СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

2793/2-77

25/1-24 P1 - 10565

В.Г.Аблеев, В.А.Бодягин, С.А.Запорожец, Л.С.Золин, Г.Л.Мазный, А.А.Номофилов, Н.М.Пискунов, И.М.Ситник, Е.А.Строковский, Л.Н.Струнов, А.Филипковски, В.И.Шаров, М.Н.Шумаков

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ ПО ДИФРАКЦИОННОМУ РАССЕЯНИЮ а ЧАСТИЦ ПРИ 17,9 ГэВ/с НА ПРОТОНАХ И ЯДРАХ **Не, С, АІ, Си**

P1 - 10565

В.Г.Аблеев, В.А.Бодягин, С.А.Запорожец, Л.С.Золин, Г.Л.Мазный, А.А.Номофилов, Н.М.Пискунов, И.М.Ситник, Е.А.Строковский, Л.Н.Струнов, А.Филипковски, В.И.Шаров, М.Н.Шумаков³

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ ПО ДИФРАКЦИОННОМУ РАССЕЯНИЮ *а* -ЧАСТИЦ ПРИ 17,9 ГэВ/с НА ПРОТОНАХ И ЯДРАХ **Не, С, АІ, Си**

² ЛВТА ОИЯИ. ³ СНЭО ОИЯИ.

BUILDER BUTTERA

P1 - 10565

ю дифракционному рассеянию протонах и ядрах Пе.С.АГ.Си

ўстановки "Альфа" были выполнены кционного рассеяния а-частиц с имарах Не, С, АГ, Сu.

обработки экспериментальной инференциальных сечениях рассеяния, юлных сечениях взаимодействия, ого рассеяний.

и высоких энергий ОИЯИ.

а ядерных всследованый. Дубна 1977

P1 - 10565

Diffraction Elastic GeV/c α -Particle on . Cu Nuclei

diffraction elastic scatter-GeV/c α -particles on proei have been made using a roportional chambers and

posure and data analysis is ifferential cross sections, αA interactions (σ_{tot} , σ_{ef} ,

ВВЕДЕНИЕ

С целью изучения дифракционного механизма взаимодействия адронов измерялись абсолютные значения дифференциальных сечений упругого рассеяния *а*-частиц на протонах и других ядрах.

Использовался магнитный спектрометр с пропорциональными камерами и dE/dx -детекторами. Полученные предварительные результаты, касающиеся формы дифракционного конуса и сравнения дифференциальных сечений с расчетами эйконального типа, уже докладывались /1/.

Ниже описывается процедура измерений и обработки полученной информации, приводятся таблицы угловых распределений и оценки полных сечений σ_{tot} , σ_R , $\sigma_{e\ell}$ и радиусов аА-взаимодействий, сделанные без введения поправок на электромагнитные эффекты в дифракционном пике.

1. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

Пучок альфа-частиц с импульсом $P_0 = 17,9 \ \Gamma \partial B/c$ и интенсивностью /1÷5/ 10⁵ част/имп выводился из синхрофазотрона за время /0.3÷0.5/ с.

овпадательный

Выделение мониторных частиц проводилось счетчиками $S_{1,2,4}$, A_1 , а также пропорциональными камерами ПК1,2, причем от каждой плоскости этих камер требовалось однопроволочное срабатывание.

Примесь однозарядных частиц в мониторном пучке не превышала 10^{-3} за счет выбора специального режима работы мониторных детекторов.

Камеры ПК1,2 служили для определения траекторий падающих на мишень частиц, ПКЗ-5 - для определения, траекторий вторичных частиц. Для импульсного анализа вторичных частиц использовались ПКЗ-7. Счетчики $SB_{1\div3}$ были предназначены для измерения ионизационных потерь вторичных частиц / dE/dx -счетчики/, а счетчик S_3 ионизационных потерь частиц первичного пучка. Счетчики $S_{5,6}$ применялись для определения эффективности установки. Передача информации из установки в ЭВМ происходила в одном из следующих случаев:

1. При прохождении каждой мониторной частицы /контрольный триггер М/.

