ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> 20/11-20 Pl 10511

-7/

А-646
Р1 1051
2348 2-44
Н.Ангелов, С.Бацкович, В.Г.Гришин, С.В.Джмухадзе, Л.А.Диденко, И.А.Ивановская, Т.Я.Иногамова, Т.Канарек, Е.Н.Кладницкая, С.С.Козловская, В.Б.Любимов, С.И.Лютов, Н.Н.Мельникова, Ю.Надь, Р.М.Назаргулов, В.Ф.Никитина, В.М.Понова, А.Н.Соломин, Х.И.Семерджиев, М.И.Соловьев, М.Сулейманов, Д.Тувдендорж, Н.Г.Фадеев, Э.Т.Цивцивадзе, Л.М.Цеглова

ДВУХЧАСТИЧНЫЕ КОРРЕЛЯЦИИ В ИНКЛЮЗИВНЫХ ПИОН-УГЛЕРОДНЫХ ВЗАИМОДЕЙСТВИЯХ ПРИ 40 ГэВ/с

P1 - 10511

Н.Ангелов, С.Бацкович, В.Г.Гришин, С.В.Джмухадзе, Л.А.Диденко, И.А.Ивановская, Т.Я.Иногамова, Т.Канарек, Е.Н.Кладницкая, С.С.Козловская, В.Б.Любимов, С.И.Лютов, Н.Н.Мельникова, Ю.Надь, Р.М.Назаргулов, В.Ф.Никитина, В.М.Попова, А.Н.Соломин, Х.И.Семерджиев, М.И.Соловьев, М.Сулейманов, Д.Тувдендорж, Н.Г.Фадеев, Э.Т.Цивцивадзе, Л.М.Щеглова³

ДВУХЧАСТИЧНЫЕ КОРРЕЛЯЦИИ В ИНКЛЮЗИВНЫХ ПИОН-УГЛЕРОДНЫХ ВЗАИМОДЕЙСТВИЯХ ПРИ 40 ГэВ/с

Направлено в ЯФ

Объединенный виститут идерных вселадований БИБЛИОТЕКА

- Институт физики, Белград.
- ² Тбилисский государственный университет, Гбилиси. ³ Физический факультет и Научно-исследовательский институт ядерной физики, МГУ, Москва.
- Институт физики АН Аз.ССР, Баку.

Ангелов Н. и др.

Двухчастичные корреляции в инклюзивных пион-углеродных взаимодействиях при 540 ГэВ/с

Изучены корреляции по быстроте и распределения по разности азимутальных углов *п* -мезонов, образующихся в *n*⁻С-взаимодействиях при P_{*n*} = 40 ГэВ/с. Данные по азимутальным корреляциям получены при различных ограничениях на быстроты и поперечные импульсы *п* - мезонов. Проведено сравнение с результатами для *п*⁻Р-взаимодействий при той же энергии первичного *n*⁻ -мезона.

Структура распределений корреляционных функций для «ТС-событий оказалась близкой к соответствующим для «р-взаимодействиям, сами корреляции в соударениях с ядрами несколько слабее, чем в пион-нуклонных столкновениях.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1977

Angelov N. et al.

P1-10511

Two-Particle Correlations in Inclusive π^-C Interactions at 540 GeV/c

The rapidity correlations and the distributions over the difference of the azimuthal angles of "mesons, produced in π^-C interactions at P_{π} =40 GeV/c, have been studied. The data on the azimuthal correlations have been obtained at various limitations on the rapidity and transverse momenta of π^- mesons. A comparison with the results obtained for π^-P interactions at the same energy of the primary π meson, has been made.

The structure of the correlation functions for π^-C interactions turned out to be close to that for π^-p interactions. The correlations in collisions with nuclei were somewhat weaker than in pion-nucleon ones.

