

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

1606 2.77

25/4-27

P1 - 10324

Н.С.Ангелов, С.Бацкович, В.Г.Гришин, Ю.Надь, М.Сулейманов

О МНОЖЕСТВЕННОСТИ ВТОРИЧНЫХ ЧАСТИЦ, ОБРАЗОВАННЫХ ПРИ ВЗАИМОДЕЙСТВИИ 7 - МЕЗОНОВ С Р = 40 ГЭВ/С С НЕСКОЛЬКИМИ НУКЛОНАМИ ЯДРА УГЛЕРОДА

P1 - 10324

Н.С.Ангелов, С.Бацкович, В.Г.Гришин, Ю.Надь, М.Сулейманов²

О МНОЖЕСТВЕННОСТИ ВТОРИЧНЫХ ЧАСТИЦ, ОБРАЗОВАННЫХ ПРИ ВЗАИМОДЕЙСТВИИ 77⁻ - МЕЗОНОВ С Р = 40 ГЭВ/С С НЕСКОЛЬКИМИ НУКЛОНАМИ ЯДРА УГЛЕРОДА

Направлено в ЯФ

Институт физики, Белград, СФРЮ. 2 Институт физики АН АзССР, Баку. Ангелов Н.С. и др.

О множественности вторичных частиц, образованных при взаимодействиях π⁻ -мезонов с р = 40 ГэВ/с с несколькими нуклонами ядра углерода

Получены распределения событий по множественности вторичных заряженных пионов, образованных во взаимодействиях *π*-мезонов с несколькими нуклонами ядра углерода при р = 40 ГэВ/с. Приводятся данные по средним значениям множественности *π*[±]-мезонов для *π*⁻(**m**N)--взаимодействий, где *m* = 2,3,4. Проведено сравнение полученных резульгатов с расчетами по каскадной модели и модели Глаубера. Получено, что среднее число взаимодействий $\bar{\nu} \ge 1,50\pm0,03$.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1976

Angelov N.S. et al.

P1 - 10324

Multiplicity of Secondary Particles Produced in 40 GeV/c *n*⁻-Meson Interactions with Several Nucleons of **C** Nucleus

Multiplicity distributions of secondary charged pions generated by 40 GeV/c π^- mesons on several nucleons of carbon nucleus are presented. Average values of π^{\pm} meson multiplicities at $\pi^-(mN_p)$ are obtained for m = 2,3,4. Experimental results are compared with the cascade and Glauber models. Average number of interactions was found to be $<\nu>\geq 1.50\pm 0.03$.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research

Dubna 1976

О 1976 Объединенный институт ядерных исследований Дубна

§1. Введение

Изучение взаимодействий адронов с ядрами в принципе позволяет получить новую информацию о динамике сильных взаимодействий. Действительно, ядра представляют собой мишени из нуклонов, распределенных в пространстве с характерным расстоянием 10^{-13} см, поэтому взаимодействия с ними могут служить индикатором структуры сильных взаимодействий в пространственновременном интервале 10^{-13} см - 10^{23} с. Получить эту информацию из данных по адрон-адронным взаимодействиям прямым путем приципиально невозможно.

С этой точки зрения исследование адрон-ядерных взаимодействий особенно важно при высоких энергиях, когда большое число вторичных частиц приводит к тому, что интерпретация механизма их образования по данным, полученным в адрон-адронных взаимодействиях, становится практически невозможной /проблема образования кластеров, резонансов и т.п./.

В настоящее время имеется уже много экспериментов по исследованию адрон-ядерных взаимодействий на ускорителях при $E \leq 400 \ \Gamma \Im B^{/1-3/}$. Однако полученные данные в основном относятся к общим характеристикам этих взаимодействий. Извлечение из них данных об адрон-адрониых столкновениях существенно связано с модельными представлениями /2,3/.

В связи с этим особый интерес приобретает вопрос об экспериментальном выделении таких взаимодействий адронов с ядрами, в которых приняли участие несколько нуклонов ядра /многонуклонные взаимодействия/. Одним из способов такого выделения является отбор событий по кинематике, в которой практически невозможно взаимодействие адронов только с одним нуклоном ядра/4/. В этом случае непосредственно изучается взаимодействие адронов с несколькими нуклонами и свойства ядерной материи.

