ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> 28/2-74 P1 - 10222

788/2-77

B-191

В.А.Васильев, В.И.Петрухин, В.Е.Рисин, В.М.Суворов, Д.Хорват

О **Z**-ЗАВИСИМОСТИ ВЕРОЯТНОСТИ АТОМНОГО ЗАХВАТА МЕЗОНОВ В ВЕЩЕСТВЕ

P1 - 10222

В.А.Васильев, В.И.Петрухин, В.Е.Рисин,* В.М.Суворов, Д.Хорват

О **Z**-ЗАВИСИМОСТИ ВЕРОЯТНОСТИ АТОМНОГО ЗАХВАТА МЕЗОНОВ В ВЕЩЕСТВЕ

Направлено в "Nuclear Physics"

* Воронежский государственный университет.

он супанный ванутну мартену технология БИБЛИОТЕКА

Васильев В.А. и др.

P1 - 10222

О Z-зависимости вероятности атомного захната мезонов в веществе

Проведен анализ имеющихся данных по атомному захвату мезонов. Показано, что полученная ранее в газовых смесях H₂+Z Z^{1/3}-зависимость атомного захвата мезонов удовлетворительно согласуется с большей частью экспериментальных данных.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ,

Препринт Объединенного института ядерных исследований Дубна 1976

Vasilyev, V.A. et al.

P1 - 10222

On the Z-Dependence of the Atomic Capture Rate of Mesons in Matter

All experimental data available on the atomic capture of negative muons and pions are analyzed using an empirical relation for the capture rate to the atomic number Z: $A(Z/H) = (7.1 \pm 0.1) \times (Z^{1/3} - 1)$ obtained for the case of the atomic capture of pions in mixtures $H_2 + Z$. For comparison the Z-law and the formula $A(Z) \sim Z^{1.3} \ln(0.57 Z)$ given by H.Daniel have been also used. It is shown that the Z-law, as a rule, does not hold. Our relation approximates the experimental data better than that proposed by H.Daniel.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research

Dubna 1976

Обычно при описании атомного захвата мезонов на уровне грубого приближения используют Z-закон /I/, согласно которому вероятности атомного захвата мезонов пропорциональны зарядам ядер атомов Z (полному числу электронов в атоме). И хотя во многих работах давно было установлено существенное расхождение результатов эксперимента с предсказаниями Z-закона, из-за отсутствия какого-либо альтернативного закона атомного захвата Zзакон используется при анализе экспериментадьных данных до настоящего времени.

Недавно была предложена $^{/2/}$ новая формула для зависимости вероятности атомного захвата мезонов от атомного номера Z, согласно которой отношение вероятностей захвата атомами Z_4 и Z_2 равно: $A(Z_4) = Z_3^{1/2} ln(0.57Z_4)$

$$A(\frac{2}{Z_{2}}) = \frac{1}{Z_{2}^{\frac{1}{3}} \ln (0.57Z_{2})}.$$
 (I)

Формула (I) была получена на основе классической моцели, прецложенной в работе Ферми и Теллера/I/.

В работе^{/3/} экспериментально показано, что атомный захват IГ-мезонов в газовых смесях $H_{2^+} Z$, где Z - благородные газы и азот, хорошо описывается $Z^{I/3}$ -зависимостью. Отношение вероятностей захвата пионов атомами Z и водорода равно $A(Z/H) = (7, I \pm 0, I) \cdot (Z^{I/3}-I).$ (2)

🖸 1976 Объединенный инспипуп ядерных исследований Дубна

В общем случае цля бинарных систем

 $A(\frac{z_{1}}{z_{2}}) = \frac{z_{1}^{3}-1}{z_{2}^{3}-1}.$

(3)

7^{1/3}-зависимость, по-видимому, отражает неэквивалентность электронов различных атомных оболочек по отношению к замещению их заряженными мезонами при атомном захвате. Эта неэквивалентность может быть связана, например, с экранированием электронов внутренних атомных оболочек внешними электронами. Полученное на опыте /3/ значение вероятности захвата А (Z/H) пиона атомами Z в смеси $H_{2}+Z$, нормированное на вероятность атомного захвата воцороцом, близко по величине к числу электронов П во внешней оболочке атома Z :

Атом	He	Ne	Ar	Kr	Xe
A(Z/H)/n	0,92 <u>+</u> 0,05	0,96 <u>+</u> 0,04	1,45 <u>+</u> 0,05	0,91 <u>+</u> 0,03	I,13 <u>+</u> 0,04

В настоящей работе мы предприняли попытку описать с помощью формул (2)-(3) захват мезонов атомами, входящими в состав химических соединений и смесей, в сравнении с Z-законом и зависимостью (I). Все известные нам данные по атомному захвату мезонов в бинарных соединениях и смесях, а также водородсодержащих соединениях типа $Z_m H_n X_\kappa$ представлены в таблицах I - УП. Следует заметить, что формула (I) не описывает захват в системах, содержащих водород.