The investigation has been performed at the Laboratory of High Energies, JINR. Preprint of the Joint Institute for Nuclear Research. Dubma 1977

© 1977 Объединенный инспинут ядерных исследований Дубна

Введение

Корреляции вторичных зяряженных частиц, образующихся в адрон-адронных столкновениях, изучались во многих работах*. Работ по исследованию корреляций в адрон-ядерных взаимодействиях сравнительно мало /2,3,4/.

Довольно полно изучены корреляции частиц, образующихся в пион-нуклонных взаимодействиях при импульсе первичного π^- -мезона 40 ГэВ/с, в работах Сотрудничества /5/. Интересно было бы сопоставить эти результаты с данными для пион-углеродных взаимодействий при том же первичном импульсе. Настоящая работа посвящена исследованию этого круга вопросов.

Экспериментальный материал / ~1700 #С-событий/ получен с помощью двухметровой пропановой камеры, облученной #-мезонами с импульсом 40 ГэВ/с. Анализировались реакции:

- $\pi^- C \rightarrow \pi^+ \pi^+ + \dots , \qquad /1/$
- $\pi^- C \rightarrow \pi^- \pi^- + \dots , \qquad /2/$
- $\pi^- C \rightarrow \pi^+ \pi^- + \dots \qquad /3/$

Методические особенности эксперимента описаны в работах ^{/6/}. Отметим только, что при изучении корреляций не учитывался вклад квазинуклонных взаимодей-

*См./1/ и сноски в ней.

ствий, которые в силу особенностей отбора событий были отнесены либо к π p-, либо к π n-взаимодействиям.

§1. Инклюзивные корреляции заряженных частиц по быстротам

Изучение корреляций по быстротам проводилось с помощью стандартных корреляционных функций:

$$R(y_{1}^{*}, y_{2}^{*}) = \left(\sigma \frac{d^{2}\sigma}{dy_{1}^{*}dy_{2}^{*}} / \frac{d\sigma}{dy_{1}^{*}} \frac{d\sigma}{dy_{2}^{*}}\right) - 1; \qquad /4/$$

$$C(y_{1}^{*}, y_{2}^{*}) = \frac{1}{\sigma} \frac{d^{2}\sigma}{dy_{1}^{*}dy_{2}^{*}} - \frac{1}{\sigma^{2}} \frac{d\sigma}{dy_{1}^{*}} \frac{d\sigma}{dy_{2}^{*}}. \qquad /5/$$

Для удобства сравнения с данными по пион-нуклонным взаимодействиям продольные быстроты у^{*} вычислялись в системе центра инерции пион-нуклон, σ - сечение отобранных нами π - С-взаимодействий / σ = $\simeq 1/2 \sigma_{in} (\pi^{12}C)/.$

На рис. 1 представлены экспериментальные значения $R(y_1^*, y_2^*)$ – функций, на рис. 2 - $C(0, y_1^*)$ -функций для комбинаций $\pi^+\pi^+$, $\pi^-\pi^-$ -и $\pi^+\pi^{-2}$ -мезонов вместе с данными для π^-p -взаимодействий при той же энергии первичного π^- -мезона *. Как видно из рисунков, общий ход корреляционных функций одинаков для π^-C -и π^-p -взаимодействий, за исключением R^- функций для комбинаций $\pi^+\pi^+$; для них в π^-p -взаимо-действиях в области y_2^+ () наблюдаются более сильные отрицательные корреляции.

Поведение R- и С-функций для π^- ядерных взаимодействий в фотоэмульсии при $P_{\pi^-} = 50 \Gamma_{2}B/c$

* Здесь и ниже результаты для $\pi^- p$ -взаимодействий получены по уточненным данным, которые согласуются с ранее опубликованными /5/.

Рис. Іа, б, в. Значения корреляционной функции $R(y_1^*, y_2^*)$ для пар $\pi^+\pi^+$ -, $\pi^-\pi^-$ и $\pi^+\pi^-$ -мезонов вместе с данными для π^-p - взаимодействий.

4

t.

9

n.

