СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> 25/4-7 P1 - 10398

1553 2-77 Г.И.Лыкасов, В.Г.Одинцов

antensses 11 11 IS anante

C 34300

N-883

матричный элемент реакции к[•] + ⁴Не→T + Y(Y*)

P1 - 10398

Г.И.Лыкасов, В.Г.Одинцов

матричный элемент

PEAKLINN $K^+ + 4He \rightarrow T + Y(Y^*)$

NEC.

Лыкасов Г.И., Одинцов В.Г.

P1 - 10398

Матричный элемент реакции $K^{-} + {}^{4}He \rightarrow T + Y(Y^{*})$

Работа посвящена описанию вывода выражения матричного элемента реакции К⁻ + ⁴He - T + Y (Y*).

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1977

Lykasov G.I., Odintsov V.G. Pl - 10398

Matrix Element of the Reaction $K^{-} + {}^{4}He \rightarrow T + Y(Y^{*})$

The paper is devoted to the description of the derivation of the expression for matrix element of the reaction $K^- + {}^4He \rightarrow T + Y(Y *)$.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1977

1977 Объединенный инспинут ядерных исследований Дубна

В работе/1/ рассматривались бинарные процессы прямого рождения гиперонов каонами на легких ядрах. В частности, изучались реакции типа

 $K^{-} + {}^{4}He \rightarrow T + Y(Y^{*})$ /1/

в связи с проблемой возможного существования бариона $Y_{1327}^{\circ*} \wedge^{\circ} \gamma$ / Т - ядро трития/.

Для описания рассеяния быстрых каонов на легких ядрах в работе /1/ была рассмотрена модель, в которой предполагалось, что:

1/ ядро ⁴ Не диссоциирует на тритий и протон;

2/ налетающий каон взаимодействует с протоном, образуя гиперон Y (Y*):

 $\mathbf{K}^{-} + \mathbf{p} \rightarrow \mathbf{Y}^{\bullet}(\mathbf{Y}^{*});$

3/ Т и Y(Y*) покидают пределы ядра ⁴ Не, не взаимодействуя между собой.

Настоящая работа посвящена описанию вывода выражения для матричного элемента реакции /1/ на основе сделанных выше предположений 1/-3/. Будет показано также, что учет упругих процессов перерассеяния, когда в конечном состоянии наблюдаются тритий и гиперон, дает поправку к матричному элементу, не влияющую на форму угловых и импульсных распределений вторичных частиц в реакции /1/.

В импульсном приближении матричный элемент перехода из начального состояния в конечное в условиях реакции /1/ имеет следующий вид:

$$M_{0} = \langle \Psi(\vec{p}_{\gamma}, \alpha) \Psi(\vec{p}_{T}, \beta) | \sum_{i=1}^{4} A_{i} | \Psi(^{4} He) \rangle , \qquad /2/$$

где $\Psi(\vec{p}_{Y}, \alpha)$ и $\Psi(\vec{p}_{T}, \beta)$ - волновые функции образовавшихся гиперона и трития, \vec{p}_{Y}, \vec{p}_{T} -их импульсы, α и β квантовые числа; $\Psi(^{4}\text{He})$ - волновая функция ядра ⁴ He; A_{i} - оператор рождения гиперона на отдельном нуклоне.

В рамках псевдоскалярной теории оператор рождения гиперона на нуклоне имеет вид

$$A_{i} = \sqrt{\frac{E_{Y} + M_{Y}}{2E_{Y}}} e^{i \vec{p}_{K} \vec{r}_{K}} \sigma_{i} (g_{1} \frac{\vec{p}_{Y}}{E_{Y} + M_{Y}} - g_{2} \frac{\vec{\Delta}}{2m}) \frac{1 + r_{3}(i)}{2} / 3 /$$

где Е_Y, \vec{p}_Y , M_Y - энергия, импульс и масса гиперона; $\vec{\Delta}$ и m - импульс и масса протона; \vec{p}_K , \vec{r}_K - импульс, радиус-вектор налетающего К --мезона; g_1 и g_2 - константы связи; σ_i - матрица Паули; $\tau_3(i)$ - изоспиновый оператор. Протон в ядре не является строго свободным, и поэтому импульс $\vec{\Delta}$ в выражении /3/ должен быть оператором ($-i\vec{\nabla}$), действующим на волновую функцию протона.