В качестве критерия согласия между экспериментом и рассматриваемыми зависимостями использовалась величина χ^2 . Однако, поскольку имеющиеся на сегодня экспериментальные данные получены в разное время, с помощью различных метоцик и разными авторами и как показывает анализ, не свободны от значительных систематических ошибок * , получаемые нами значения χ^{z} часто настолько

велики. ЧТО исключают возможность использования стандартного статистического анализа. По этой причине в каждом конкретном случае мы будем считать предпочтительной ту закономерность, для которой Х имеет наименьшую величину.

Для удобства анализа все именциеся данные струппированы в семи таблицах.

В таблице I приведены данные по атомному захвату мезонов в смесях газов, содержащих водород, и в газовых и механических смесях без водорода. В обоих случаях, как это видно из таблицы, формулы (2)-(3) хорошо описывают экспериментальные данные.

Панные по атомному захвату мюонов в окислах привецены на рис. І и в таблице П. Как видно из рисунка, рост зависимости относительной вероятности атомного захвата А(Z/O) с увеличением Z лучше описывается формулой (3), чем Z-законом или зависимостью (I). Предсказания Z-закона в большинстве случаев резко расходятся с экспериментом. Что касается зависимости (I). то она занимает среднее положение между Z-законом и зависимостью (3) и лучше согласуется с экспериментом, чем Z-закон, но цает вероятности А(Z/0) в среднем выше их экспериментальных значений (см.рис. I). Суммарное значение × иля этой зависимости примерно впесе больше значения Х пля формулы (3).

Значительные отклонения от предсказаний формулы (3) наблодаются для элементов II и Ш периодов, металлов с Z > 80(P4, Bi) и некоторых окислов IУ и У периодов. Возможно, что в последних пвух случаях расховлению не следует придавать большого значения, поскольку последущая проверка некоторых из более ранних измерений пала результаты, более близкие к кривой (3) (см. рисунок)

^{*)}укажем цля примера несколько противоречивых результатов: TiO₂ и Gr₂O₃ (табл.П), PbF₂ и LiJ (табл.ПУ).

или попадающие на нее ($T_U O_2, UO, G_2 O_2$). Что касается окислов элементов П и Ш периодов, то экспериментальные значения вероятностей А(7/0) систематически меньше значений даваемых всеми тремя зависимостями, то есть в этих окислах атомный захват на кислород доминирует. Наблюдаемый в этих соединениях эффект может носить объектиеный характер, поскольку в отличие от более тяжелых элементов в атомах элементов П и Ш периодов электроны внешней оболочки, перестройка которой происходит при образовании химической связи Z - 0, составляют заметную долю всех электронов атома и могут играть значительную роль в атомном захвате мезонов. Влияние химической связи на атомный захват, по-видимому, имеет место также в соединениях с различной степенью окисления металла (см., например, M_q , V, Sb, Ba). Однако это влияние незначительно и не проявляется систематически. Следует заметить, что распределение экспериментальных точек относительно кривой (3), как нам кажется, делает не столь очевидной наблюдавшуюся ранее/6/ периодичность в атомном захвате мезонов.

в таблице Ш представлены данные по атомному захвату мюонов в галогенозамещенных соединениях типа $\mathbb{Z}_m H_n X_{\kappa}$. Отношение вероятностей захвата мезонов группой $\mathbb{Z}_m H_n$ и остатком X_{κ} молекулы рассчитывалось по формуле

$$A(\overline{Z}_{m}H_{n}/\chi_{\kappa}) = \frac{1 + A(\overline{Z}_{H})m_{n}}{A(\overline{X}_{H})K_{n}} , \qquad (4)$$

гце A(Z/H) и A(X/H) даются формулой (2). Как можно видеть из таблицы III, значения вероятностей захвата A($Z_m H_n / \chi_{\kappa}$) предсказываются формулой (4) значительно лучше, чем Z-законом. Слецует отметить, что при использовании зависимости (4) основной вклад в χ^2 вносится тремя экспериментальными точками для соединений $C_{\rm g}H_5Br$, NH_4Cl и NH_4Br .