- 2. а/ при наличии сигнала TR1=М∧/есть рассеяние/∧ ИЛИ,
 - б/ при наличии сигнала TR2=TR1∧ /заряд частицы за магнитом > 1 /.

Здесь ИЛИ - сигнал о срабатывании хотя бы одной проволочки в одной из камер ПК5, ПК6 /геом. 1/ или ПК6, ПК7 /геом. 2/; ТR1 и TR2 - рабочие триггеры. Условие "Есть рассеяние" проверялось специальными цифровыми процессорами, сопряженными с ПК1, 2, 4.

Условие "Заряд частицы за магнитом >1" соответствует

ıya 1

щина / г/см ² /	
47+0.001	
94+0,002	
00 <u>0</u> ±0,010	
63 <u>+</u> 0,006	
70 <u>+</u> 0,011	

КИ ДАННЫХ

ился в 2 этапа. На первом сометрические константы, отбор событий рассеяния чных данных". На втором ругого рассеяния и находия.

е критерии отбора событий

и для определения траектоней, нахождения угла отоценки ее заряда; после прохождения мишени , т.е. расстояние между ыть r < const;

к в рабочем триггере, z -

Рис. 2. Распределение событий по расстоянию т между траекториями частиц до мишени и за ней.

Дифференциальные сечения "упругого" рассеяния /т.е. суммы упругого рассеяния и рассеяния с возбуждением ядра-мишени/ определялись по формуле:

 $d\sigma$, 1 \widetilde{N} full \widetilde{N} empty

6 **≤ 0 <** 10µpa∂

Рис. 4. Распределение событий по углу θ_{23} в относи-

ий по величине сигналов

о своему смыслу представ-

.где N₀- число частиц,

ия, F₁ - поток на мишень, грометра. Поскольку величина $f(\theta)$ заранее не известна, коэффициент эффективного поглощения находится с помощью последовательных приближений. Вначале, с помощью линейной экстраполяции по переменной θ^2 , находится

величина $\epsilon_0 = \lim_{\theta \to 0} \frac{N_1(\theta)}{F_1}$. Для этого используется ин-

формация, накопленная при контрольном триггере. Далее ϵ_0 применяется для нахождения в области углов, где многократное рассеяние несущественно, функции $f(\theta)$ /по материалам рабочего триггера/, которая параметризуется в виде

 $\mathbf{f}(\theta) = \mathbf{A}_{\mathbf{f}} \exp(\mathbf{b}_{\mathbf{f}} \mathbf{t}(\theta)) + \mathbf{A}_{\mathbf{e}} \exp(\mathbf{b}_{\mathbf{e}} \mathbf{t}(\theta)),$

где A_f , b_f - параметры, характеризующие рассеяние на веществе мишени, A_e , b_e - на веществе спектрометра.

Окончательная оценка эффективного поглощения делается опять по материалам контрольного триггера из условия минимума функционала

$$M(\tilde{\epsilon_{f}}) = \sum_{i} \{N_{i}(\theta_{i}) - [F_{1} \cdot \tilde{\epsilon}_{f} + \int_{0}^{\theta_{i}} \theta f(\theta) d\theta]\}^{2},$$

где $\tilde{\epsilon_f}$ параметризуется линейно: $\tilde{\epsilon_f}(\theta) = a + b \theta$; за оценку ϵ_f берется параметр a.

О корректности описанной процедуры говорит тот факт, что $\tilde{\epsilon}$ (θ) = const /см. *рис.* 7/. Найденные таким образом значения $\epsilon_{\rm f}$ использовались для вычисления дифференциальных сечений по формуле /1/. С целью проверки самосогласованности процедуры были сделаны оценки полных сечений по формуле:

$$\epsilon_{\rm f} = \epsilon_{\rm a} \cdot \epsilon_{\rm f}^{\rm e} \cdot \exp\left(-\sigma_{\rm tot} \cdot {\rm K}_{\rm gu}\right)$$