Т.Копалейшвили и Ф.Ткебучава^{/2/}, изучая захват π^- мезонов легкими ядрами, который полностью аналогичен захвату К⁻-мезонов, установили, что вклад подобного члена в полное сечение захвата невелик. Кроме того, в рассматриваемом нами случае импульс протона в выражении /3/ существенно меньше импульса рассеянного гиперона. Приведенные аргументы дают основания считать, что в /3/ вторым членом в скобках можно пренебречь и в качестве амплитуды A_i взять выражение

$$A_{i} = g_{1} \sqrt{\frac{E_{Y} + M_{Y}}{2E_{Y}}} e^{i \vec{p}_{K} \vec{r}_{K}} \sigma_{i} \frac{\vec{p}_{Y}}{E_{Y} + M_{Y}} \frac{1 + r_{3}(i)}{2}.$$
 (4)

Перепишем выражение /2/ для матричного элемента в интегральном виде:

$$M_{0} = L \int e^{-i\vec{p}_{Y}\vec{r}_{Y}} e^{-i\vec{p}_{T}\vec{r}_{T}} \Psi_{T}^{*}(\vec{r}_{1},\vec{r}_{2},\vec{r}_{3}) \sum_{i=1}^{4} A_{i} \Psi_{He}(\vec{r}_{1},\vec{r}_{2},\vec{r}_{3},\vec{r}_{4}) \times d^{3}\vec{r}_{Y} d^{3}\vec{r}_{T} d^{3}\vec{r}_{1} d^{3}\vec{r}_{2} d^{3}\vec{r}_{3} d^{3}\vec{r}_{4}, /5/$$

где L - константа; \vec{r}_{Y} и \vec{r}_{T} - радиус-векторы гиперона и трития; \vec{r}_{1} , \vec{r}_{2} , \vec{r}_{3} - радиус-векторы нуклонов в ядре ⁴ Не и T ; \vec{r}_{4} - радиус-вектор взаимодействующего протона; \vec{p}_{T} - импульс ядра T ; Ψ_{T} и Ψ_{He}^{*} - волновые функции ядер T и ⁴ Не, которые выбраны в виде произведения одночастичных функций нуклонов.

В соответствии со сделанными выше предположениями относительно механизма реакции /1/ волновую функцию ядра⁴ Не представим в виде

$$\Psi_{\text{He}}(\vec{r}_1, \vec{r}_2, \vec{r}_3, \vec{r}_4) = \Psi(\vec{\rho}) \Psi_{\text{T}}(\vec{r}_1, \vec{r}_2, \vec{r}_3) , \qquad /6/$$

где $\Psi(\vec{\rho})$ - волновая функция виртуального протона в ядре ⁴Не; $\vec{\rho} = \vec{r}_4 - \vec{r}_T$ - расстояние между центром масс тройки нуклонов и взаимодействующим протоном в ядре ⁴Не; $\Psi_T(\vec{r}_1, \vec{r}_2, \vec{r}_3)$ - волновая функция виртуального грития в ядре ⁴Нс.

Подставляя /6/ в /5/, получим:

$$M_{0} = L \int e^{-i\vec{p}_{Y}\vec{r}_{Y}} e^{-i\vec{p}_{T}\vec{r}_{T}} \sum A_{i}\Psi(\vec{\rho}) d^{3}\vec{\rho} d^{3}\vec{r}_{Y} d^{3}\vec{r}_{T} \times \int \Psi^{*}(\vec{r}_{1},\vec{r}_{2},\vec{r}_{3}) \Psi'(\vec{r}_{1},\vec{r}_{2},\vec{r}_{3}) d^{3}\vec{r}_{1}d^{3}\vec{r}_{2}d^{3}\vec{r}_{3}.$$

$$/7/$$

Выполнив интегрирование по координатам нуклонов $\vec{r_1}$, $\vec{r_2}$, $\vec{r_3}$ и обозначив результат интегрирования L_1 , получим:

$$M_{0} = L_{1} \int e^{-i\vec{p}} \vec{Y}^{\vec{r}} \vec{Y}^{-i\vec{p}} \vec{T}^{\vec{r}} \Sigma A_{i} \Psi(\vec{\rho}) d^{3}\vec{\rho} d^{3}\vec{r}_{Y} d^{3}\vec{r}_{T}. /8/$$

Подставим в /8/ выражение /4/ для A_i .Учитывая, что $\vec{r}_K = \vec{r}_Y$ и $\vec{r}_K - \vec{r}_T = \vec{\rho}$, а также закон сохранения импульса

$$\vec{P}_{K} = \vec{P}_{T} + \vec{P}_{Y}$$
, /9/

получим следующее выражение для квадрата матричного элемента:

$$|\mathbf{M}_{0}|^{2} = \mathbf{L}_{2} |\int \Psi(\vec{\rho}) e^{i\vec{p}_{T}\vec{\rho}} d^{3}\vec{\rho} |^{2} \frac{\mathbf{p}_{Y}^{2}}{\mathbf{E}_{Y}(\mathbf{E}_{Y} + \mathbf{M}_{Y})} \cdot /10/$$