Большое число работ посвящено изучению атомного захвата мезонов в галогеницах металлов и углерода (см.табл. IУ). Все имехщиеся данные нахоцятся в явном противоречии с Z-законом. Формула (I) несколько лучше описывает экспериментальные данные, чем формула (3). Однако следует отметить, что ~ 50% различия в χ^2 между предсказаниями зависимостей (I) и (3) обязано вкладу от значения $A(Li / I)^{/I8/}$, которое находится в противоречии с цеумя другими измерениями $A(Li / I)^{/I6, I9/}$.

Данные по атомному захвату в соецинениях серы и ее аналогов представлены в таблице У. Все три зависимости примерно одинаково описывают результаты эксперимента. Мы не учитывали вклад в χ^2 от GaS, поскольку он примерно равен суммарному значенив χ^2 от всех других соединений, приведенных в таблице для зависимостей (I) и (3). Заметим, что большие вклады в χ^2 для формул (I) и (3) дают одни и те же соединения. То же самое относится и к сплавам металлов, вероятности атомного захвата в которых даны в таблице УІ. После исключения из вклада, обусловленного вероятностью $A(Cu/A\ell)^{/II/}$ (он намного превышает суммарный вклад всех остальных значений для трех гипотез), величины \int^2 для всех трех зависимостей получаются примерно одинаковыми.

Экспериментальные вероятности атомного захвата мюонов в основаниях, представленные в таблице УП, показывают систематическое отклонение от предсказаний Z-закона и зависимости (3). Преимущественный захват мезонов групцами ОН^{/8,12/} может

ж) Приведенные в таблице ІУ значения относительных вероятностей атомного захвата в иодидах металлов/19/получены пормировкой по величине Λ(K/I)/7/.

быть обусловлен химическими эффектами. Ситуация с основаниями е настоящее время запутана, поскольку захват π -мезонов водородом ОН в основаниях M(OH) q подавлен в Q раз^{20/}. Ввиду этого значения \int_{0}^{2} таблицы УП не учитывались при выборе наилучшей гипотезы.

В таблице УШ приведены значения χ^2 и χ^2_{ν} (нормированное на число степеней свободы χ^2) для данных, представленных в таблицах I-УI. Судя по значению χ^2_{ν} , Z-закон описывает вероятность атомного захвата мезонов заметно хуже зависимостей (I) и (3). Для групп I-Ш формула (3), а для остальных формула (I) дают лучшее согласие с экспериментом, в целом лучшее описание экспериментальных данных дает эмпирическая формула (3) – см. последнюю строку таблицы УШ.

В заключение отметим еще раз противоречивость, мозаичность и невысокую точность имеющихся экспериментальных данных по атомному захвату мезонов. Другая трудность при поисках адекватного закона атомного захвата мезонов связана с влиянием на вероят – ность атомного захвата ряда эффектов, таких, как: I) влияние особенностей химических связей, например, уменьшение вероятности захвата π -мезонов группой СН₃ в молекулах СН₃ × в зависимости от индукционной константы заместителя × $^{/2I/}$; 2) влияние взаимного экранирования атомов в молекулах, например, уменьшение вероятности захвата μ -мезонов атомами серы в SF₆ $^{/22/}$; 3) влияние твердотельных эффектов, например, обобществления электронов в металлах и сплавах. Тем не менее провеценный нами анализ показывает, что обе $Z^{I/3}$ -зависимости цают значительно более хорошее описание результатов опыта, чем Z -закон, и могут использоваться при расчетах вероятностей атомного захвата мезонов. Предложенная нами формула (3) несколько лучше описывает результаты опыта по сравнению с формулой (I) и применима к любым соединениям, тогда как формула (I) неприменима к водородсодержащим соединениям.

Относительные вероятности атомного захвата мезонов в окислах. Сплошные кривые проведены согласно Z -закону, зависимостям (1) и (3).

