

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория ядерных проблем

А.Ф. Дунайцев, В.И. Петрухин, Ю.Д. Прокошкин, В.И. Рыкалин

P - 968

ПРОВЕРКА СОХРАНЕНИЯ ВЕКТОРНОГО ТОКА

А.Ф. Дунайцев, В.И. Петрухин, Ю.Д. Прокошкин, В.И. Рыкалин

~

P - 968

ПРОВЕРКА СОХРАНЕНИЯ ВЕКТОРНОГО ТОКА

L

Дубна 1962 год

Аннотация

Измерена вероятность β -распада π^+ -мезона: $\omega(\pi^+ \rightarrow \pi^0 + e^+ + \nu) / \omega(\pi^+ \rightarrow \mu^+ + \nu) = (1, 1 + 1, 0) \cdot 10^{-8}$.

Константа ^G, определяющая интенсивность этого распада, найдена равной G = /1,6 ± 0,5 / · 10⁻⁴⁹ эрг.см³ в согласии с гипотезой сохранения векторного тока.

Abstract

The probability of pion β -decay has been measured: $\omega(\pi^+ \rightarrow \pi^0 + e^+ + \nu)/\omega(\pi^+ \rightarrow \mu^+ + \nu) = (1.1 + 1.0) + 10^{-8}$. The constant G, which determines the intensity of this decay has been obtained to be $G = (1.6 \pm 0.5) + 10^{-49} \text{ erg. cm}^3$.

in agreement with the conserved vector current hypothesis.

В проведенных нами первых исследованиях β -распада π -мезона $^{/1,2/}$ было показано, что относительная вероятность этого распада $\lambda = \omega(\pi^+ \rightarrow \pi^\circ + e^+ + \nu)/\omega(\pi^+ \rightarrow \mu^+ + \nu)$ не превышает существенно 10^{-8} -величину, предсказываемую теорией слабого взаимодействия $^{/3,4/}$. При этом уровень фона, ограничивавшего возможности дальнейшего количественного исследования β -распада π -мезона, составлял /в единицах λ / $2 \div 3 \cdot 10^{-8}$. Как показали дальнейшие измерения, основным источником этого фона являлись случайные совпадения сигналов в выходной схеме совпадений /схема lV на рис. 1/.

После завершения описанных в работе $^{/2/}$ экспериментов мы внесли ряд изменений в электронную часть установки, в результате которых удалось значительно улучшить разрешение выходной схемы совпадений и повысить селективную способность детектора остановок π^+ -мезонов /схема III на рис. 1/. Это позволило снизить уровень фона случайных совпадений в несколько раз. В серии экспериментов, выполненных с новой аппаратурой, было показано, что β -распад π^+ -мезона существует, и было проведено первое определение величины его вероятности.

Рис. 1.

Схема эксперимента. 1,2 -сцинтилляционные счетчики монитора пучка π^+ -мезонов; 4,5 -счетчики детектора остановок π^+ -мезонов; 6 - полый световод; 3 -полиэтиленовый тормозящий фильтр; 7,8 -черенковские спектрометры полного поглощения; L_4 и L_5 -переменные задержки сланалов; 1-IV -схемы совпадений; $\Pi_0 - \Pi_{IV}$ -пересчетные схемы.

Для выделения остановок π^+ -мезонов в сцинтилляторе счетчика 5 ранее нами использовался $^{/1,2/}$ режим "детектора остановок" $^{/5/}$, позволяющий подавить эффективность регистрации проходящих π^+ -мезонов в 5-7 раз по сравнению с эффективностью ре-

гистрации остановок. Как показано в работе ^{/6/}, коэффициент отбора детектора остановок может быть увеличан до 40-50, если использовать схему совпадений *III* в качестве амплитудно-временного преобразователя и осуществлять амплитудную дискриминацию не только в счетчике 5, но и в счетчике 4. Последнее одновременно позволяет уменьшить фон случайных совпадений в основной схеме *II*. Эффективность регистрации остановок π^+ -мезонов в этом режиме, использовавшемся в описываемых ниже экспериментах, была близка к единице. Селективные свойства детектора остановок иллюстрируются рис. 2, на котором приведена кривая пробегов мезонов, измеренная при помощи этого детектора.

Рис. 2.

Кривая пробегов мезонов, измеренная при помощи детектора остановок. N -скорость счета пересчетной схемы П_{III} в зависимости от толщины тормозящего фильтра R /в г/см² углерода/.