Tadunna 2

ови. Ө мрад	t Fak ² /c ²	H_2 $\frac{dc'}{dt}$ mo/TsB ² /c ²	He do <u>dagen</u> dt Pall ² /c ²	$\frac{d\sigma}{dt} \frac{\delta a \rho_{H}}{\Gamma P B^{2}/c^{2}}$	$\frac{do}{dt} \frac{\delta a p \mu}{\Gamma a B^2/c^2}$	Cu de <u>der</u> dt IsB ² /c2
I	2	3	4	5	6	7
5.25	0.00878			I4.70 ±0.3I	23.4 ± 0.7	35.40 ± 1.4
5.95	0.0113			II.00 ±0.24	15.7 ± 0.5	18.02 ± 0.96
6.65	0.0141		4.05 ± 0.17	8.26 ±0.17	9.81 ± 0.34	8.19 ± 0.61
7.35	0.0172		3.03 ± 0.13	5.72 ±0.12	5.75 ± 0.25	4.96 ± 0.44
8.05	0.0206	622 ± 16	2.6 1 ± 0.10	3.98 ±0.09	3.35 ± 0.18	3.67 ± 0.40
8.75	0.0244	5 23 ± I3	1.91 ± 0.08	2.73 ±0.07	I.98 ± 0.13	3.01 ± 0.25
9.45	0.0285	442 ± IO	1.58 ± 0.07	I.89 ±0.05	1.35 ± 0.10	3.26 ± 0.22
10.15	0.0328	365 ± 8.0	1.21 ± 0.06	I.23 ±0.04	0.960 ± 0.078	2.75 ± 0.18
10.85	0.0375	305 ± 7.I	0.924± 0.027	0.816±0.032	0.94I ± 0,066	2.24 ± 0.14
II.55	0.0425	275 ± 7.2	0-628 [±] 0.02I	0.593±0.026	0.952 ± 0.059	I.75 ± 0.12
12.25	0.0478	255 ± 5.5	0.505± 0.018	0.458±0.022	0.936 ± 0.054	1 .3 0 ± 0.10
12.95	0.0534	201 ± 4.8	0.350± 0.015	0.354±0.018	0.83I ± 0.047	0.818 ± 0.082

ک ح

١

I	2	3	4	5	6	7
13.65	0.0594	170. ± 4.4	0.268 ± 0.014	0.308 ± 0.017	0.765 ± 0.045	0.644 ± 0.074
I 4.35	0.0656	I40. ± 3.8	0.180 ± 0.011	0.295 ± 0.017	0.476 ± 0.038	0.671 ± 0.072
15 .05	0.0722	107. ± 3.4	C.I39 ± 0.010	0.299 ± 0.017	0.544 ± 0.044	0.393 ± 0.065
15.75	0.0790	87.8 ± 3.0	0.104 ± 0.010	0.254 ± 0.017	0.321 ± 0.032	0.298 ± 0.059
I6.45	0.0862	72.5 ± 2.5	C.0812 ± C.0080	0.240 ± 0.014	0.313 ± 0.031	0.459 ± 0.058
17.15	0.0937	52.I ± 2.0	0.0650 ± 0.0070	0.212 ± 0.013	0.234 ± 0.027	0.534 ± 0.057
17.85	0.102	4I.8 ± I.7	0.0584 ± 0.0069	0.187 ± 0.012	0.177 ± 0.024	0.347 ± 0.050
18.55	0. II0	30.0 ± 1.4	0.0439 ± 0.0056	0.173 = 0.012	0.200 ± 0.023	0.3I7 ± 0.042
I 9.2 5	0.118	2I.8 ± I.I	0.0326 ± 0.0053	0.113 ± 0.010	0.148 ± 0.020	0.184 ± 0.035
19.95	0.127	20.6 ± 1.0	0.0318 ± 0.0048	0.102 ± 0.009	0.189 ± 0.021	0.3I7 ± 0.038
20.65	0.136	12.4 ± 0.82	0.0340 ± 0.0047	0.0861 ± 0.0083	0.188 ± 0.022	0.158 <u>+</u> 0.032
2I.35	0.145	10.2 ± 0.76	0.0171 ± 0.0037	0.117 ± 0.010	0.154 ± 0.021	0.226 ± 0.037
22.05	0.155	5.82 ± 0.56	0.0204 ± 0.0043	0. 0719 [±] 0.0089	0.106 ± 0.019	C.154 ± 0.034
22.75	0.165	4.37 ± 0.50	0.0363 ± 0.0049	0.0592 ± 0.0069	0.140 ± 0.020	0.143 ± 0.029
23.45	0.175	3.67 ± 0.49	0.0II0 ± 0.0034	0.0598 ± 0.0079	0.0609± 0.014	0.081 ± 0.024
24.15	0.186	2.56 ± 0.52	0.0213 ± 0.0052			
24.85	0.197	I.84 ± 0.47	0.0118 ± 0.0051			
25.55	0.205	1.62 ± 0.47	0.0079 ± 0.0036			
26.25	0.220	1.02 ± 0.32				