Ταδλυцα ΙΙ

+	5		
10	0	110	- T
'u	Unu	цα	-

mZ+nZ′	NKG	A(Z / Z')	Z – за	Z – закон		формула (1)		формулы (2) ц (3)	
	CCÞ	CCP	exp	A(Z /Z')	χ²	A(Z / Z')	χ²	A(Z /Z')	χ²
He/H ₂	3	1,84 # 0,09	2,00	3,2			1,85	0.0	
Ne/H ₂	3	7,65 # 0,35	10,00	45,1			8,20	2.4	
Ar/H _z	3	11,60 # 0,40	18,00	256,0			11,51	0,1	
Kr/H ₂	3	16,40 # 0,60	36,00	1067			16,34	0,0	
Xe/H _z	3	20,40 \$ 0,70	54,00	2304			19,74	0,9	
N ₂ /H ₂	3	6,60 # 0,30	7,00	1,8			6,48	0,2	
N ₂ /He	4	3,53 # 0,23	3,50	0,0	16,03	2956	3,51	0,0	
He/Ar	5	0,15 # 0,01	0,11	15,1	0,03	151,2	0,16	191	
Ne/Ar	5	0,61 # 0,03	0,56	3,3	0,61	0,0	0,71	11,6	
N ₂ /Ar	5	0,51 # 0,02	0,39	36,7	0,43	14,5	0,56	7,1	
Fe/S	6	1,22 # 0,15	1,62	7,3	1,43	2,0	1,29	0,2	
Fe/S	6	1,40 # 0,15	1,62	2,2	1,43	0,1	1,29	0,5	
Zn/S	6	1,35 # 0,15	1,88	12,3	1,58	2,4	1,39	0,1	
Zn/Se	6	0,74 # 0,09	0,88	2,5	0,92	3,9	0,94	5,0	
Cd/Te	6	0,82 # 0,09	0,92	1,3	0,95	2,1	0,96	2,6	
Cd/Te	6	0,74 # 0,10	0,92	3,4	0,95	4,4	0,96	5,0	
In/Sb	6	1,04 # 0,10	0,96	0,6	0,98	0,4	0,98	0,3	
In/Sb	6	0,91 0,14	0,96	0,1	0,98	0,2	0,98	0,3	
$\Sigma \chi^2$				3762		3137		37,3	

