СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

21/3-74

P1 - 10218

Р.М.Назаргулов

1028/2

О РАЗДЕЛЕНИИ **п⁻р.** и **п⁻¹² С.** ВЗАИМОДЕЙСТВИЙ В ПРОПАНОВОЙ ПУЗЫРЬКОВОЙ КАМЕРЕ

74

P1 - 10218

Р.М.Назаргулов

О РАЗДЕЛЕНИИ **п⁻р.** и **п⁻¹² С.** ВЗАИМОДЕЙСТВИЙ В ПРОПАНОВОЙ ПУЗЫРЬКОВОЙ КАМЕРЕ

Объединенный институт аверных истледований **GHE MANTERA**

des ...

Назаргулов Р.М.

О разделении л⁻р-и л⁻¹²С-взаимодействий в пропановой пузырьковой камере

Рассматривается вопрос о выделении π^{-12} С -взаимодействий в пропановой пузырьковой камере ($C_3 H_8$) по величине недостающей массы M_x . Показано, что 8% событий, которые по критериям идентификации взаимодействий при просмотре обычно относятся $\pi^- P$ -взаимодействиям, являются π^{-12} С -взаимодействиями.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований Дубна 1976

Nazargulov R.M.

P1 - 10218

On Separation of $\pi^- p$ - and $\pi^{-12}C$ Interactions in the Propane Bubble Chamber

The question is considered on the separation of $\pi^{-12}C$ interactions by missing mass M_x in the propane bubble chamber (C_3H_8) It is shown that about 8% of events, which are usually attributed to π^-P interactions according to the visual identification criteria, are $\pi^{-12}C$ interactions. The properties of these events and their influence on the π^-P one-particle spectra, determined with the propane bubble chamber, are discussed.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research

Dubna 1976

🔘 1976 Объединенный инскикук ядерных исследований Дубна

1. С помощью пузырьковой камеры, наполненной пропаном (С₃Н₈), исследуются взаимодействия π^- -мезонов с протонами и ядрами углерода. Обычно к π^- р π^- взаимодействиям относят те события, которые удовлетворяют следующим стандартным визуальным критериям:

1/ четное число вторичных треков и суммарный заряд всех вторичных частиц равен нулю; 2/ число протонов - ноль или единица; нет протона, летящего назад; 3/ отсутствует блоб.

Особенность камеры состоит в том, что в ней видны не все генерируемые протоны, а только те, у которых величина импульса находится в пределах 140 < P < < 700 *МэВ/с*. Если импульс протона меньше 140 *МэВ/с*, то пробег его в пропановой камере меньше 1 мм. Если импульс протона больше 700 МэВ/с, то уверенно отличить протон от положительного *п*-мезона визуально трудно. Не видны также из-за малости пробега и фрагменты ядра углерода. Это приводит к тому, что определенная часть взаимодействий на углероде может выглядеть как взаимодействия на свободном водороде. Прямая оценка примеси взаимодействий на углероде в таких "т р"- взаимодействиях составляет 44% /1/. Поэтому при получении физических результатов с помощью пропановой камеры всегда встает вопрос о влиянии этой примеси на характеристики пр-взаимодействий. В настоящей заметке обсуждается возможность введения для разделения $\pi^- p - \mu \pi^{-12} C$ -взаимодействий, кроме стандартных визуальных критериев, еще одного дополнительного. Рассмотрение ведется на основе вычисления недостающей массы, которая уже применялась для исследования взаимодействий 7 - мезо-

3

нов с импульсом 6,8 $\Gamma \ni B/c$ в 24-литровой пропановой камере $^{/2/}$. Недостающая масса определяется как эф-фективная масса вторичных частиц, которые не регистрируются в камере:

$$M_{x}^{2} = (E_{0} + m_{p} - \sum_{i} E_{i})^{2} - (\vec{P}_{0} - \Sigma \vec{P}_{i})^{2}.$$
 (1/

Здесь E_0 , \vec{P}_0 - энергия и импульс налетающего π^- -мезона, E_i , \vec{P}_i - энергия и импульс вторичных заряженных частиц. Пренебрегая ошибками в измерении импульсов и углов, к взаимодействиям на свободном водороде относим только те события, у которых $M_x^2 > 0$. Если же взаимодействие произошло на ядре углерода, то может быть $M_x^2 < 0$ за счет того, что учтена не вся энергия системы до столкновения.

2. Использование метода недостающей массы основано на законе сохранения энергии-импульса. Выполнение этого закона в эксперименте всегда справедливо с точностью до ошибок измерений. Поэтому другой причиной $M_x^2 < 0$ могут быть ошибки в измерении углов, импульсов. Так, в нашем случае взаимодействия π^- мезонов с импульсом 40 ГэВ/с существует доля событий, в которых имеются частицы большой энергии. Измерение импульсов таких частиц из-за малой кривизны их следов в камере сопряжено с большей ошибкой, что ведет и к большей ошибке в определении недостающей массы $-\Delta M_x^2$.

