8. B-24

JOINT INSTITUTE FOR NUCLEAR RESEARCH

P-98

Laboratory of Theoretical Physics

V.S. Barashenkov

and V.M. Maltsev

" MULTIPLE PRODUCTION OF NONSTABLE PARTICLES IN PION NUCLEON COLLISION " Sche Phys., Polonice 1958, ~17, ~2.3, p177.

1957 .

JOINT INSTITUTE FOR NUCLEAR RESEARCH

P-98

Laboratory of Theoretical Physics

V.S. Barashenkov

and V.M. Maltsev

" MULTIPLE PRODUCTION OF NONSTABLE PARTICLES IN PION NUCLEON COLLISION "

Объединенный институу ядерных исследований БИБЛИОТЕНА

1957。

Abstract:

The statistical theory of multiple production of pions, nucle- ' ons, nonstable particles and antiparticles in (ΠN) - collisions ' is considered using the method described in |1|, |2|. The deductions ' of the theory may be put into agreement with the experimental data if assume that "strange" and "usual" particles are produced in different space volumes.

as go had take sI in trio d'u citi isoni

In papers^{[1],[2]} it was shown that in case of (NN)-collisions the relative multiplicity which is predicted by the statistical theory of multiple vproduction and the charge distribution of secondary particles agree well enough with experiment when we are concerned with pions and nucleons. But it is in sharp conflict with experiment for strange particles. In order to bring the aforementioned into agreement with experiment it was suggested to introduce one more parameter-radius of the space-region where the "strange" particles are "crystallized". It should be noted that the considered model is essentially different from that of Lepore and Neumann^[3] where the diffusion of the boundary of the space region is assumed, however, to be identiacal for different kinds of particles.

In this paper the model |1|, |2| is applied for the consideration of the multiple production of particles in (Π N) - collisions.

2. Results of Fermi-Belenky Model

In Table 1 the theoretical and experimental values of the ratio $\frac{\sigma_{st}}{\sigma_o}$ of the probability of strange particle production to the pro-

bability of inelastic pion and nucleon production under the assumption that both strange $(S \neq \emptyset)$ and usual (S = 0) particles are produced in the same space volume with the radius equal to the Compton pion wave length*. As well as in case of (NN) = collisions the theoretical value of this ratio exceeds many times its experimental value. An an¢logous result may be obtained also in the case if we assume that all these particles are produced in the volume with the radius of the order of K-meson Compton wave length. Let us consider the mechanism of the multiple production of strange particles more in detail.

3. The Results of "Compound Particle" Model

Because of strong interaction in pion-nucleon collision a "compound particle" is originally produced. The fact that the nucleon "crystallization" starts simultaneuosly with pions from the volume the radius of which being $\sim (\frac{h}{m_{\tilde{N}}}C)$ is also accounted for this strong interaction. Therefore only one parameter - the volume of "crystallization" region** is included into Fermi statistical theos. Quite another situalion is for strange particles. We must consider that pion interaction with K-mesons is considerably less than with the nucleons (otherwise σ_{st} / σ_0 is much more than the experimental value as was shown above). Due to this the

* In the cross-section of elastic production \mathbb{F}_0 the cases of "elastic production" of only one pair (\mathbb{T} N) are not taken into account: $(N\mathbb{T}): \mathbb{F}_0 = \sum_{h=7}^{\infty} \mathbb{F}(N \cap \mathbb{T}) + \sum_{n=9}^{\infty} \mathbb{F}(N \cap \mathbb{T})$

** This fact is also reflected in the anomalous core diffusion in the nucleon. It is interference that is addressed with relation

"这些是一个"这时间""你们还是不能说了,就把你们们的一个开口,只是不能是这个问题。"我们

"flying away" of free K-mesons will start from smaller region with the radius of the order of K-meson Compton wave length. Then in the formula of the statistical weight the Fermi space factor V_1 is changed for V_2 or V_3^* .

- 3 -

The first case corresponds to Schvinger and Gell-Mann hypothesis on the global pion interaction with baryons $|7|_{0}$ the second case will take place if pion interaction with $\Lambda -; \Sigma -; \Sigma$ -particles is considerably less than with the nucleons. As can be seen from Table 2 the calculation with the weight factor V_{2} ($\Pi -p$) collisions is found to be more close to experiment |10|**. Since most of strange particles are produced near the threshold one would not expect good agreement with the experiment from the statistical theory. However, the minimum of the ratio G_{st}/G_{0} in the region - IBeV which is often of the statistical character is confirmed by the experiment $|10|_{\circ}$

In Table 3 the results are given of the calculation of the relative probability of possible reactions in (π^--p) and (π^+-p) -collisions with the energy E = 5 BeV for the case weight factor V_2 and V_3 (respectively W_2 % and W_3 %). In Table 4 the corresponding results are given for (π^+-p) and (π^--p) = collisions with the energy E = 7 BeV. In both Tables the probabilities W_1 are expressed in percents. The calculations are made under the same assumptions and using the same method as $in^{|2|}$.