14

₹°

Рис. 1в

6

изучалось в работе /2/, где для $\pi^+\pi^+$ и $\pi^-\pi^$ пар мезонов обнаружены более сильные отрицательные корреляции, чем в нашем случае. Результаты для $\pi^+\pi^-$ - комбинаций согласуются с нашими данными. Значения R- и С-функций для центральной области ($|y_1^*|$, $|y_2^*| \le 0.25$) сведены в *табл. 1* Из таблицы видно:

а/ корреляционные функции R(0,0) и C(0,0) для π^-C -взаимодействий, как правило, меньше, чем для π^-p -событий;

б/ как и в случае π р - взаимодействий, для пар $\pi^{4}\pi^{-}$ -мезонов наблюдаются положительные корреляции короткодействующего характера.

§2. Азимутальные корреляции

Азимутальные корреляции вторичных заряженных пионов анализировались по переменной

$$\phi = \arccos \left[(\vec{P}_{\perp 1} \cdot \vec{P}_{\perp 2}) / |\vec{P}_{\perp 1}| \cdot |\vec{P}_{\perp 2}| \right].$$
 /6/

Общий вид распределений по разности азимутальных углов ϕ пар π -мезонов из всех отобранных нами π (взаимодействий показан на *рис. 3.* На этом же рисунке для сравнения представлены данные для π^- р-взаимодействий. Видно, что для пар тождественных мезонов они совпадают, намечается отличие для $\pi^+\pi^-$ -комбинаций.

Для более детального сравнения анализ азимутальных корреляций по переменной ϕ сделан для различных областей по быстротам^{*} и различных значений поперечных импульсов. В частности, были выделены центральная и фрагментационная области. Центральная была выделена условием $|y_1^*|$, $|y_2^*| \leq 1$. Для фрагментационных областей использовались два условия: а/ $|y_1^*|$, $|y_2^*| > 1$;

*Здесь, как и раньше, быстроты вычислялись в системе центра инерции пион-нуклон.

, <mark>8</mark>

Таблица 1

$ y_{2}^{*} \leq 0,25$
*
~
I F
1
•
1
+ ;;
_ _
- +
+ t:
nap
вид
C
z
ж
і функций
Значения

	and a second sec				
	R (0,0)		C (0,	(0,	
τ + μ τ + μ	+ # #	- -	+ + # #	- μ + μ	л ^п п
‴℃,40 ГэВ/с 0,04 <u>+</u> 0,0	07 0,58±0,10	0,09 <u>+</u> 0,08	0,05 <u>+</u> 0,08	0,57 <u>+</u> 0,08	0,08 <u>+</u> 0,06
‴p. 40 Г∋B/c 0,14±0,0	04 0,72+0,05	0,26 <u>+</u> 0,04	0,09 <u>+</u> 0,02	0,41 <u>+</u> 0,02	0,14 <u>+</u> 0,02

Рис. 3. Распределения по разности азимутальных углов пар п-мезонов для п⁻С-и п⁻р-взаимодействий.

10

 $y_1^* \cdot y_2^* \cdot 0$, т.е. рассматриваемые пионы находятся одновременно либо справа, либо слева от центральной области; б/ $|y_1^*|, |y_2^*| \cdot 1$; $y_1^* \cdot y_2^* < 0$, т.е. π -мезоны находятся по разным сторонам от центральной области. Полученные результаты представлены в *табл.* 2 в виде коэффициентов асимметрии

$$B = \frac{N_{\pi}(\pi/2 < \phi < \pi) - N_{\pi}(0 < \phi < \pi/2)}{N_{\pi}(0 < \phi < \pi)}$$
 /7/

для различных областей по быстротам и разных интервалов перпендикулярных импульсов исследуемых пар π -мезонов с данными для π^- р-взаимодействий. Видно, что параметр В при малых значениях Λy^* несколько больше для пар $\pi^+\pi^-$ -мезонов, чем для $\pi^{\pm}\pi^{\pm}$ -пар, а для больших Λy^* величина В в пределах ошибок ие зависит от зарядовой комбинации пары. Причем во всех случаях коээфициент асимметрии в π^- С-событиях остается меньшим по величине, чем для π^- р-взаимодействий.