Таким образом, две причины ведут к отрицательным значениям M_x^2 для $\pi^- P$ -взаимодействий в пропановой камере: взаимодействие с ядром углерода и большие ошибки измерений импульсов и углов. Вторая причина не всегда связана с взаимодействием на ядре, поэтому при выделении взаимодействий на углероде мы берем события, проходящие по визуальным признакам как " $\pi^- P$ " события, но удовлетворяющие условию М $^2 + 2\Delta M^2 < 0$

события, но удовлетворяющие условию M²_x+2ΔM²_x<0 На *рис.* 1 приведено распределение по M²_x "^π⁻ P" взаимодействий /сплошная гистограмма/. Пунктирная гистограмма изображает распределение по M²_x событий с M²_x+2ΔM²_x<0. Доля таких событий составляет 3% /см.

Рис. 1. Распределения по недостающей массе M_x^2 для $\pi^- P$ -взаимодействий без ограничений на ошибки ΔM^2 /сплошная гистограмма/ и для событий, удовлетворяющих критерию с $M_x^2 + 2\Delta M_x^2 < 0$ /пунктирная гистограмма/.

табл. 1/. Отметим, что практически во всех событиях с $M_x^2 < 0$, но с $M_x^2 + 2\Delta M_x^2 > 0$ есть частицы с большой энергией.

3. Рассмотрим характеристики " $\pi^- P$ "-взаимодействий в различных областях M_x^2 . В табл. 1 приведены данные по средней множественности заряженных частиц, протонов и квадрат дисперсии распределения по множественности. Из таблицы, видно различие между событиями с $M_x^2 + 2\Delta M_x^2 < 0$ и $M_x + 2\Delta M_x^2 > 0$. События с $M_x^2 + 2\Delta M_x^2 < 0$. характеризуются относительно высоким содержанием про-

Таблица I

πo-π. 40 FB/c

Область	Bce M ² _x	M [*] * ² 4 ² <0	m ² +2sm ² +0
М		"9 ⁻¹² c"	"π ⁻ p"
Число событий	6408	492	59I6
< № прот.>	0 .22	0,79	0.I8
<n 7<="" th="" ±=""><th>5,45<u>+</u>0,03</th><th>7,16<u>+</u>0,13</th><th>6,30<u>+</u>0,03</th></n>	5 ,45<u>+</u>0,03	7,16 <u>+</u> 0,13	6,30 <u>+</u> 0,03
D ±	6 ,55	7,88	6,17

Рис. 3. Отношение сечений выхода π^{-} -мезонов в зависимости от быстроты в π^{-} Р - взаимодействиях с $M_{\chi}^{2} + 2\Delta M_{\chi}^{2} < 0$ и в π^{-} С - событиях, в которых генерируется не более одного протона.

Рис. 2. Отношение сечений выхода π^- -мезонов в зависимости от продольной быстроты в системе центра масс в $\pi^- P$ -взаимодействиях с $M_x^2 + 2\Delta M_x^2 < 0$ и в событиях с $M_x^2 + 2\Delta M_x^2 > 0$.

тонов, ${}^{<n}_{\text{прот}}$ > = 0,80, и большой средней множественностью ${}^{<n}_{\pm}$ >= 7,16 ± 0,13. Для исследования вопроса, за счет каких частиц происходит увеличение множественности в событиях с $M_{+}^{2} + 2\Delta M_{+}^{2} < 0$, мы рассмотрели распре- π^{\pm} - мезонов. быстротам вторичных **деления** по Дело в том, что одной из характерных особенностей адрон-ядерных взаимодействий является увеличение средней множественности вторичных частиц по сравнению с адрон-адронными взаимодействиями, причем за счет частиц, которые генерируются в области фрагментации ядра. На рис. 2 мы приводим отношения распределений *п*-мезонов по продольной быстроте в событиях с $M_{x} + 2\Delta M_{x}^{2} < 0$ к аналогичным распределениям в событиях $c M_{+}^{2} + 2\Delta M_{+}^{2} > 0.$ Видно увеличение выхода п - мезонов в отрицательной области быстрот. С другой стороны, для сравнения распределений по быстроте, л - мезонов в событиях, удовлетворяющих критерию $M_x^2 + 2\Delta M_x^2 < 0$, с распределением π^- -мезонов в π^{-12} С -взаимодействиях $\frac{73}{1}$ на *рис.* З приведено соответствующее отношение. Существенных различий между такими событиями не наблюдается. Таким образом, " $\pi^- P$ "-взаимодействия с $M_x^2 + 2\Delta M_x^2 < 0$ по своим одночастичным спектрам имеют свойства, близкие к свойствам $\pi^- C$ -взаимодействий.