* We use the notation as in |1|, |2|

** An anclogous calculation for (p-p) collisions at 3 BeV gives 16% for V_1 ; 5,7% for V_{20} 0,27% for V_3 . The second event is also found to be the closest to the experiment ~ 3%.

古然王 计传统编辑 化分子环境 化分子分子

In Conclusion we wish to thank Professor D.I. Blokhintsev for discussions. We are also grateful to Duan-I-Shi, V.L. Evte-

and built destroys where sold most all built is a reserve out in and

tre miljen kolikani mohi sediko 19 👷 ganaarei kessi teelygang. Austrij

ev and G.N. Tentyukova for assistance in numerical cadifations.

R E F E R EN C E S

- l. V.S. Barashenkov, B.M. Barbashev, E.G. Bubelev, V.M. Maksimenko, Nucl. Phys. (in print) GETP (in print).
- 2. V.S. Barashenkov, B.M. Barbąshev, E.G. Bubelev Nuovo Cimento (in print).
- 3. I.V. Lepore, M. Neumann, Phys. Rev. 98, 1484, 1955.
- 4. S.Z. Belenky Nucl. Phys. 2, 253, 1956.
- 5. S.Z. Belenky, A.I. Nikishev, V.M. Maksimenko, I.L. Rosental, Uspekhi Fis. Nauk <u>62</u>, N 6, 1957.
- 6. V.M. Maksimento, I.L. Rosental GETP 32, N 5, 1957.
- 7. D.I. Blokhintsev Uspekhi Fis. Nauk 61, 137, 1957.
- 8. Gell-Mann Phys. Rev. 106, 1296, 1957.
- 9. M.M. Block et al Phys. Rev. <u>103</u>, 1484, 1956.
 W. Fowler et al. Phys. Rev. <u>103</u>, 1489, 1956.
 Harris et al. Phys. Rev. <u>101</u>, 1214, 1956.

V. Votruba, M. Danys, F. Low, Reports about 7 Rochester Conference May 1957, Dubna.

10. S.I. Brown et al. Bull. Amer. Phys. Soc. 2, N 1, 19, 1957.
E.P. Eisler et al. Bull. Amer. Phys. Soc. 2, N 2, 222, 1957.
L.B. Leipuner et al. Bull. Amer. Phys. Soc. 2, N 1, 1957,
M. Chretien et al. Bull. Amer. Phys. Soc. 2, N 1, 185, 1956.
Fowler et al. Phys. Rev. 298, 121, 1955.
R. Budde et al. Phys. Rev. 103, 1827, 1956.

Table 1

E BeV	Theory			
0,95	24%			A Constant of the second s
I,3	I9%			
5,0	I34%	tere and a state of the	and and writer and the particular states of the states of the	e popular i com de la generación des
7,0	2 01%			÷*
			a di seconda	n an thair a

-5-

Table 2

65t/60 Ε BeV $\sqrt{2}$ $\vee_{\mathfrak{Z}}$ 0,95 0,6% 13% I,3 0,4% 9% 2 >

- 6 -

Table 3^{*}

-7-

REACTION		(በ ^ተ P)	n an	(¶	「(町 ² P)」 (町 ² P)		
	n	W2º/0	W3º/0	W2°/o	W3%		
N.n. T	I	0,614	0,68I	0,722	0,818		
	2	8, 68	9,67	I0,2	II,6		
· · ·	3	32,0	35,7	∂30 , 7	34,7		
	4	3I , 7	35 , 3	30 ,0	34,0		
•••	5	II,I	23 I2,4	IO,0	II,3		
	6	I,42	I,58	I,26	I,42		
	() - CoCortain		ta se				
<u>Aknព</u>		ст ¹ 1 2019 р. са роски стали ст. ст. ст. ст.	anan an an <mark>an an a</mark>	0,246	0,0127		
	Ī	I ,64	0,0820	I,94 -	0,0984		
1.5 × 1.00	. 2	I,4I	0,0696	I,66	0,0835		
• •	3	0,53I	0,0260	0,536	0,0267		
n _{an} e in mare L			g an a guideath georgeacht aige an	situ perina su energen per el secono de	an a		
				and and a second se			
EK ni	0	0,284	0,0I43	0 ,335	0 ,0172		
	I	2,88	0,I44	3,40	0,I 7 3		
	2	2,8I	0,139	2,84	0,143		
•	3	I,02	0,0499	0,987	0,0490		
NKk กุเ	0	0,0753	0,0839	0,153	0,174		
•	I	0,415	0,463	0,418	0,473		
-	2	0,253	0,282	0,252	0,286		
	3	0,0223	0,0249	0,0209	0,0237		

