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ABSTRACT 

•The method of canonical transformations proposed by one of the authors ten years ago in 

connection with a mioriscopic theory of superfluidity for Bose systems, is generalised here to 

' ·Fermi systems, and forms the basis of a method for investigating the problem of superconducti~• 

vity. 

Starting from Frohlich1 s Hamiltonian,-the energy of the superconducting ground state and 

the one-Fermion and col1ective excitations corresponding to this state are obtained. It turns 

out that the final formulae for the ground state and one-Fermion excitations recently obtained 

. by Bardeen, Cooper and Schrieffer are correct in the first_ approximation. The physical picture 

appears to be closer to the one proposed by Schafroth, Butler and Blatt. 

The effect on superconductivity of the Coulomb interaction between the. electrons is analyz­

ed in detail. A criterion for the superfluidity of a Fermi sy~tem with a four-line vertex Ha­

miltonian is established. 
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I. I N T R O D U C T I O N 

I.I An outline of the present status of the theory of ~upe.rconductivity .. 

Except for some results of a particular chaz:acter, all ~ttempts at constructing a microscopic 

theory of superconductivity have failed for a long time. 

An essential contrib_ution to the developme~t of the theory is .due to Frohlich (±), who in 

1950 was the first to point out that the phenomenon of superconductivity is mainly due to the 

interaction of the electrons with the phonons of the crystal lattice, i.e. to the same interact­

ion which under normal conditions accounts for the usual resistivity of the metal, On the basis 

of this assumption and using dimensional considerations, Frohlich succeded to predict the very 

important isotope-effect, which was soon afterwards discovered experimentally. 

After the discovery of the isotope-effect it became evident; that the electron-phonon inter­

action must form the basis of any. attempt of constructing a microscopic theory of superconducti­

vity, However, due to the extreme mathematical intricacy o·f the problem, the first attempts to 

obtain correct solutions were doomed to failure (I,2). Nevertheless, it is important to note the 

important role played by these attempts in the investigation of the applicability of perturbation 

theory to this problem, 

Most instructive in this respect was the one-dimensional model, analyzed by Frohlich ( 3), 

where t·he problem could be ·solved exactly. It turned out, that these results could not have been 

obtained by means of perturb1ttion theory, since the energy difference between the normal and 

superconducting states de~ends-nonanalytically on the coupling constant, the dependence being of 

the type exp(-I/g). As a result of a detailed investigation we now know that Just this situation 

was the cause of the difficulties in the three-dimensional case. 

A new important physical idea has been introduced by Schafroth, Butler and Blatt (4), who 

drew attention to and discussed in detail, the role of pair correlations, especially for electrons 

·near the Fermi surface, These correlated pairs appeared to be essential in connection wfth the 

phenomenon of Bose-Einstein condensation of such structures. The appearance of the condensate was 

treated by the authors as the formation of the superconducting state. We stress the fact, that a 

pair of electrons wit'hin the Bose-Einstein'condensate has zero total momentum. In the conception 

of Schafroth, Butler and Blatt· the Frohlich attraction between two electrons near the Fermi sur­

face is the main.factor assuring the formation of such correlated pairs. As we will show below, 

the ideas of Schafroth, Butler arid Blatt are entirely correct. 

A further move in the development of the theory, in which the framework of. perturbation 

theory was surpassed, has been made recently in the work of Cooper, and Bardeen, Cooper and Schrie• 

ff.er (5). These authors considered a simplified model, in which t·he interaction between electrons 

and phonons is replaced by an attraction between the electrons, which acts near the Fermi surface, 

and only the terms which correspond to the interaction of electron pairs with opposite momenta are . 
~etained in the Hamiltonian. Physically this correspo~ds to taking into account only those pairs 
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which belon~ to the Bose-Einstein condensate. 

Starting from the idea that particles with opposite momenta form bound pairs, the above­

mentioned authors take the wave function of the ground -sta_te in the form of a product of pair 

wave functions, containing parameters. The latter are determined by means of a variational 

principle for the energy minimum. It must be observed, that the method of Bardeen, Cooper and 

Schrieffer leaves unanswered a series of questions as e.g. the funda~entation of the whole pro­

cedure, the role of Coulomb interaction etc. which m~y render their results less convincing. 

However; after solving correctly the·problem of the interaction between phonons and elect­

rons, we can see that the final formulae obtained by Bardeen, Cooper and Schrieffer for the. 

ground state and ·one-fermion excitations are correct in the first approxi~ation. 