В настоящей работе предпринята попытка получить данные о множественности вторичных частиц, образующихся при взаимодействии π^- -мезонов с $p = 4O \ \Gamma \mathfrak{I} \mathfrak{B}/c$ с несколькими нуклонами ядра углерода (mN, m ≥ 2), на основе данных по множественности вторичных частиц в $\pi^- p_-$, $\pi^- n_- \mu \pi^{-12}C$ -соударениях $\mathfrak{I}^{5-7/2}$.

§2. Множественность вторичных частиц в пион-нуклонных (π[−] N) и в многонуклонных взаимодействиях при P = 40 ГэВ/с

Данные по множественности вторичных частиц в $\pi^- p - \mu \pi^- n$ - взаимодействиях получены с помощью 2-метровой пропановой пузырьковой камеры (C₃H₈), облученной π^- -мезонами с P = 40 ГэВ/с на серпуховском ускорителе^{/5/}.

Сравнение этих данных с результатами, полученными с помощью водородных камер, показывает, что распределения по множественности вторичных заряженных частиц и их одночастичные инклюзивные спектры в пределах ошибок согласуются между собой $^{/5/}$. Таким образом, мы будем исходить из того, что нам хорошо известны распределения по множественности вторичных заряженных частиц в π^- р- и в π^- п -взаимодействиях при P= 40 $\Gamma \Im B/c$.

Отметим также, что в 44% случаев $\pi^- p$ -взаимодействий и во всех $\pi^- n$ - взаимодействиях спектры по множественности вторичных частиц были определены для соударений с нуклонами, имеющими ферми-импульс $\sqrt{5}$. Хорошее согласие этих данных с данными, полученными на водородных камерах, показывает, что влияние внутриядерного движения нуклонов на множественность вто-

.*

ричных частиц несущественно ^{*}. Для нахождения распределений по множественности в π N -взаимодействиях мы предполагаем, что вероятности взаимодействия пиона с протоном или нейтроном ядра углерода одинаковы /однонуклонные взаимодействия/, поэтому

$$n_i(\pi^- N) = \frac{1}{2} [n_i(\pi^- p) + n_i(\pi^- n)], /1/$$

где n, - множественности вторичных частиц данного типа (i).

В табл. 1 приведены средние значения чисел π^{\pm} мезонов и протонов в $\pi^- p_-$, $\pi^- n_- u \pi^- N$ -взаимодействиях при P = 40 $\Gamma \Im B/c^{-/5/2}$. Здесь следует отметить, что в пропановых пузырьковых камерах протоны визуально идентифицируются при P \lesssim 700 $M \Im B/c^{-5/2}$. Все положительно заряженные частицы с P $\Im 700 M \Im B/c$ считаются π^+ -мезонами. Примесь протонов с P $\Im 700 M \Im B/c$ среди π^+ -мезонов составляет - 15% в $\pi^- p$ -взаимодействиях, примесь K $^{\pm}$ -мезонов среди π^- -мезонов 4%.

Таслица I

	<u>F</u> p	Г-n	5. -И
<n<sub>1></n<sub>	5,43 <u>+</u> 0,04	4,98+0,06	5,21 <u>+</u> 0,03
<n_></n_>	2,81 <u>+</u> 0,02	3,04 <u>+</u> 0,03	2,92 <u>+</u> 0,02
<n+></n+>	2,62 <u>+</u> 0,02	I,94 <u>+</u> 0,03	2,28 <u>+</u> 0,02
<n<sub>p></n<sub>	0,18 <u>+</u> 0,01	0,092 <u>+</u> 0,007	0,136 <u>+</u> 0,006

* Влияние внутриядерного движения нуклонов и примеси взаимодействий пионов с несколькими нуклонами ядра углерода на полученные данные для л ¬р – и л ¬ п взаимодействий, по нашим оценкам, составляет ≤ 2% от средних значений множественности заряженных частиц /5 /. Для определения доли однонуклонных взаимодействий a_N среди π^{-12} С -взаимодействий мы рассмотрели три варианта отбора π^{-1} N -взаимодействий.

В первом варианте к *п* - N - взаимодействиям относились все события, удовлетворяющие следующим критериям:

1/ В π^{-12} С -событиях сумма зарядов вторичных частиц равна $0(\pi^- p)$ или $-1(\pi^- n)$.

2/ Число наблюденных протонов N_р≤l, они могут иметь любое направление вылета /ферми-движение/.

Во втором варианте использовались эти же условия, но из рассмотрения исключались протоны с Р $\leq 200 \ M \Rightarrow B/c$, в третьем - с Р $\leq 300 \ M \Rightarrow B/c$ /испарительные протоны/ /8,9/.