Для функции $\Psi(\vec{\rho})$ мы воспользовались выражением из работы /3/ полученным из анализа экспериментальных данных по рассеянию электронов на ядрах ⁴ He^{/4/}. Это выражение имеет вид

$$\Psi(\rho) = \left(\frac{3a^2}{4\pi^2}\right)^{3/4} \left[\frac{(1+1/\gamma^2)^{3/2}}{(1+1/\gamma^2)^{3/2}-D}\right]^{1/2} \exp\left(-\frac{3}{8}a^2\rho^2\right) \times \left[1 - D \exp\left(-\frac{9}{16} - \frac{a^2}{\gamma^2}\rho^2\right)\right]^{1/2}, /11/2$$

где $a^2 = 0.579 \, \varphi M^{-2}$; $\gamma = 0.308$; D = 0.858^{/3/}.

Разложив /11/ в ряд и подставив в /10/, получим окончательное выражение для квадрата матричного элемента в импульсном приближении:

$$|\mathbf{M}_{0}|^{2} = L_{0} \frac{p_{\gamma}^{2}}{E_{\gamma}(E_{\gamma} + \mathbf{M}_{\gamma})} [\exp(\frac{2}{3} - \frac{p_{T}^{2}}{a^{2}}) - \frac{D}{2(1 + \frac{3}{2\gamma^{2}})^{3/2}} \exp(-\frac{2p_{T}^{2}}{3(1 + \frac{3}{2\gamma^{2}})})|^{2}.$$
 /12/

При рождении гиперона на ядре ⁴ Не могут происходить также упругие перерассеяния К⁻ и Y(Y*) на ядре трития.

Вклад упругого рассеяния К⁻ и Y(Y*) на тритии в ядре ⁴Не в матричный элемент рассматриваемого процесса /1/ учтем в приближении Глаубера /5, 6/ Такой подход вполне оправдан, поскольку гиперон вылетает под малыми углами.

Амплитуда процесса /1/, согласно модели Глаубера, запишется в виде /7/

$$M(\vec{q}) = \frac{1}{2\pi^2} \int e^{i\vec{q}\cdot\vec{b}} \Psi_{f}^{*} \{ e^{-i\vec{q}_{1}(\vec{b}-\vec{s}_{N})} f_{c}(\vec{q}_{1}) + \frac{i}{4\pi \vec{p}_{K}} e^{-i\vec{q}_{1}(\vec{b}-\vec{s}_{N})} e^{-i\vec{q}_{2}(\vec{b}-\vec{s}_{T})} [f_{c}(\vec{q}_{1}) f_{YT}(\vec{q}_{2}) + f_{KT}(\vec{q}_{2}) f_{c}(\vec{q}_{1})] \} \Psi_{i} d^{2}\vec{b} d^{2}\vec{q}_{1} d^{2}\vec{q}_{2} d^{3}\vec{r} = /13/$$

Здесь f_c - амплитуда процесса $K^- p \rightarrow Y(Y^*)$, $A_i = e^{i\vec{p}}K^{\vec{r}}K$ f_c ; f_{YT} и f_{KT} - амплитуды упругого $YT_$ и KT -рассеяния; $\vec{q} = \vec{p}_K - \vec{p}_Y$; \vec{s}_N и \vec{s}_T - поперечные составляющие раднус-векторов протона и трития; $d^3 \vec{r}$ произведение переменных, от которых зависят Ψ_f и Ψ_i . После простых преобразований выражение /13/ для M (\vec{q})можно представить в следующем виде:

$$M(\vec{q}) = \int \Psi_{f}^{*} f_{e} \Psi_{i} e^{i\vec{q}\cdot\vec{s}} N d^{3}\vec{r} + \frac{i}{4\pi\vec{p}} \int f_{e}(\vec{q}-\vec{q}_{2}) [f_{\gamma T}(\vec{q}_{2}) + f_{KT}(\vec{q}_{2})] e^{i\vec{q}\cdot\vec{s}} \times e^{-i\vec{q}_{2}(\vec{s}_{N}-\vec{s}_{T})} \Psi_{e}^{*} \Psi_{i} d\vec{r} d\vec{q}_{a} . /14/$$

Если учесть, что волиовые функции ⁴Неи Т быстрее убывают с ростом переданного импульса | q₂ |,чем ампли-