Основные выводы работы можно сформулировать следующим образом:

1. Как и в случае $\pi^- p$ -взаимодействий, для π^- ('-со-бытий корреляционные функции $R(y_1^+, y_2^+)$ несимметричны относительно $y^* = 0$.

2. Поведение корреляционных функций указывает на наличие ближних корреляций, в особенности это относится к парам $\pi^+\pi^-$ -мезонов.

3. Корреляции для π^-C -взаимодействий в основном оказываются меньше корреляций для π^-p -взаимодействий. Отличие наиболее заметно для $\pi^+\pi^{-+}$ -пар в области отрицательных быстрот.

4. Азимутальные корреляции зависят от заряда пары *π*-мезонов, от расстояния между ними по оси продольных быстрот и поперечных импульсов, причем они, как правило, меньше азимутальных корреляций для π^- р взаимодействий.

В заключение авторы выражают благодарность сотрудникам лабораторий, принимавших участие в обработке экспериментального материала.

Orpanu- venus	E	+ +	n + n			
uo P ₁ uo P ₁ (TaB/c)	О *	۳_p	#_C	d_r	a_C	ď "
∆y ≥2	0,0210,02	10,0±70,0	0,0240,01	0 ,11 ±0,0I	0,03±0,02	10,0±70,0
$\Delta y \mid \leq 2$	0,04+0,0I	0,05+0,01	0,06 <u>+</u> 0,0I	0,II±0,0I	0,01 <u>+</u> 0,0I	0,03 <u>+</u> 0,0I
y 1 , y 2 ≤ 1	0,04+0,02	0,03 <u>+</u> 0,0I	0,06 <u>+</u> 0,0I	0,1040.01	0,01±0,02	0,03 <u>+</u> 0,0I
$y_1 , y_2 >1,y_1\cdot y_2<0$	0,01±0,02	10,0±70,0	0,03 <u>+</u> 0,0I	0,11 <u>+</u> 0,01	0,03±0,02	10°0∓40°0
$y_1 . y_2 >1, y_1, y_2>0$	0,04+0,02	0,06±0,01	10°07+00°0	0,12 <u>4</u> 0,0I	0,03±0,02	0,04 <u>+</u> 0,0I
⁴ 1, 1 ₂ ≤0.175 م.175	0,04+0,04-	0,03+0,02	0,01±0,02	0,0240,01-	0,05±0,04-	0,06±0,02
P ₁ , P ₂ ≥ 0.35	0,05 <u>+</u> 0,0I	10,040,0	0°07±0°0	0,1840,0I	0,05±0,01	0,08 <u>4</u> 0,0I
Bce	0,0340,01	0,05 <u>+</u> 0,0I	0°0 - 90°0	0,II±0,0I	0,02±0,01	0,04 <u>+</u> 0,0I.

-взаимодействий,

ρ

Ы

<u>ы</u> п_С. Г∋В/с

3 для =40 Гэ́

ш

Значения коэффициентов асимметрии

2

Таблица

Литература

- 1. Ранфт Г. и др. ЯФ, 1975, 22, с.822.

- 2. Воинов В.Г. и др. ЖЭТФ, Письма, 1976, 24, с.107 3. Будагов Ю.А. и др. ОИЯИ, Р1-9720, Дубна, 1976 4. Sreedhar V. e.a. Nucl. Phys., 1974, В75, р.285.
- Nucl. Phys., 1975, B88, p.202. 5. Абдурахимов А.У. и др. ЯФ, 1975, 22, с.122; ЯФ, 1974 19, c.1039.
- 6. Абдурахимов А.У. и др. ЯФ, 1973, 17, с.1235; ЯФ, 1975 18, с.545. Ангелов Н. и др. ОИЯИ, P1-9792, Дубна 1976.

Рукопись поступила в издательский отдел 18 марта 1977 года.