2 hall but

		٨Ka		Z- за	кон	форм	ула (1)	формула (3)	
	Z O m n	CCDI	A(Z/O) exp	A(Z/O)	χ²	A(Z/0)	χ^2	A(Z/0)	χ^2
	BeO	7	0,12 / 0,04	0,50	90,2	0,43	60,5	0,59	136.5
	B ₂ O ₃	1	0,22 0,05	0,63	65,6	0,59	54,8	0471	9610
	MgO	7	0,83 # 0,07	1,50	91,6	1,45	78,6	1,29	43,1
1	Mg0 ₂	7	0,58 # 0,03	1,50	940,4	1945	842.2	1,29	55992
-	Al ₂ 03	7	0,85 # 0,06	1,62	166,8	1,55	136,8	1,35	69,8
	Al ₂ O ₃	8	0,65 / 0,06	1,62	26411	1,55	22519	1,35	136,6
-*	Si02	7	0,79 # 0,07	1,75	18891	1,65	150,8	1,41	78,5
2	SiOz	8	0,57 # 0,05	1,75	557,0	1,65	466 1	1,41	282,3
	P205	8	0,93 # 0,11	1,88	73,8	1,74	54,8	1147	83 1 8
	CaO	7	1,36 # 0,10	2,50	130,0	2,18	66,7	1,71	12,6
	CaO	9	1,45 # 0,09	2,50	136,1	2,18	65,2	1,71	816
	Sc203	7	2,78 . 0,20	2,62	0,6	2,26	618	1,76	26,1
	Ti O ₂	7	2,70 \$ 0,20	2,75	0,1	2,34	3,3	1,80	50 ⁴ 5
	102	9	1,90 / 0,10	2,75	72,2	2,34	18,9	1,80	190
	V203	9	2,19 # 0,18	2,88	1495	2,41	1,5	1,84	3,7
	V ₂ 0 ₄	9	2,28 \$ 0,23	2,88	691	2,41	0,3	1,84	3,6
	V205	9	2,68 # 0,14	2188	1,9	2,41	317	1,84	3517
	V205	1	3,10 # 0,20	2188	1,3	2141	11,8	1,84	3914
	Cr ₂ O ₃	1	3,00 # 0,17	3,00	0,0	2,49	911	1,88	43,1
	Cr ₂ O ₃	9	2,04 + 0,11	3,00	76,2	2,49	16,5	1,88	540
	Cu ₂ O	1	3,80 # 0,90	3,63	0,0	2184	1,1	2,07,	3,7
	CuO	1	3,60 0,40	3,63	0,0	2,84	3,6	2,07	14,6
	CuQ	10	6,14 # 0,85	3163	8,8	2,84	15,1	2,07	5519
	200		S100 0135	3,75	11,6	2,91	0,6	2,11	310
	ZnU	11	2,22 # 0,07	3,75	477,7	2,91	9613	2411	210
1920 - 1	Y203	1	1,83 0,12	4,88	643,9	3,47	185,8	2,39	21,9
1	.Y ₂ U ₃	9	2,07 # 0,13	4188	465,6	3147	115,3	2,39	611
		1	2,38 # 0,16	5,00	50841	3,52	51,1	2,42	0.1
	MOU3	1	3,48 # 0,23	5125	5992	3904	0.5	2,44	1911
		1	6,70 1,50	0,00	0,2	3196	393	2163	1,3
		2	2141 # 0122	6,00	25/15	3130	4010	2103	010
	In ₂ U ₃	1	217 4 0 04	0112	12914	4,02	14,7	2,00	1,0
	5102	5	3,17 # 0,24	0,25	10417	4107	14,0	2108	4,1
_	50203	10	3,48 # 0,35	0130	0014	4912	3,3	2,71	4,9
1	502U3	2	2,73 + 0,00	6 30	05511	4112	3040	2,11	110 43
۰ ۲	_50205	2	9.97 4 0.09	7 00	2004	4112	10319	211	11012
		12	2.24 + 0.20	7,00	40212	4131	5010	2103	014
	Ba02	14	3,08 + 0,30	7,00	19310	4931	1391	2,03	213
	5m203	1	3,05 + 0,34	9 75	10197	4103	00.0	2,19	0,2
	TD203	2	4.17 # 0.30	10.25	410.7	5101	19.8	3,34	2.6
		2	5.80 4 0.20	10,25	41017	5,50	0.9	3,34	12.3
	PhO	10	4.56 # 0.52	10.25	115.2	5,50	3.9	3.34	1213
	Bialla	2	4.30 # 0.50	10,22	147.6	5, 54	5,2	3.34	3,5
	110	7	6.00 # 0.50	11.50	121.0	5.89	0.0	3.51	84.7
	$\nabla \sqrt{2}$	<u> </u>	0100 + 0100		10659	5107	3809.4		1914.1
	22	1			, , , , , , , , , , , , , , , , , , , ,		380294		

