ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

2796 2-77

25/11-24

P1 - 10590

М.Х.Аникина, Г.Л.Варденга, А.И.Голохвастов, М.С.Журавлева, В.Л.Ильина, Е.С.Кузнецова, Ю.Лукстиньш, Э.О.Оконов, Т.Г.Останевич, С.А.Хорозов, Ю.А.Черепанов, Р.Швед³

подобие распределения по множественности π · мезонов в элементарных взаимодействиях и во взаимодействиях ⁴ He+ ⁶ Li и ⁴ He+ ²⁰Ne

P1 - 10590

М.Х.Аникина, Г.Л.Варденга, А.И.Голохвастов, М.С.Журавлева, В.Л.Ильина,⁷ Е.С.Кузнецова, Ю.Лукстиньш, Э.О.Оконов, Т.Г.Останевич, С.А.Хорозов, Ю.А.Черепанов,² Р.Швед³

подобие распределения по множественности *п*⁻ мезонов в элементарных взаимодействиях и во взаимодействиях ⁴ не+ ⁶ Li и ⁴ не+ ²⁰Ne

Направлено в ЯФ

Саратовский государственный университет.

² Московский государственный университет. ³Варшавский университет.

ODDORESSION AND BUTTY ARCHIEX DOWNRODAND **BMEDINGTERA**

Анижина М.Х. и др.

P1 - 10590

Подобие распределения по множественности *т* -мезонов в элементарных взаимодействиях и во взаимодействиях ⁴ He + ⁶ Li и ⁴ He + ²⁰ Ne

Показано, что распределение по множественности отрицательных частиц, рожденных в а⁶ Li и а²⁰ Ne взаимодействиях при импульсе а -частиц 18 ГэВ/с, подобно распределению отрицательных частиц в протон-протонных взаимодействиях.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Превринт Объединенного института ядерных исследований. Дубна 1977

Anikina M.H. et al.

P1 - 10590

Similarity between the Multiplicity Distribution of π^{-} -Mesons in Elementary and ⁴He+⁶Li and ⁴He+²⁰Ne Interactions

It is shown that the multiplicity distribution of negative particles produced in $a^{6}Li$ and $a^{20}Ne$ interactions at the momentum of a-particles of 18 GeV/c is similar to the distribution of negative particles in proton-proton interactions.

The investigation has been performed at the Laboratory of high Energies, JINR.

Preprint of the Joint Institute for Nuclear Research, Dubna 1977

1. Введение

В настоящее время накоплено много экспериментальных данных, свидетельствующих об универсальном характере распределений по множественности вторичных заряженных частиц в адрон-адронных взаимодействиях /см., например, обзор /1//.

Универсальность эта проявляется в независимости формы распределений по множественности от:

а/ импульса первичных элементарных частиц,

б/ сорта этих частиц /во всяком случае положительных/.

Исследование взаимодействий элементарных частиц с ядрами показало /см., например, работы ^{/2,3/} /, что и в этом случае форма распределений по множественности релятивистских заряженных частиц такая же, как в элементарных взаимодействиях.

Данная работа посвящена анализу приведенных в работе ^{/4/} распределений по множественности отрицательных частиц, образованных во взаимодействиях ядер с ядрами: ^{*a*} -частиц с импульсом 18 ГэВ/с с ядрами ⁶Li н ²⁰ Ne.

2. Нормировка распределений

Известно, что в отличие от случая взаимодействия элементарных частиц, где понятие неупругого сечения имеет достаточно определенный смысл, в ядер-ядерных

С 1977 Объединенный инспинут лдерных исследований Дубиа

ВЗАИМОДЕЙСТВИЯХ ПРИХОДИТСЯ ПОЛЬЗОВАТЬСЯ РАЗЛИЧНЫМИ сечениями, из которых можно выделить следующие: ^о prod - сечение рождения новых частиц /в основном, конечно, π -мезонов/ и σ_{react} , включающее в себя и сечение развала хотя бы одного из ядер. $\sigma_{\rm prod}$ В эксперименте ^{/4/} парциальные вероятности рождения отрицательных частиц нормированы на σ_{reacl} , а для сравнения распределений по множественности с элементарными взаимодействиями было бы естественным нормировать распределения на $\sigma_{\rm prod}$, экспериментальные данные по которым отсутствуют. Для перенормировки достаточно найти отношение $\sigma_{prod} / \sigma_{react}$. Для вычисления этого отношения мы воспользовались моделью "мягких сфер" ^{/5}. При подстановке в формулы ^{/5/} или σ_{tot} для нуклон-нуклонного значений σ_{in} взаимодействия, взятых нами из работы 16/, получается соответственно о или о react .