В табл. 2 приведены средние значения < n i > и доля $\pi^- N$ взаимодействий среди $\pi^{-12}C$ -взаимодействий для этих вариантов отбора. Как видно из табл. 2, исключение из рассмотрения протонов с P \leq 300 M эB/с приводит к значению < n \pm > = 5,38 \pm 0,03, которое существенно отличается от ожидаемого - 5,21 \pm 0,03. В связи с этим мы полагали, что доля однонуклонных взаимодействий составляет /59,9 \pm 1,5/% /вариант 2/ *

Таблина 2

	ℋ Ъ(11)	TH(2)	ГN(3)	П-Н	
<n±></n±>	5,25 <u>+</u> 0,03	5,27 <u>+</u> 0,03	5,38 <u>+</u> 0,03	5,2I <u>+</u> 0,03	
<n_></n_>	2,92 <u>+</u> 0,02	2,94+0,02	2,99+0,02	2,92+0,02	
<n+></n+>	2,32 <u>+</u> 0,02	2,33±0,02	2,39+0,02	2,28 <u>+</u> 0,02	
Доля Я-Н взаимо- дейст.	_(55,8 <u>+</u> I,4)%	(59,9 <u>+</u> 1,5)%	(66,9 <u>+</u> 1,6)%		

* Таким образом, к однонуклонным взаимодействиям мы относим такие события, когда имеется возбуждение ядра углерода с последующим испусканием испарительных протонов. Интересно также отметить, что средняя множественность отрицательных пионов < n_> слабо зависит от условий отбора однонуклонных взаимодействий. После определения доли одионуклонных взаимодействий из соотношения

$$n_i (\pi^{-12}C) = a_N n_i (\pi^- N) + (1 - a_N) n_i (\pi^- m N) /2/$$

можно найти распределения событий по множественности в многонуклонных взаимодействиях ($m \ge 2$). На *рис. 1-3* приведены вероятности рождения π^{\pm} -мезонов в π^{-12} С-,

Рис. 1. Распределения событий по множественности вторичных заряженных пионов $(n \pm)$ для $\pi^{-12}C_{-}$, $\pi^{-}N_{-}$ и π^{-} (mN) - взаимодействий при $P = 40 \Gamma_{\ni}B/c$. Кривые проведены от руки.

6

7

Рис. 2. Распределения событий по множественности π^- -мезонов (п_) для π^{-12} С-, π^- N – и π^- (mN)-взаимодей-ствий при Р = 40 ГэВ/с. Кривые проведены от руки.

 π^{-} N – и в π^{-} (mN) - взаимодействиях при P= 40 ГэВ/с. В табл. З приведены соответствующие значения $\leq n_i > .$ При определении средних значений $\leq n_i > для \pi^{\circ}$ -мезонов и нейтральных странных частиц значение α_N полагалось равным 59,9% от полученного для пионов /10/.

Как видно из рисунков и табл. 3, средние множественности вторичных пионов в многонуклонных взаимодействнях примерно в 1,5 раза больше, чем в однонуклонных. Большее значение $< n_{+} > для \pi^{-}$ (mN)-взаимодействий, чем $< n_{-} >$, вероятно, связано с наличием большого положительного заряда ядра углерода.

T-"20	Ж-Н	F (mN)	<n>****</n>	<127 ** (mN)
10 > 0 00,0 00			<,	<u> </u>
<11+> 0,32+0,00	5,21 <u>+</u> 0,03	7 ,98<u>+</u>0, I0	1,21 <u>+</u> 0,01	I,53 <u>+</u> 0,02
<n_>3,24<u>+</u>0,03</n_>	2,92 <u>+</u> 0,02	3,72 <u>+</u> 0,05	I,II <u>+</u> 0,0I	I,27 <u>+</u> 0,02
< n+> 3,08±0,04	2,29 <u>+</u> 0,02	4,27 <u>+</u> 0,06	I,35 <u>+</u> 0,02	I,87 <u>+</u> 0,03
<n<sub>x>2,91<u>+</u>0,04</n<sub>	2,47 <u>+</u> 0,06	3,57 <u>+</u> 0,12	I,I8±0,03	I,45 <u>+</u> 0,06
<n<sub>xx>0,32±0,03</n<sub>	0,27+0,04	0 ,39<u>+</u>0, 09	I,I9+0,2I	I.44+0.39

Таблипа З

Рис. 3. Распределения событий по множественности π^+ -мезонов $\binom{n_+}{2}$ для $\pi^{-12}C_-$, π^-N_- и $\pi^-(mN)$ -взаимодействий при P = 40 ГэВ/с. Кривые проведены от руки.