Ταδλυμα 👖

		۸A		Ζ-э	акон	формул	a (1)	форму/	(3)
	Z _m X _n	CCDI	A(Z/X) _{exp}	A(Z/X)	χ^2	A(Z/X)	χ^2	$A(Z_{X})$	X ²
	Lif	7	0,28 / 0,03	0,33	3,2	0,23	3,1	0,41	18,6
	C ₄ F ₄	12	0,70 / 0,03	0,67	1,2	0,66	2,1	0,76	3,6
	NaF	7	1,56 # 0,12	1,22	719	1,20	9,0	1,13	12.6
	ALF3	13	0,90 # 0,30	1,44	3,3	1,38	2,6	1,25	1,4
	CdF ₂	13	3,98 # 0,54	5,33	6,3	3,54	0,7	2,44	8,1
	SbF3	13	3,69 1 0,42	5,67	22,1	3,67	0,0	2,51	719
	PbF2	7	4,70 * 0,40	9,11	121,6	4,91	0,3	3,10	16,1
120	PbF ₂	14	9,60 # 1,40	9111	0,1	4,91	11,2	3,10	21,6
	BiF ₃	15	4,74 1 0,45	9,22	99,2	4,95	0,2	3,11	13,1
	UF4	15	6,08 / 0,60	10,22	47,7	5,26	1,9	3,25	85.5
	UF4	16	2,80 # 1,20	10,22	38,3	5126	4,2	3.25	0,1
	LICI	11	0,14 # 0,02	0,18	313	0,13	0,1	0,28	50.0
1 I - I 4		8	0,98 # 0,19	0,35	10,9	0,38	919	0,52	519
	C ₆ Cl ₆	12	0,46 0,02	0,35	28,1	0,38	1540	0,52	990
	NaCi			0,05	2594	0,70	1792	0,78	0.1
		17	0,19 # 0,03	0,65	2110	0.70	0.8	0.78	6.1
	AICL	12	0,63 + 0,21	0,76		0.81	0.7	0.86	1.2
	KCI	6	1.13 # 0.11	1.12	0.0	1.09	0.1	1.06	0.4
	KCI	ğ	1.15 . 0.05	1.12	0.4	1,09	1.5	1,06	3,1
	KCI	13	1.16 / 0.11	1,12	0.1	1,09	0,4	1,06	ບຸຮ
	KCI	17	1,16 # 0,03	1,12	2,0	1,09	5,7	1,06	10,7
	CaCi ₂	6	1,15 / 0,12	1,18	0,0	1,13	0,0	1,09	0,2
	CaCl ₂	7	1,56 # 0,17	1,18	5,1	1,13	6,4	1,09	7,6
	RECI	9	1,78 # 0,11	2,18	13,0	1,74	0,1	1,48	7,2
11	AgCl	16	0,80 # 0,20	2,76	96,5	2,03	3719	1,66	18,5
	CdCl2	13	2,26 \$ 0,26	2,82	497	2,06	0,6	1,68	5,0
	SnCl2	13	1,98 # 0,22	2,94	19,1	2,11	0,4	1,71	1,5
•	SnCl ₄	13	2,36 / 0,40	2194	2,1	2,11	0,4	1,71	211
	SDCI3	13	2,55 0,39	3,00	1,3	2914	1,1	1,72	1.6
	Coll	13	2,30 0,45	3,90	48.0	2,24	3.9	1.78	0.1
		6	1,65 # 0,15	3.24	111.7	2.24	15.7	1.78	0.8
- 11-	Cs Cl	11	1.75 # 0.09	3.24	272.4	2.24	30.1	1.78	0.1
	PbCl	1	3.16 0.24	4.82	48.0	2.86	1,6	2,13	18,5
5-	KBr	13	0.42 # 0.07	0.54	3.1	0.65	10,7	0,73	20.2
	CdBra	13	0.95 # 0.12	1,37	12,3	1,23	594	1,16	3,1
	LII	16	0,77 # 0,30	0,06	5,7	0,06	5,6	0,16	4,1
	LiI	18	0,06 # 0,01	0,06	0,1	0,06	0,0	0,16	100,9
	LiI	19	0,32 + 0,13	0,06	411	0,06	4,0	0,16	1,5
	NaI	7	0,29 # 0,04	0,21	4,2	0,32	0,5	0,44	14,8
	NaI	19	0,47 # 0,14	0,21	3,5	0,32	1,2	0944	0,0
	AII3	13	0148 # 0118	0,25	1,7	0,37	0,4	0,49	0,0
	KI	1.7	0,50 / 0,05	0,36	8,0	0150	0,0	0,61	494
	KT	13		0,36	3,1	0,50	0,0	0,85	0.1
	I KPT	19	1.45 . 0.25	0,70	0,8	0.93	4.0	0.35	3.8
	Agi	1	1,00 + 0,20	0.91	0.2	0.94	0.1	0.96	0.0
	CdTa	13	1.00 # 0.19	0.91	0.6	0.94	0.3	0,96	0,1
	CsI	19	1.31 / 0.40	1.04	0.5	1,02	0,5	1,02	0,5
	PbI	1	1,22 # 0,11	1,55	8,8	1,30	0,6	1,21	0,0
	$\Sigma \chi^2$				1130,5		228,8		448 - 1

