rangle}$ представлены на

рис. 6 и 7 для реакции:

 $\pi^{-}p \rightarrow \pi^{-} + (n-1)_{3ap} + \cdots$

Можно видеть, что автомодельное поведение функции $\Psi(z)$ выполняется при этих энергиях, по крайней мере, на качественном уровне, в пространстве поперечных импульсов - во всем интервале значений P_{\perp} , а в пространстве быстрот - везде, за исключением случая лидирующих π^{-} -мезонов / у $\geq 0.5/$.

Количественный анализ на основе выражения /11/ /для значений z > 1/ не дал хорошего согласия: χ^2 /ст.св.= = 2,6 для случая зависимости от p_{\perp} и χ^2 /ст.св. = = 5,1 для зависимости от у*. Однако соотношение /11/

Рис. 5. Ассоциативный КНО-скейлинг для множественности по M_x^2 : а/ в реакции /5/ при 5, 40 и 205 ГэВ/с; б/ в реакции /6/ при 5 и 40 ГэВ/с, кривая - результат аппроксимации согласно /11/ для z > 1 и M_x^2/s > 0,75.

12

13

в общем воспроизводит режим поведения функции $\Psi(z)$ /кривые на *рис.6* и 7/, хотя это выражение было получено при рассмотрении зависимости множественности от M_x^2 , и проделанное нами обобщение на случай других кинематических переменных является в значительной степени произвольным. Тем не менее, соотношение /11/, по-видимому, отражает общие свойства, присущие подобным ассоциативным распределениям.

В заключение отметим, что на поведение нормированных ассоциативных множественностей, ассоциативных моментов высших порядков и функций $\Psi(z)$ могут оказывать влияние процессы с образованием резонансов. Однако анализ этого влияния нами не проводился.

Сформулируем основные выводы настоящей работы: 1. Получены указания на существование предельного поведения для нормированной ассоциативной множествен-

ности $\frac{\langle n(M_x^2, s) \rangle}{\langle n(s) \rangle}$ в реакции /5/ в интервале энергий

5÷2О5 ГэВ и в реакции /6/ при 5 и 4О ГэВ. Предельное поведение проявляется, начиная с некоторого значения величины M_{\star}^2/s .

2. Нормированные ассоциативные множественности как функции быстроты и поперечного импульса не проявляют свойств предельного поведения при 5 и 40 ГэВ/с. 3. Нормированные ассоциативные моменты второго и третьего порядков зависят от M_x^2 в реакциях /5/ и /6/, за исключением области больших недостающих масс в реакции /6/, где наблюдается примерное постоянство величин С₂ и С₃.

4. Ассоциативный КНО-скейлинг выполняется для реакции /6/ в области больших значений M_x^2/s как на качественном, так и на количественном уровне.

5. Подобие формы экспериментальных распределений

для функции $\Psi(z) = \langle n(\vec{p}) \rangle \frac{d\sigma_n/dp}{d\sigma/dp}$ при 5 и 40 ГэВ/с не про-

тиворечит гипотезе относительно автомодельного поведения этой функции как в пространстве быстрот, так и в пространстве поперечных импульсов.

Авторы благодарны сотрудничеству Дубна - Берлин -Кошице - Улан-Батор за предоставление ленты суммарных результатов по *п* р -взаимодействиям при 5 *ГэВ/с*.

Авторы признательны Н.С.Амаглобели, Ю.А.Будагову, Р.М.Лебедеву и Т.П.Топурия за полезные обсуждения, Г.Н.Сокольской - за изготовление рисунков.

Литература

- 1. Koba Z. e.a. Nucl. Phys., 1972, B40, 317.
- 2. Koba Z. e.a. Nucl. Phys., 1972, B43, 125; Phys. Lett., 1972, 38B, 25.
- 3. Гердюков Л.Н., Манюков Б.А., Шляпников П.В. Препринт ИФВЭ, СПК 74-77, Серпухов, 1974.
- 4. Minakata H. Lett. al Nuovo Cim., 1974, 9, 411.
- 5. Журавлева Л.И. и др. ОИЯИ, 1-10554, Дубна, 1977.
- 6. Абесалашвили Л.Н. и др. ОИЯИ, 1-10566, Дубна, 1977.
- 7. Абесалашвили Л.Н. и др. ЯФ, 1976, 24, 1189.
- 8. Winkelmann F.G. e.a. Phys. Rev. Lett., 1974, 32, 121.
- 9. Назаргулов Р.М. ОИЯЙ, РІ-10218, Дубна, 1976.
- 10. Barshay S. e.a. Phys. Rev. Lett., 1974, 32, 1390.
- 11. Barshay S., Yamaguchi Y. Phys. Lett., 1974, 51B, 376.
- 12. Minakata H. Progress of Theor. Phys., 1975, 53, 532.
- 13. Жирков Л.Ф., Кокоулина Е.С., Кувшинов В.И. ЯФ, 1976, 24, 170.

Жирков Л.Ф., Кувшинов В.И. Препринт ИФ АНБССР, №114, Минск, 1976.

14. Klifford T.S. e.a. Phys. Rev. Lett., 1974, 33, 1239.

- 15. Slattery P. e.a. Phys. Rev. Lett., 1974, 33, 1239
- 15. Slattery P. e.a. Phys. Rev., 1973, D7, 2073.
- 16. Матвеев В.А., Сисакян А.Н., Слепченко Л.А. ЯФ, 1976, 23, 432.

Рукопись поступила в издательский отдел 4 мая 1977 года.