§3. О множественности вторичных частиц в многонуклонных взаимодействиях π[−](mN)

Во втором параграфе настоящей работы были получены данные о множественности пионов для π^- (mN)взаимодействий, где $m \ge 2$. Представляет большой интерес получить данные о n_i для таких многонуклонных взаимодействий, когда m = 2,3,4,5 и т.д. Для выделения этих взаимодействий мы использовали величину

$$Q = n_{+} - n_{-}$$
, /3/

которая равна разности зарядов положительных и отрицательных пионов. Идентифицируемые протоны с $P \leq 5700 \ M \Rightarrow B/c$ исключаются из рассмотрения из-за неоднозначной интерпретации их образования *.

Значение величины Q для *п* р- и *п* п - взаимодействий

$$\pi^{-} + p \rightarrow p + X^{-} , \qquad /4/$$

$$\pi^- + p \rightarrow n + X^\circ, \qquad (5/$$

$$\pi^- + n \rightarrow p + X^-$$
, /6/

 $\pi^{-} + n \rightarrow n + X^{-}$ (7/

соответственно равно -1,0; -2; -1. Здесь X означает, "все, что угодно". Таким образом, в однонуклонных взаимодействиях значения Q меняются от -2 до О. Поэтому, если, например, Q = 1, то число протонов, которые участвовали во взаимодействиях, $m_p \ge 2.3$ десь следует подчеркнуть, что в этом случае неупругие взаимодействия были такого типа, что протоны носле взаимодействия имели или $P \ge 700 \ M_{\ni}B/c$, или $p \to \pi^{+*}$. С другой стороны, если $Q \neq -3$, то в этом случае во многонуклонном взаимодействии участвовало $m_n \ge 2$ протонов. Аналогично для Q = 2 получаем $m_p \ge 3$ и т.д. Таким образом, классифицируя зарегистрированные π^{-12} С события по Q, можно выделять многонуклонные взаимодействия с большим числом нуклонов.

В табл. 4 и на рис. 4 приведены значения $< n_i > в$ зависимости от величины Q. Из этих данных видно, что с увеличением Q быстро растет число положительных пионов, чего и следовало ожидать по условиям отбора. Интересно отметить, что при Q = -3, -4, когда во взаимодействиях доминируют процессы с участием

Таодица 4						
Доля от 7-120 событий (%)	ଦ	<n_></n_>	<n<sub>+></n<sub>	<n<sub>t></n<sub>	<ru<sub>p></ru<sub>	
0 ,40<u>+</u>0,1 2	≼ -3	6,50 <u>+</u> 0,44	3 ,23<u>+</u>0,4 4	9,73 <u>+</u> 0,88	2,09±0,33	
4,38 <u>+</u> 0,40	-2	3,86 <u>+</u> 0,12	1,86±0,12	5,72 <u>+</u> 0,24	I,73 <u>+</u> 0,09	
36,30 <u>+</u> 1,15	- I	3,15 <u>+</u> 0,04	2,15<u>+</u>0,04	5 ,30<u>+</u>0, 08	0,69 <u>+</u> 0,05	
39,I3 <u>+</u> I,I9	0	3,0 <u>8+</u> 0,04	3,08 <u>+</u> 0,04	6,16 <u>+</u> 0,08	0,65 <u>+</u> 0,03	
13,00 <u>+</u> 0,69	, I	3 ,46<u>+</u>0,0 8	4,46± 0,08	7 ,92<u>+</u>0,1 6	I,04 <u>+</u> 0,06	
4,49 <u>+</u> 0,40	2	3,77 <u>+</u> 0,16	5,77 <u>+</u> 0,I6	9,5 4+ 0,32	I,39 <u>+</u> 0,II	
I,63 <u>+</u> 0,24	3	3,43 <u>+</u> 0,25	6 ,43<u>+</u>0,2 5	9 , 86 <u>+</u> 0,50	1,20 <u>+</u> 0,17	
0,65 <u>+</u> 0,I5	≥4	3,89 <u>+</u> 0,33	8,II <u>+</u> 0,33	12,00 <u>+</u> 0,66	0,79 <u>+</u> 0,22	

* Среди событий с $Q \ge 1$ имеются также и такие, которые связаны с неупругой перезарядкой вторичного π -мезона на протоне ядра углерода (π -р n m π °). Однако их доля, по нашим оценкам, невелика / $\leq 10\%$ /.