Ταδλυμα 🎹

7 11 12	DX0		Z-3	акон	формула (4)		
^Z m ⁿ k	CCbi	A(Z_H_/X_) m_n_k^exp	A	χ^2	А	χ^2	
C3H7CI C4H3CI C(CH3)3CI C6H3)3CI C4H3CI C4H3CI C4H5F C4H5CI C4H5Br C4H4CI2 NH4F NH4CI NH4CI	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2,03 + 0,06 2,74 + 0,09 2,88 + 0,10 4,72 + 0,22 6,77 + 0,22 3,73 + 0,40 3,50 + 0,31 1,84 + 0,10 2,30 + 0,20 2,10 + 0,20 2,05 + 0,26 1,12 + 0,03 1,06 + 0,103	1 947 1 994 2 988 4 29 4 56 2 41 1 17 1 18 1 918 1 922 0 965 0 965	8619 7818 881 12617 413 1213 4417 3116 2113 1011 24815 18915	2,19 2,89 2,89 4,29 6,38 5,19 3,57 2,47 1,74 1,74 1,37 0,94	6,9 2,7 0,0 3,9 3,1 13,3 0,0 39,5 7,9 3,3 6,9 36,2 16,1	
	12	$0_{1}48 # 0_{1}03$ $1_{1}70 # 0_{1}40$	0,31	30,5 3,1	0,65 1,38	32.1	
$\Sigma \chi^2$				1046,1		172,6	

12

Ταδλυμα <u>γ</u>	ļ	/1	iya y	Ταδλυ
------------------	---	----	-------	-------

Taganna	$\overline{\mathbf{V}}$
TUUNUUU	V

	/	, YC	,	Z – закон		формул	формула (1)		формула(3)	
	Z Z' m n	CCPI	A(Z / Z') _{exp}	A(Z /Z')	χ^2	A(Z /Z2)	~X²	A(Z /Z')	2	
~ -a	Fe S Fe S ₂ Cu S Zn S Sb ₂ S ₃ PbS Zn Se Cd Te Cd Te Cd Te	6 6 10 6 11 10 10 6 6 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,62 1,62 1,81 1,88 1,88 3,19 5,12 0,88 0,92 0,92	14-1 4,4 0,2 5,1 0,0 23,5 41,5 41,5 41,4 0,1 0,4 130,7	1,43 1,43 1,55 1,55 2,24 3,00 0,92 0,95 0,95	19,2 8,2 3,6 10,4 0,4 2,1 0,1 40,5 0,3 0,8 85,7	1,29 1,29 1,36 1,39 1,39 1,78 2,20 0,94 0,96 0,96	23,6 11,8 8,6 15,0 1,4 20,4 3,7 39,9 0,4 1,1 125,9	
	CaS	17	1,57 # 0,04	1,25	64,0	1,19	92,2	1,13	122,1	

Ταδλυцα 🗹

1,53 415,6

/	R K		Z-за	Z-закон		формула (1)		формула (З)	
^Z m ^Z n	1400	A(Z /Z [*]) _{exp}	A(Z /Z')	~x ²	A(Z / Z')	χ^2	A(Z /Z')	x ²	
$\begin{array}{c} AgZn \\ Au_{0.18}Cu \\ Ag_{0.58}Li \\ CuAl_2 \\ CuAl_2 \\ in Sb \\ \underline{In Sb} \\ \underline{\Sigma \times^2} \end{array}$	18 10 15 15 6 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,57 2,72 15,67 2,23 2,23 0,96 0,96	0,8 20,2 0,5 12,4 14,9 0,2 1,0 50,0	1,35 1,90 15,34 1,83 1,83 0,98 0,98	1,5 0,0 0,6 21,5 21,7 0,3 0,7 46,4	1,24 1,59 5,90 1,53 1,53 0,98 0,98	119 212 517 2918 2716 014 016 6812	

352,1

Ταδλυцα 💵

388,0

1,83

			Z-з	акон	форму∧а (4)		
м (ОН) _n		A(M)exp	А	x ²	A	x ²	
Na OH	12	4,81 # 0,61	0,82	42,8	0,93	40,4	
кон	8	2,20 # 0,40	0,47	18,6	0,68	14,4	
Ca(OH) ₂	12	6,93 # 0,38	0,90	251 8	1,33	217,1	
AI (OH)	12	7,00 • 0,50	2,08	96,9	2,53	79,8	
$\Sigma \chi^2$				410,2	1	351,7	