Калибровка аппаратуры была выполнена на пучке π^- -мезонов той же энергии, что и π^+ -мезоны /75 Мэв/. π^- -мезоны останавливались в жидком водороде, залитом в стеклянный дьюар, который помещался между спектрометрами 7,8 вместо счетчика 5. Скорость счета π° -мезонов, возникавших в результате перезарядки π^- -мезонов, достигала 50 сек⁻¹, что позволило провести детальное исследование аппаратуры. Определенные в этих опытах временные параметры схемы задержанных совпадений *II* указаны на рис. 1. Они близки к полученным ранее^{/2/}. В выбранном режиме работы аппа-

гистрации остановок. Как показано в работе ^{/6/}, коэффициент отбора детектора остановок может быть увеличан до 40-50, если использовать схему совпадений *III* в качестве амплитудно-временного преобразователя и осуществлять амплитудную дискриминацию не только в счетчике 5, но и в счетчике 4. Последнее одновременно позволяет уменьщить фон случайных совпадений в основной схеме *II*. Эффективность регистрации остановок π^+ -мезонов в этом режиме, использовавшемся в описываемых ниже экспериментах, была близка к единице. Селективные свойства детектора остановок иллюстрируются рис. 2, на котором приведена кривая пробегов мезонов, измеренная при помощи этого детектора.

Рис. 2.

Кривая пробегов мезонов, измеренная при помощи детектора остановок. N -скорость счета пересчетной схемы П_{III} в зависимости от толщины тормозящего фильтра R /в г/см² углерода/.

Калибровка аппаратуры была выполнена на пучке π^- -мезонов той же энергии, что н π^+ -мезоны /75 Мэв/. π^- -мезоны останавливались в жидком водороде, залитом в стехлянный дьюар, который помещался между спектрометрами 7,8 вместо счетчика 5. Скорость счета π° -мезонов, возникавших в результате перезарядки π^- -мезонов, достигала 50 сек⁻¹, что позволило провестн детальное исследование аппаратуры. Определенные в этих опытах временные параметры схемы задержанных совпадений ll указаны на рис. 1. Они близки к полученным ранее^{(2/}. В выбранном режиме работы аппа-

ратура оказалась крайне нечувствительной к фону постороннего излучения. Так, с удалением жидкого водорода скорость счета схемы II падала более чем в 10 тысяч раз. Наладка и окончательная калибровка всей установки была произведена с использованием обнаруженного нами ранзе /7/ малоинтенсивного процесса перезарядки п -мезонов при остановке их в водородосодержащем веществе. В нашем случае таким веществом является стирол /СН/, из которого был изготовлен сцинтиллятор счетчика 5.

Для снижения уровня фона случайных совпадений энергетические пороги спектрометров 7,8 были выбраны более высокими, чем в предыдущих измерениях /2/ /35 Мэв/. #⁺ -мезо-Экспериментально определенная эффективность регистрации В -распада на была равна 5,6%. Ожидаемая скорость счета, соответствующая теоретически предсказанной величине λ , составляла 1 отсчет за 30 часов работы ускорителя. При этом *п*⁺-мезонов установка должна была регистрировать и радианаряду с β -распадом $\pi^+ \rightarrow \gamma + e^+ + \nu$, вероятность которого также может быть вычислеционный распад /8/ на в случае сохранения векторного тока . Однако при выбранных высоких энергетических порогах спектрометров вклад этого распада сравнительно мал и должен был составлять около 1/6 от полного счета. Ожидаемый уровень фона составлял 1 отсчет за 80 часов. Уровень фона был определен путем сопоставления скоростей счета схем совпадений II, III и IV, полученных в описываемых экспериментах и в работе /2/ на пучках *п* -и *п* -мезонов.

Измерения вероятности β -распада π⁺-мезона продолжались около 100 часов. Для контроля стабильности параметров аппаратуры периодически измерялись выходы

 π° -мезонов от перезарядки π^{+} -мезонов на лету в сцинтилляторе счетчика 5, повторио производились описанные выше калибровочные эксперименты на пучке π^{-} -мезонов. Чтобы исключить возможность случайной регистрации электрических наводок, использовалась чувствительная пересчетная схема Π_{o} , фиксирующая наводки. Как оказалось, они появлялись редко и в ходе основных измерений ни разу не были зарегистрированы схемами *II* и *IV*. В результате измерений, в течение которых через установку было пропущено 0,6 \cdot 10¹⁰ π^{+} -мезонов, было зарегистрировано 4 отсчета выходной схемы совпадений *IV*. В единицах λ это соответствует величине $\lambda_{p} = 1,8 \cdot 10^{-8}$. Уровень фона в этих же единицах составляет $\lambda_{\phi} = 6 \cdot 10^{-9}$. Для описания полученного результата введем функцию распределения вероятности **Р**(λ) :

$$P(\lambda) d\lambda = \frac{(\lambda + \lambda_{\rm ch})^4 / \lambda_p^4}{4! \sum_{m=0}^{\infty} \lambda_{\rm ch}^m / \lambda_p^m m!} e^{-\lambda / \lambda_p} d\lambda \qquad (1/$$