^{*} В дальнейшем можно использовать имеющуюся информацию о вторичных протонах с импульсом Р $\geq 2/200-300/$ *МэВ/с*. Такое ограничение связано с тем, что большая часть протонов с Р $\leq 200-300/$ *МэВ/с* связана с процессом испарения (8,9)/2.

Рис. 4. Зависимость средних множественностей пионов от Q. Пунктиром даны значения <n> для π^- (mN)-взаимодействий. Кривые проведены от руки.

двух или трех нейтронов типа п → р π⁻, начинает расти и среднее число отрицательных пионов.

На рис. 5-7 приведены распределения событий по множественности вторичных пионов в зависимости от величины Q. На рис. 8 даны значения $< n_i > для различ-$ ных значений Q в интервале O-5. Здесь же приведены оценки $< n_i >$ по каскадной модели и модели Глаубера/3/. При оценке $< n_i > n_0$ каскадной модели предполагалось, что энергия вторичных частиц равна E / < n >,где E энергия частицы до взаимодействия и < n > среднее число вторичных частиц. При вычислении $< n_i >$ по модели Глаубера для взаимодействий с протонами полагалось, что энергия первичной частицы делится между этими взаимодействиями поровну (E / m); взаимодействия вторичных частиц не учитывались /3/. Как видно из рис. 8,

Рис. 5. Распределения событий по множественности вторичных заряженных пионов $(n \pm)$ в зависимости от Qдля $\pi^{-12}C$ - взаимодействий. Заштрихованные области гистограмм соответствуют π^- (mN) - взаимодействиям.

Рис. 6. Распределения событий по множественности π^- -мезонов (n _) в зависимости от Q для π^- C -взаимодействий. Заштрихованные области гистограмм соответствуют $\pi^-(mN)$ -взаимодействиям.

модель Глаубера качественно описывает зависимость $<n_i>$ от Q^* .

Используя значения вероятностей взаимодействия π^- мезонов с m-нуклонами / maбл. 4/, можно получить, что среднее число взаимодействий< $\nu > \ge 1,50\pm0,03$. Для гауссовского распределения плотности нуклонов в ядре углерода< $\nu > = 1,5$ при $\sigma(\pi^-N) = 22 \text{ мб}^{-/8/2}$.

Рис. 7. Распределения событий по множественности π^+ -мезонов (п₊) в зависимости от Q для π^{-12} С взаимодействий. Заштрихованные области гистограмм соответствуют $\pi^-(mN)$ -взаимодействиям.

Рис. 8. Зависимость < n > от Q. Пунктир - каскадная модель, сплошные кривые - модель Глаубера. Кривые проведены от руки.

Мы признательны участникам Сотрудничества по исследованию процессов множественного рождения частиц в $\pi^- N$ -взаимодействиях при $P = 40 \Gamma \beta B/c$ за полезные обсуждения.

Литература

- 1. Гуламов К.Г., Чернов Г.М., Юлдашев Б.С. IV Международный семинар по проблемам физики высоких энергий. Множественные процессы. ОИЯИ, Д1,2-9224, Дубна, 1975, стр. 233.
- 2. Nikolaev N.N., I.T.P., Particle-Nucleus Interactions at High Energies. Chernogolovka, 1976.
- 3. Шабельский Ю.М. ЛИЯФ, №248, Ленинград, 1976.

^{*}В расчетах предполагалось, что число протонов, участвующих во взаимодействиях, m_p = Q+1.Значения < n_i > брались из экспериментальных данных.

- 4. Балдин А.М. ОИЯИ, Р7-5808, Дубна, 1971;
- ОИЯИ, Д1,2-7411, Дубна, 1973, стр. 463. 5. Абдурахимов А.У. и др. ОИЯИ, Р1-6326, Дубна, 1972; Ангелов Н.С. и др. ОИЯИ, Р1-9785, Дубна, 1976; Назаргулов Р.М. ОИЯИ, РІ-10218, Дубна, 1976; Ангелов Н.С. и др. ОИЯИ, РІ-9792, Дубна, 1976.
- 7. Ангелов Н.С. и др. ОИЯИ, РІ-9978, Дубна, 1976.
- 8. Ангелов Н.С. и др. ЯФ, 22 /5/, 1026, 1975. 9. Азимов С.А. и др. ЯФ, 22 /6/, 1168, 1975. 10. Ангелов Н.С. и др. ЯФ, 24/4/, 732, 1976.

Рукопись поступила в издательский отдел 24 декабря 1976 года.