Continuation of Table 3

and the second sec

EACTION	ν	2.200 Sec. 2.200 Sec. 200 Sec.	(f) () () () ()	
n an	v ² /0	v v 3 70	₩3 <u>10</u>	vv3 /0
2NN nTI	0 I,37	, several and yet in a several and seve - − − − − − − − − − − − − − − − − − − −	2 ,77	ny setter 1 mil 2 i Santation and in the same 1 mil 1 mil 3 , 15 mil 1 m 1 mil 1 m
s. La constanta	I I ,5I	≤ 1, 68	I,44	I,29 and I
Ξ2knfi	0 0,0176	0,0 ³ 670	0,0357	0,0 ² I39
an a	I 0,028I	0,0 ² 107	0,0332	0,0 ² 129
	2 0,0 ² 175	0,04666	0,0 ² 185	0,04716
			• Testa - M Testa - M	
λληπ	•••• 0 ••••••••••••••••••••••••••••••••	ena e la 19 0 es presenta a la 19 actuar	0,0706	0,0 ² 126
	0 0.0 ³ 178	3 0.0 ⁵ 610	0.0 ³ 36I	0.0 ⁴ 126
1/CKKN11				the states and the
ร 2หหิกบิ	0. 0,0 ³ 360) 0,0 ⁴ 123	0,0 ³ 424	0,0 ⁴ I48
	an the first spinster and the second	ing a star way for an	and the first second	

Cel.0 (C80.6 PEYA.0

-918,0 . (98,0 · H)8,0

- 1985 (A. 1987) (C. 1987)

9400 A.90 A.

÷,

the of the men

9000.D

- 8 -

n an	a a a a a a a a b a a a a a a a a a a a	Tab	le 4**		NOT TOALS
and the Policy strategy and an	in an	n en en antigen angen	tormers and the second seco	and the second sec	م می اور این می اور این می این می این می می این می این می این می این
yahanin na mananan yang mbanyi Tanan	nder Scheet, in sekselwind der de Großen Geleichen und der der der der der der der der der de	0.0276	is builded of Arcuite Service Hereits In the Architecture Service	and the second	
DBAGBTON	eec.oi (π *	P) 2,0	02.0.0	fī _b)	
REACTION	need w2%	072 W3%	OlozW SHE	CRR (W3%)	
NNT	I 0, I44	0 , 172	Sec0,170	₹ <u>0</u> ,209 [€]	
	2 3,06	^{Se 3} ,64	3, 62	v. 4,43	
an de la serie d'anne d'anne de la serie	3		I 5,7	Υ 19 92	ethiologia na Sectopoli da Calanda Calanda Sectopoli da Calanda Calanda Sectopoli da Calanda Calanda Sectopoli da Calanda Calanda Calanda
	4 24,8	2 9 ,4	23,5	Y 28,7	
	5 I 3, 8	16,4	I2,5	v ₁₈ 15,2	
	6 CHS 3,07	3 ,65	2,72	۲ _{367.} 3,32 e	
 Statistics Physics Strength Strength Strength Strength Strength Strength Str	7 0 ,363	0,432	0 ,3 16	0 , 386	n an teachtrain an teacharta an t
	980 ⁶ 60800000	105020		nce ^s ala <u>i</u> b	in and
\k nfi	0 0	//////////////////////////////////////	0 ,059	5220 0 ,0²33 4	
	71 ² 0, 622	0,0332	26° (0,73 4	0730 ,0,0403	
a a the second and the second at the second	2 I,49	0,0785	I,75	v 0,0954	anan salah Matala da di di sa atas menangan
	3, 0, 959	0,0506	0,980	0,0526	
	୍4 _ଥ ିର ୁ0,253 ୍ର	0,0131	0,245	0,0I33	
	ente lateratura de la constante en puer estato en la estato A de la	n kanne men sense sjoletje kan de sense s	na alan salara shirilaran	n e , le mai - lander je an jen bet ka av e e se jen be	an a thair a shart a s Shart a shart a
Ek nîi	0 0,0691	0,04373	3 0,081	0, 0-453	
	۲ <u>۵ ,</u> 1,21 ا	0,0648	1,43	v 0 ,0788	1
an a	2 3,25	0,172	3,29	v 0,178	n - sete terrenter a King en en en esta
	3080 I,86	CO,0972	I,80	ν 0 ,0967	
· · · · · · · · · · · · · · · · · · ·	4. 0,253	0,0131	2010,234	0,0I25	21