Подставив сюда указанные выше значения λ_p и λ_{cb} , получаем

$$\lambda = /1, 1 + 1, 0 - 0, 5 / \cdot 10^{-8}.$$

Найденная функция распределения /1/ приведена на рис. 3.

Величина _λ связана с константой G , характеризующей β -распад *π* - мезона^{/4/}, соотношением

Ħ

$$\lambda = \frac{G^2 \Lambda^3}{3^2 \pi^3 \omega (\pi^+ \to \mu^+ + \nu)} (1 + \delta - \frac{3}{2} \frac{\Lambda}{\mu} - 5 \frac{m^2}{\Lambda^2}), \quad \hbar = c = 1.$$
 /2/

Здесь △ -разность масс заряженного и нейтрального п -мезонов, µ -масса п⁺-мезона, m -масса электрона, ^δ -электромагнитная поправка, равная 3,4% согласно^{/9/}. Следующие два члена в скобке учитывают отдачу п -мезона и наличие массы покоя у позитрона /С.С. Герштейн, частное сообщение/. Полученная из /1/ и /2/ функция распределения для G приведена на рис. 3. Соответствующая величина G равна

$$G = /1,14 + 0,37 / G_{\beta}$$

где G_β -векторная константа, характеризующая β -распад ядер^{/4,10/}. Напомним, что в случае сохранения векторного тока должно выполняться равенство G = G_β. Полученный в настоящей работе результат свидетельствует в пользу справедливости этой гипотезы.

Проведенные эксперименты показали, что предложенная нами в 1959 году постановка опытов по изучению β -распада π^+ -мезона /описано в работе^{/11/} с использованием черенковских спектрометров, детектора остановок и регистрацией импульсов на экране скоростного многолучевого осциллографа, даст возможность получить точные сведения о величине вероятности β -распада π^+ -мезона и об энергетическом спектре возникающих при распаде позитронов. Одновременно может быть исследован и радиационный распад π^+ мезона. Указанные эксперименты проводятся нами в настоящее время.

Литература

- 1. А.Ф. Дунайцев, В.И. Петрухин, Ю.Д. Прокошкин, В.И. Рыкалин, ЖЭТФ, <u>42</u>, 643,1962. A.F.Dunaitzev, V.I.Petrukhin, Yu.D.Prokoshkin, V.I.Rykalin. Nuovo Cimento, <u>22</u>, 5 (1962).
- 2. А.Ф. Дунайцев, В.И. Петрухин, Ю.Д. Прокошкин, В.И. Рыкалин. ЖЭТФ, <u>42</u>, 5, 1962. препринт ОИЯИ, Р-940, 1962.
- 3. Я.Б. Зельдович. ДАН СССР, <u>97</u>, 421, 1954.
- 4. R.P.Feynman, M.Gell-Mann. Phys. Rev. 109, 193 (1958).
- 5. A.F.Dunaitzev, Yu.D.Prokoshkin, Tañg Syao-wei. Nucl. instr. 8, 11 (1960).
- 6. A.F.Dunaitzev, V.I.Petrukhin, Yu.D.Prokoshkin, V.I.Rykalin. Nucl. Instr. (in print) 1962.
- 7. А.Ф. Дунайцев, В.И. Петрухин, Ю.Д. Прокошкин, В.И. Рыкалин. ЖЭТФ, <u>42</u>, 6, 1962. препринт ОИЯИ Р-948, 1962.
- 8. S.A.Bludman, Y.A.Young. Phys. Rev. 118, 602 (1960).
- 9. G. Da Prato, G.Putzolu. Nuovo Cimento <u>21</u>, 541 (1961).
- 10.R.K.Bardin, C.A.Barnes, W.A.Fowler, P.A.Seeger. Phys. Rev. Lett. 5, 323 (1960).
- 11. S.M.Korenchenko, Yu.D.Prokoshkin. Intern. Conf. on High-Energy Physics Instr., Geneva, 1962.

Рукопись поступила в издательский отдел 12 апреля 1962 года.