4. Мы удалили из $\pi^- P''$ -взаимодействий часть событий /~ 8%/, которые имеют $M_x^2 + 2\Delta M_x^2 < 0$. Посмотрим теперь, как изменились одночастичные характеристики оставшихся событий /см. *табл. 1* и 2/. Средняя множественность заряженных частиц в событиях с $M_x^2 + 2\Delta M_x^2 > 0$, $(n_{\pm}) = 5,30 \pm 0,03$, вычисленная без поправок, меньше на 0,14 по сравнению со средней множественность в событиях без ограничений по $M_x^{2/4,5/}$ Умень-шение средней множественности связано с уменьшением генерации π -мезонов в области фрагментации мишени /*рис.* 4/. Результат удаления примеси взаимодействий на углероде /~ 8%/ заметен при сравнении одночастичных распределений π^{\pm} -мезонов с различными энергия-

Рис. 4. Отношение сечений выхода π^- -мезонов в зависимости от быстроты в $\pi^- P$ -взаимодействиях с $M_x^2 + 2\Delta M_x^2 > 0$ и в событиях без ограничения по M_x^2 .

Рис. 5. Инклюзивное распределение по $x = 2P^*/\sqrt{S}$ в реакции $\pi^- P \to \pi^- \dots$ при энергиях 18,5 и 100 ГэВ/с. $\pi^- P$ -взаимодействия с энергией 40 ГэВ/с без ограничения по M^2_x показаны пунктиром. Крестиками отмечены распределения, полученные для событий с $M^2_x + 2\Delta M^2_x > 0.$

ми. Так, на *рис.* 5 изображены распределения по х π^- -мезонов в $\pi^- P$ -взаимодействиях с импульсами 18,5; $100^{-4/}$ и 40 ГэВ/с без ограничений по M_x^2 /пунктирная гистограмма/. Ограничение условием $M_x^2 + 2\Delta M_x^2 > 0$ улучшает согласие наших данных при экстраполяции распределений от 18,5 до 100 ГэВ/с в области фрагментации мяшени.

9

			Таблица 2		
	Область Мд	Bce M	Mx+2.Mx <0 37-52 C *	Мх+26Мх+0 "Я ⁻ р"	
* *	< y [*] > _π + D [*] < ×> _π + < P ₁ > _π + (MaB/c)	0,03 <u>+</u> 0,0I I,4I 0,004 <u>+</u> 0,002 379 <u>+</u> 2	-0,06 <u>+</u> 0,03 I,44 0,020 <u>+</u> 0,005 389 <u>+</u> 8	0,04 <u>+</u> 0,0I I,40 0,002 <u>+</u> 0,002 378 <u>+</u> 2	
T	< y*> _π - Ω'y < ×> _π - < P ₁ > _π - (M ₉ B/c)	0,48 <u>+</u> 0,0I I,66 0,096 <u>+</u> 0,002 368 <u>+</u> 2	0,08 <u>+</u> 0,03 I,80 0,028 <u>+</u> 0,006 362 <u>+</u> 6	0,52 <u>+</u> 0,01 I,62 0,103 <u>+</u> 0,002 369 <u>+</u> 2	

Из табл. 2 видно, что одночастичные распределения по поперечным импульсам π^{\pm} -мезонов после ограничения по M^2 не изменились.

раничения по M_x^2 не изменились. Таким образом, по критерию $M_x^2 + 2\Delta M_x^2 < 0$, дополнительному к визуальным критериям, выделена из " $\pi^- P$ "-взаимодействий часть $\pi^{-12}C$ -событий, которые характеризуются большей средней множественностью заряженных π -мезонов и протонов и большей долей частиц, генерируемых в области фрагментации мишени.

Автор глубоко признателен В.Г.Гришину, А.В.Ефремову, Е.Н.Кладницкой, Ю.А.Трояну, М.И.Соловьеву, Н.Г.Фадееву за полезные обсуждения.

--- Литература

- 1. А.У.Абдурахимов и др. Сообщение ОИЯИ, Р1-6326, Дубна, 1972.
- 2. Д.К.Копылова и др. ЖЭТФ, 44, 1481 /1963/.

- 3. Н.Ангелов и др. Препринт ОИЯИ, Р1-9792, Дубна, 1976.
- 4. А.У.Абдурахимов, Н.Ангелов и др. ЯФ, 16, 989 /1972/.
- 5. Н.Ангелов, С.Бацкович, В.Г.Гришин, Ю.Надь. Препринт ОИЯИ, Р1-9785, Дубна, 1976.
- 6. W.Morris et al. Phys.Lett., 56B, 395 /1975/.

Рукопись поступила в издательский отдел 11 ноября 1976 года.