Alter and states and

ه ها دیگر کار در به می در به معرف ایر و رو همی از می از هره ایر در همی مربق ایر و می در و میشود ایر از می در میشود ایر ایر و می در و می میشود و میشود و میشود

1

- 9 -

.

REACTION	(ព † p)				
	n wz%	W3º/0	W2º/0	W ₃ °/o	
NKK กโ	0 0	0 	0,0276	0,0342	the month of the state of the
	I 0,305	0,368	0 ,3 2I	0,393	na haran 1997 - Angelan 1997 - Angelan
R.	2 0 ,5 45	0,648	0,550	0,669	dala sensiti 19 V
	3 0 , 195	0,232	0,182	. 0,223	or i Thereadore
	4 0,0101	0,0I20	0 , 0 ² 924	0,0113	
2 NN ทก	0 I ,47	1,75	2,98 v	3,67	
	I 10,3	I2 ,3	8,55 Y	IO,4	a
	2 8,81	10,5	9,9I v	I2,I	•
	3 0,986	0,431	0,204	0,249	
⊆่2к กฃ	0 0,0 ² 990	0,0 ³ 405	0,0201	0 ,0³85 0	
	0,0495	2200 ,0²202	0,0584	0,0 ² 245	() () () () () () () () () () () () () (
	2 0,0239	0,0 ³ 969	0,0253	0,0 ² 106	
			arouò.	24.1 G	
^ 2kkิ ท่โ	0 0,0³23 9	0 ,0⁵873	0,0 ³ 485	[्] 0,0 ⁴ 183	an a
eren de la tra	0 ,0 ³ I04	0,0 ⁵ 378	0,0 ³ I22	0,0 ⁵ 459	
Σ2κκี กถ	0 0 ₉ 0 ³ 377	¹⁰ 0,0 ⁴ 137	°0,0 ³ 444	³⁰ 0,0 ⁴ 167	1990 A. 16 - 16 - 17 - 17 - 17 - 17 - 17 - 17 -
	I 0,0 ³ 17I	622 ⁸ 0,0 ⁵ 622	181 ⁶ 0,0 ⁰⁰ 181	0,0 ⁵ 677	
AAN NT	0,050	0501	∵⊙I ,05 V	ିତ ୦, 0204	
1	T.10.0.844	000T49	TC0_433	$\sim 0.0^2 7 19^{-1}$	

- 10-

· · · ·		1. 19 1. 19	•		1	
BEACTION	(11+p)			(ที ค)		
	'n	Wzola	W3º/0	W2%	W ₃ º/o	
ΣĒN nπ	0	I,43	0,0267	I,69 V	0,0324	· · · · ·
	I	0,690	0,0 ² 25I	0,662	0, 0 ² 295	ε <u>Σ</u> Σ
ΛΣΝ ηπ	0	0,960	0,0179	I ,I3 ^v	0,0217	
	I	0,572	0,0 ² 9 7 4	0,675	0,0118	
λεν ηπ	0	0,960	0,0179	I,I3 V	0,0217	Co si la of
	I	0,572	0,0 ² 974	0,675	0,0118	mun a cu
<u>ا</u> ۳۷	0	0	0	0,074I	0,0 ⁴ 494	
ē,2 r.	0	0,0192	0,0 ⁴ 12 3	0,0226	0,0 ⁴ 149	
ĪXY	0	0,0783	0 ,0⁴50 2	0,0925	0,0 ⁴ 610	
ΞΞN	0,	0,130	0,0 ² 24I	0,263	0,0 ² 506	
νννκ	0	0,0139	0,0 ³ 732	[/] 0 ,0281	0 ,0²15 4	Coef. K.G. identici co
N2NK	0	0 ,0²693	0,0 ³ 366	0 ,0 I4I	0,0 ³ 768	
ENNK	0	0,0157	0 ,0³828	0 ,0185	0 ,0²IOI	
EZNK	0	0,0 ² 784	0,0 ³ 414	0,0 ² 926	0,0 ³ 503	

**/

2)

The quantity in brakets signifies the number of nulls.

Объединенный институт ядерных исследований БИБЛИОТЕКА____