6

• туды f_c , f_{YT} и f_{KT} , то зависимостью последних от q_2 в подынтегральном выражении /14/ можно пренебречь. Принимая во внимание вышесказанное, а также выражение /6/ для второго члена в /14/, получим:

$$\frac{i\pi}{\vec{p}_{K}} f_{e}(\vec{q}) [f_{YT}(0) + f_{KT}(0)] \int \Psi_{T}^{*} \Psi_{T}^{*} d^{3}\vec{r}_{1} d^{3}\vec{r}_{2} d^{3}\vec{r}_{3} \times \int e^{i\vec{p}_{T}\vec{\rho}_{z}} \Psi(0,\vec{\rho}_{z}) d\vec{\rho}_{z}, \qquad /15/$$

где $\vec{\rho}_z$ - продольная составляющая переменной $\vec{\rho}$, направленная вдоль импульса падающего К-мезона $\vec{\rho}_V$.

Окончательно для матричного элемента М процесса /1/ с учетом глауберовских поправок на перерассеяние $K + Y(Y^*)$ на T в ядре ⁴Не имеем:

$$M = f_{e}L_{1}\int e^{i\vec{p}_{T}\vec{\rho}} \Psi(\vec{p}) d^{3}\vec{\rho} \{1 + \frac{i}{4\pi\vec{p}_{K}}[f_{YT}(0) + f_{KT}(0)]s_{1}\},$$

$$/16/$$

$$L_{1} = L_{1}\int \Psi_{T}^{*}(\vec{r}_{1},\vec{r}_{2},\vec{r}_{3}) \Psi'(\vec{r}_{1},\vec{r}_{2},\vec{r}_{3}) d^{3}\vec{r}_{1} d^{3}\vec{r}_{2} d^{3}\vec{r}_{3}.$$

Обозначая член, описывающий однократное рассеяние через M_0 , квадрат матричного элемента /16/ запишем в виде

$$|\mathbf{M}|^{2} = |\mathbf{M}_{0}|^{2} \{1 - \frac{1}{2} (\sigma_{\mathbf{YT}}^{\text{tot}} + \sigma_{\mathbf{KT}}^{\text{tot}}) \mathbf{s}_{1} + -\frac{\pi^{2}}{\mathbf{p}_{\mathbf{K}}^{2}} \times |\mathbf{f}_{\mathbf{YT}}(0) + \mathbf{f}_{\mathbf{KT}}(0)|^{2} \mathbf{s}_{1}^{2} \},$$

$$\mathbf{s}_{1} = \frac{\int \Psi(0, \vec{\rho_{z}}) \mathbf{e}^{i\vec{p}_{\mathbf{T}}\vec{\rho_{z}}} d\vec{\rho_{z}}}{\int \Psi(\vec{\rho_{z}}) \mathbf{e}^{i\vec{p}_{\mathbf{T}}\vec{\rho_{z}}} d^{3}\vec{\rho_{z}}}.$$
/17/

Если для $\Psi(\vec{\rho})$ взять выражение /11/, указанное в тексте, и вычислить s_1 , то оказывается, что s_1 слабо зависит от переданного импульса \vec{q} , особенно при малых \vec{q} .

При импульсе налетающего К⁻-мезона р_K = = 0,5 ГэВ/с глауберовская поправка составляет $\sim 15\%$, а при р_K = 10 ГэВ/с не превышает 2-3%.

Из выражения /17/ видно, что поскольку s₁ слабо зависит от \vec{q} , глауберовская поправка, когда Y(Y*) рассеивается под малыми углами, не зависит от переданного импульса \vec{q} , т.е. не влияет на угловые распределения трития и гиперона.

В заключение благодарим Ю.А.Будагова и Р.А.Эрамжяна за обсуждения и ценные советы.

Литература

- 1. Будагов Ю.А. и др. Сообщение ОИЯИ, Р1-10396, Дубна, 1977.
- 2. Копалейшвили Т.И., Ткебучава Ф.Г. Препринт ОИЯИ, P4-3666, Дубна, 1968.
- 3. Копелиович Б.З., Поташникова И.К. ЯФ, 1971, 5, с. 1032.
- 4. Kerman A.K., Kissinger L.S. Phys. Rev., 1969, 180, p. 1483.
- 5. Glauber R.J., Franco V. Phys.Rev., 1966, 142, p.1195.
- 6. Глаубер Р. УФН, 1971, 103, с. 641.
- 7. Лыкасов Г.И., Тарасов А.В. ЯФ, 1974, 19, с. 825.

Рукопись поступила в издательский отдел 28 января 1977 года.

8

где