в табл. 2 и на рис. 6. Данные этой таблицы не вполне адекватны "истинным" дифференциальным сечениям; задача об их извлечении относится к классу "некорректных" $^{/3/}$ и ее решение представляется нам нецелесообразным. Поэтому сравнение теоретических расчетов с данными табл. 2 следует проводить после преобразо-

вания
$$\frac{d\sigma}{dt}$$
 в соответствии с формулой
 $\frac{d\sigma}{dt}(t)_{3KCII} = \int_{t=\tau}^{t+\tau} \frac{d\sigma}{dt'}(t') \cdot W(t', t) dt', \qquad /4/$

$$W(t',t) = \frac{1}{p_0^2 \sigma^2} \exp\left[-\frac{(\sqrt{|t|} - \sqrt{|t'|})^2}{2p_0^2 \sigma^2}\right] \exp\left[-\frac{\sqrt{tt'}}{p_0^2 \sigma^2}\right] I_0(\frac{\sqrt{tt'}}{p_0^2 \sigma^2}),$$

где W(t', t) - функция, описывающая аппаратурное разрешение. /Здесь р₀ - импульс пучка, σ - мода рэлеевского распределения, аппроксимирующего экспериментальное угловое распределение на "полной" мишени вблизи нулевого угла рассеяния в контрольном триггере, / $\sigma = 0.8$ мрад независимо от мишени/, I_0 - функция Бесселя мнимого аргумента/.

В области дифракционного конуса /т.е. области, где сечение хорошо аппроксимируется экспонентой/ уравнение /4/ позволяет найти связь наблюдаемых и "истинных" параметров дифракционного конуса. Она имеет вид:

$$\frac{d\sigma}{dt}(0)_{\text{ЭКСП}} = \frac{1}{1+2p_0^2\sigma^2 b} \frac{d\sigma}{dt}(0), \ b_{\text{9}\phi\phi} = \frac{b}{1+2p_0^2\sigma^2 b}.$$
 /5/

В табл. З приведены наблюдаемые параметры дифракционного конуса, найденные подгонкой формулы

$$\frac{d\sigma}{dt}_{3KC\Pi} = \frac{d\sigma}{dt}(0)_{3KC\Pi} \exp(b_{3\varphi\varphi}t + ct^2)$$

/по интервалу $|t_{\min}| \le |t| \le 4/b_{3\oplus \oplus}$ /, а в табл. 4 содержатся поправленные в соответствии с /5/ значения $\frac{d\sigma}{dt}(0)$ и b-параметров.

Рис. 6. Экспериментальные значения дифференциальных сечений упругого aA-рассеяния.

Оценка полных сечений упругого рассеяния проводилась фитированием данных формулой

 $\frac{d\sigma}{dt} \to_{\text{КСШ}} = \sigma_{e\ell} \cdot b_{\oplus \varphi \varphi} \exp(b_{\oplus \varphi \varphi} t).$ Оценка полных сечений взаимодействия выполнялась в приближении $\rho^2 = \left|\frac{\text{ReA}_{\text{RL}}}{\text{ImA}_{\text{RL}}}\right|^2 = 0$ по оптической теореме: $\sigma_{\text{tot}} = \sqrt{16\pi} \frac{d\sigma}{dt}(0).$ Соответствующие величины представлены в *табл.* 5 и на *рис.* 8.