Рассчитанные отношения $\sigma_{prod} / \sigma_{reaci}$ для ⁴He + ⁶Li и ⁴He + ²⁰Ne равны соответственно 0,827 и 0,881 и слабо зависят от параметров, описывающих форму ядра.

3. Сравнение распределений

На рис. 1 в координатах $<n > H D_{n}$ представлены точки, соответствующие взаимодействиям *aLi* и *aNe*, вместе с точками pp -взаимодействий. /Среднее число отрицательных треков $<n > = \Sigma n_{n} P_{n}$, а дисперсия распределения по множественности $D_{-}=[\Sigma(n_{-}<n_{-}>)^{2}P_{n}]^{\frac{1}{2}}$,

где $P_n = \frac{\sigma_n}{\sigma_{in}} / .$

На рис. 2,3 приведено непосредственное сравнение распределений по множественности отрицательных частиц из a Li-, aNe - взаимодействий с распределениями из pp - взаимодействий. Импульсы первичных протонов выбирались так, чтобы <n_>pp = <n_>а A

J

4

5

Рис. 3. Сравнение распределений по множественности отрицательных частиц для взаимодействий а-частиц с импульсом 18 ГэВ/с с ²⁰Ne и pp-взаимодействий с импульсом 36 ГэВ/с /10/.

Видно, что форма распределений по множественности отрицательных частиц в *a*⁶Li- и *a*²⁰Ne - взаимодействиях при импульсе *a*-частиц 18 ГэВ/с неплохо согласуется с формой распределений отрицательных частиц в PP - взаимодействиях.

4. Другой способ сравнения

При экспериментальном определении параметров распределений по множественности наибольшие трудности и систематические ошибки связаны с нормировкой - выделением σ_{in} в элементарных взанмодействиях и σ_{prod} во взанмодействиях с участием ядер.

При сравнении распределений по множественности отрицательных частиц для различных положительных и нейтральных первичных адронов можно воспользоваться нормировкой на σ_- сечение рождения хотя бы одной отрицательной частицы.

На *рис.* 4 в координатах D_ и <n_> приведены точки из одних и тех же экспериментов с обычной нормировкой и с нормировкой на σ_{\perp} /точки разделены пунктиром/.

Видно, что во втором случае разброс точек заметно меньше и они гораздо лучше ложатся на одну кривую. Кроме того, такая нормировка позволила использовать данные работы $^{7/}$, где не приводятся сечения двухлучевых событий в рd— и π^+ d -взаимодействиях.

7

Литература

1. De Wolf E. e.a. Nucl. Phys., 1975, B87, p.325.

2. Ангелов Н.С. и др. ОИЯИ, Р1-9978, Дубна, 1976.

Ангелов Н.С. и ор. ОНЛИ, РІ-9978, Дубна, 1976.
Elliot I.E. e.a. Phys. Rev. Lett., 1975, 34, р.607.
Аникина М.Х. и др. ОИЯИ, 1-9280, Дубна, 1975.
Кагоl Paul. Т. Phys. Rev., 1975, C11, р.1205.
Абдивалиев А. и др. ОИЯИ, 1-8565, Дубна, 1975.
Dado S. e.a. Phys. Lett., 1976, 60B, р.397.
Eiseuberg Y. e.a. Phys. Lett., 1976, 60B, р.305.
Boggild H. e.a. Nucl. Phys. 1971, B27, р.285.
Богуславский И.В. и др. ОИЯИ, 1-10134, Дубна, 1976.

Рукопись поступила в издательский отдел 15 апреля 1977 года.