2,23

マワ

 ${}^{*} \in$

Cu0.117 Al 11 10,30 . 0,43

14

	Z– эакон			формула (1)			формула (2) - (4)		
n <u>e</u> Ta δ ∧uubi	n	χ^2	χ^2_{γ}	n	χ^2	χ^2_{γ}	n	χ^2	χ^2_{γ}
I II V V V	18 45 15 51 10 7	3762 10659 1046 1131 131 352	209,0 236,9 69,7 22,2 13,1 50,3	12 45 51 10 7	3137 3802 229 86 388	261,484,5+ 4,5+ 8,6+ 55,4	18 - 45 15 51 10 7	37 1914 173 448 126 416	2,1 42,5 11,5 8,8 12,6 59,4
ΣΙ-Δ	146	17081	117,0	125	7642	61,1	146	3114	21,3

JIM**T**SPA**TYP**A

- 1. E.Fermi, E.Teller. Phys.Rev., <u>72</u>, 399 (1947).
- 2. H.Daniel. Phys.Rev.Letters, <u>35</u>, 1649 (1975).
- 3. В.И.Петрухин, В.М.Суворов. 19Тф, 70, 1145 (1976).
- 4. З.И.Петрухин, ы. Д.Прокошкин, А.М. Филиппов. ПФ, <u>6</u>, 1008 (1967)
- 5. D.Г. Будяшов, В.Г. Зинов, А.Д. Конин, А.Ш. Мухин. 100, <u>5</u>, 830 (1967).
- 6. G.Grin, R.Kunselman. Phys.Letters, <u>31B</u>, 116 (1970).
- 7. В.Г.Зинов, А.Д.Копин, А.И. Мухин. Ж. 2, 859 (1965).
- J.C.Sens, R.A.Swanson, V.L.Telegdi, D.D.Yovanovitch. Nuovo Cimento, <u>7</u>, 536 (1958).
- 9. J.D.Knight, C.J.Orth, M.E.Schillaci, R.A.Naumann, H.Daniel, K.Springer, H.B.Knowles. Phys.Rev.,<u>13A</u>,43 (1976).
- 10. J.S.Baijal, J.A.Diaz, S.N.Kaplan, R.V.Pyle. Nuovo Cimento, <u>30</u>, 711 (1963).
- Э.Д.Бобров, З.Г.Варламов, И.М.Грашин, Б.А.Долгошени,
 З.Г.Кириллов-Угрюмов, З.С.Роганов, А.В.Самойлов,
 С.В.Сомов. 23Та, 48, 1197 (1965).

- М.Гольданския, А.А.Джураев, В.С.Ввсеев, Ю.Д.Обухов,
 В.С.Роганов, М.З.Фронтасьева, Н.Ч.Холодов.
 ДАН,<u>211</u>, 316 (1973).
- A.Brandão d'Oliviera, H.Daniel, T.von Egidy. Phys.Rev., <u>13A</u>, 1772 (1976).
- 14. A.Astbury, P.M.Hatersley, M.Hussain, M.A.R.Kemp, H.Muirhead. Nuovo Cimento, 18, 1267 (1960).
- M.Eckhause, T.A.Fillipas, R.B.Sutton, R.E.Welsh,
 T.A.Romanowski. Nuovo Cimento, <u>24</u>, 666 (1962).
- 16. G.Backenstoss, B.Block, B.Chidley, R.Reiter, T.Romanowski, R.Siegel, R.Sutton. Bull.Am.Phys.Soc., II. <u>4</u>, 273 (1959).
- L.F.Mausner, R.A.Naumann, J.A.Monard, S.N.Kaplan. Phys. Letters, <u>56B</u>, 145 (1975).
- J.F.Lathrop, R.A.Lundy, R.A.Swanson, V.L.Telegdi,
 D.D.Yovanovitch. Nuovo Cimento, 15, 831 (1960).
- V.S.Butsev, D.Chultem, Yu.K.Gavrilov, Dz.Ganzorig, Yu.V.Norseev, P.V.Presperin. JINR, E15-9658, Dubna, 1976.
- З. З. Крумштейн, Э.М. Петрухин, В. З. Рисин, Л. М. Смирнова,
 Э. М. Суворов, П. А. Итландов.
 . Эть, 65, 455 (1973).
- И. Бильгельмова, П. Зимрот, В. П. Петрухин, В. Л. Рисин, И. М. Смирнова, С. М. Суворов, И. А. Бтландов. ...ЭтФ.<u>65</u>, 24 (1973).
- H.Daniel, H.J.Pfeiffer, K.Springer.
 Phys.Letters, <u>44A</u>, 447 (1973).

Рукопись поступила в издательский отдел 12 ноября 1976 года.