14

15

Таблица З

Ми- шень	t мнтервал,ГэВ ² /с ²	do (0) эксп., daph/ГэВ ² /c ²	вэр ф., Гэв ⁻² /с ⁻²	С, X ² /N
H ₂	0,02 0 6 +0,102	I.I 0 ± 0.02	32.1 [±] 0.3	46./15
Нe	0,0I4I +0.0656	IO.2 ± 0.7	70.0±4.	+I36±55 IO./I2
С	0,00878+0,0244	37.9 ± 0.8	109. ± 2.	2.5/6
лl	0 ,00 878 ;0, 0244	97. ± 5.	162.±4.	2./6
Cu	0,00878÷0,0172	308. ±40.	25I. <u>-</u> II.	6./4

Таблица	4	
---------	---	--

Мишень	$\frac{d\sigma}{dt}(0),$ $\frac{\delta a p H}{\Gamma P B^{2}/c^{2}}$	в, гэв- ² /с ⁻²
Н2	I.II ± 0.02	32.52 ± 0.32
He	IO.5 ± 0.7	72.I ± 4.I
с	39. 3 ± 0.8	II2.8 ± 2.0
Аl	IO2. ± 5.	170.6 ± 4.2
Cu	345. ± 45.	282. ± 12.

Таблица 5

Мишень	о _{tot} , мбарн	Cel,	G _R =G _{tot} -G Mdaph	$R_{dA} = 2\sqrt{6},$	
H ₂	I47 ± I	34.2± 0.3	113	2.24 ± 0.01	
He	450 ± 20	I46 ± 4	30 4	3.35 ± 0.10	
С	877 ± 10	348± 4	529	4.19 ± 0.04	
Al	1413 ± 40	600 ± 20	813	5.I5 ± 0.06	
Cu	26 00 ± 170	122) ± 100	1380	6.63 ± 0.14	

Таблица б

Кишень	<u>SK</u> ag Kag.	, <u>δ</u> ρ, β, %	SFe Fe %	5F, F,	5E4 E4	SE NO	Оннока онте-Кар %	полная ло, ср.кв. отнока,
						nc	Облее	He OONee
H ₂	0.12	0.8	0.8	0.4	0.6	0.3	0.7	2.4
He	0.1	0.8	0.8	0.4	0.6	I.3	0.7	2.4
С	0.5	0.8	0.5	0.5	0.6	0.6	0.5	2.0
AL	0.4	0.8	0.6	0.6	0.7	0.7	0.5	2 .2
C u	0.8	0.8	0.7	0.7	0.9	0.9	0.5	2.4

Рис. 7. Зависимость величины $\tilde{\epsilon}_{\rm f}$ от $\theta^2/2$ для разных мишеней.

.

Рис. 8а. Значения σ_{tot} для различных мишеней. Линия - зависимость вида $\sigma_{tot} = 0,18 \cdot A^{0,63}$ барн.

Рис. 86. Данные по А-зависимости $\sigma_{\rm e\ell}$, $\sigma_{\rm R} = \sigma_{\rm tot}$, $-\sigma_{\rm e\ell}$, $R_{\alpha A} = 2\sqrt{b}$. Линии соответствуют формулам 0,05А 0,74 барн, 0.13А0,56 барн и 2,1А 0,28 Фм соответственно. Примечательно, что $\sigma_{\rm R} = \pi R_{\alpha A}^2$

Рис. 8в. Совместные данные по σ_R для разных ядер. Данные Аникиной и др. взяты из работы 467, данные Толстова и др. - из 577, Ярош и др. - из 667. Линия подгонка формулы Якобсона и Кульберга 577 к данным Аникиной и др.

Можно ожидать, что связанная с приближением $\rho^2 = 0$ систематическая ошибка в определении величин, указанных в *табл.* 5, падает с ростом атомного веса мишени; в частности, для *а*р -рассеяния поправка на $\rho \simeq -0.30$ /см.^{/4a/} / составляет 8 *мбарн.* Указанные в *табл.* $2\div 5$ погрешности носят статистический характер. Систематические ошибкн нормировки дифференциальных сечений приведены в *табл.* 6.

В итоге отметим следующее.

Описанная методика проведения эксперимента и обработки данных позволила определить абсолютные величины дифференциальных сечений рассеяния альфа-частиц при 17,9 ГэВ/с на водороде и ядрах Не, С, Al, Сu, в дифракционной области / рис. 6, табл. 2/; на основе этих данных в рамках указанных выше приближений сделаны оценки значений полных сечений σ_{tot} , $\sigma_{e\ell}$ и b -параметров наклонов дифракционных конусов. Эти данные по абсолютным величинам дифференциальных /и полных σ_{tot} , $\sigma_{e\ell}$ /сечений aA -рассеяния являются первыми для диапазона энергий в несколько ГэВ/нукл.

Измеренное в настоящей работе значение $b_{\alpha p}$ находится в соответствии с результатами $^{/4a/}$ относительных измерений, проведенных с тонкопленочной CH₂мишенью в более узком диапазоне |t|, включающем область кулон-ядерной интерференции.

Данные по $\sigma_{\rm R}({\rm A})$ при Е – 4,5 *ГэВ/нуклон*, полученные счетчиковой трансмиссионной методикой /46 / и фотоэмульсионной методикой /5/, близки к нашим результатам.

Сравнение наших данных с результатами недавних измерений $^{/6/}$ σ_{tot} и σ_R для ap, aa, aC -рассеяния при 2,1 ГэВ/нукл/выполненных в БНЛ трансмиссионной методикой с пропорциональными камерами/ не дает указаний на изменение этих параметров aA-взаимодействия при возрастании энергии.

Авторы благодарят коллективы эксплуатационных отделов ЛВЭ ОИЯИ и отдела синхрофазотрона за обеспечение хорошей работы ЭВМ и ускорителя, сотрудников ОННР ЛВЭ С.Г.Басиладзе, Г.М.Сусову, В.Н.Садовникова, А.П.Крячко, сотрудников КО ЛВЭ Л.Б.Голованова, Ю.Т.Борзунова, А.П.Цвинева, а также Г.Г.Воробьева, Л.А.Слепец за помощь при подготовке и проведении измерений, З.П.Мотину и Р.Н.Петрову - за большую помощь в подготовке и оформлении результатов. Авторы признательны руководству Лаборатории и научно-экспериментального отдела ЛВЭ за поддержку и обеспечение возможностей проведения эксперимента.

ЛИТЕРАТУРА

 а/Аблеев В.Г. и др. Труды XVIII Международной конференции по физике высоких энергий / Тбилиси, 1976 г./, доклад 448/А6-5, ОИЯИ, Д1,2-10400, Дубна, 1977. б/ Царев В.А., там же, доклад А1-1;

- в/ Кайдалов А.Б., там же, доклад А1-27;
- г/ Zielinski I.P., там же, доклад Аб-б.
- 2. Аблеев В.Г. и др. ОИЯИ, 13-10256, Дубна, 1976.
- 3. Тихонов А.Н. Вычислительные методы и программирование, вып. 8 /изд-во МГУ/, 1967.
- 4. а/Безногих Г.Г. и др. Труды XVIII Международной конференции по физике высоких энергий /Тбилиси, 1976/. доклад 451/А-6, ОИЯИ, Д1,2-10400, Дубна, 1977.
- б/Аникина М.Х. и др., там же, доклад 450/А6-7.
- 5. Бокова Л.Н. и др. ОИЯИ, РІ-9364, Дубна, 1975.
- 6. Jaros J.A. (Ph.D. Thesis), LBL-3849, 1975.
- 7. Jakobsson B., Kullberg R. LUIP-CR-75-14, 1975.

Рукопись поступила в издательский отдел 6 апреля 1977 года.