On the other hand their· scheme does not lead to a branch in·the spectrum, corresponding to 

collective excitations and t.he effect of Coulomb -forces has not been taken into account correct­

ly, A complete solution of the problem in the initial formulation of Frohlich, as well as with 

the supplementary complications which arise, for example from taking into-account the Coulomb 

interaction, could be obtained by means of a new method, developed by one .of the authors (6), 

This method is founded on the deep-lying physical, as well as mathematical analogy with the 

phenomenon of superfluidity and is a direct generalization of_ the method proposed in !947 (7) 

for the development of a microscopic theory of superfluidity, 

In the present work we give a systematic treatment of this method applying it to the study 

of the ground state and of the elementary excitations, _both one-fermion and collective. 

I.2 Resume of the micr.oscopic theory of superfluidity 

We start with a short review of the fundamental principles of. the microscopic theory of 

superfl~idity for Bose-systems. 

It is well known that all the particles of an ideal Bose gas at absolute zero, have their 

momenta strictly,equal to zero and are in the so called condensate. 

However in the absence ·of interaction such a condensate does not form a bound assembly, and 

therefore it cannot posses superfluid properties, 

Indeed, let it be subjected to a motion, such_ that all the particles of the gas have ve­

locities equal to u. Then the total energy will be 

E·= LNMU..t . . i . 
where N is ~he number of particles and mis the mass. 

Suppose that one of the particle collides with an impurity or.with the wall of the con­

tainer, and hence its velocity~ changes into:the smaller.one uI• Evidently, the total energy 
. t 

E = 1. (.N-1)txu,. + ~, 
. 1. 1, 

diminishes. Therefore, from the energetic point of view it is convenient for the individual 

particles to leave the condensate and to slow down because Jf collision processes, and th1s·w111 
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lead to a gradual slowing down of the gas as a whole. 

Thus an ideal Bose-gas is not suitable as a model for the study of superfluidity. The si­

tuation changes completely for a nonideal Bose gas, the-particles of which are subject to inter­

actions, however small. The second-quantized Hamiltonian of a weakly non-ideal Bose gas has the 

form 

- 1"1 1 + ·• H =- 2. I11t a.rar 
r 

+ + . ' 
+ iv :L 11 f ~: -~;) ctr, a.r~ a.r£ a.~: 

t'4/~1J~1'rL r. 

(I.I) 

where pis the momentum of the 
r,+ri=r,+r, 

particle, Y (p) the Fourier transform of the interaction energy 
+. 

between a pair of particles, which will be considered as proportional to a small parameter, a..,a, 
are the boson creation ~nd annihilation operators, respectively,and Vis the volume of the system. 

An'essential. facto!, ensuring the possibiblity of solving the problem, is the existence of 

the condensate, i.e. the fact that the· overwhelming-majority of the m_oleoules is in the lowest 

energy state. Due to the fact that the condensate contains a microscopically large number of 

particles N0 , one may neglect the noncommutativity of the creation and annihilation operators for 

particles out of the vacuum, ati; a 0 and replace them bye-numbers. Then, introducing the new_ 

Bose-operators 
0 + -¥2.. 
Op = ao No (11' ; 

+· 
g = _,, 

+ Cl N-Y1- ,, 
f' 0 IAo 

one may transform. (I;I) to the form 

H=Ho+li1...t-

- Nt, ' No + +' + . I 
Hti.t- :v vlo) t !V LV{r>(al'e-r + frtr + 2Crf,,)+ H 

· • 11'11 + 
Ho~ L 1m Cr~t' 

where H1 is an expression containing ternary·and quaternary forms in the 
+ 
g,g 

Standard perturbation theory is not applicable to the Hamiltonian in this form, as the mat­

rix elements corresponding to virtual creation of particles from the vacuum contain energy deno­

minators of the form 
t. 1 

~, Ps -+ ... + -:11i :i.111 
Such denominators are, in general, non-dangerous and do not lead to divergences upon in-

tegrating with respect to ~t, ... , pr , except in the case when two virtual particles with opposite 

momenta ~pare created. In this case the higher-order approximations will contain denominators 

of the ·form: (~)~ 
which lead to divergences. This means physically that even for infinitely small V the interaction 

between particles with opposite momenta will be extreme~ intense, i~ these momenta are suffi­

ciently,small. 

In the method of the paper (7) this dffficulty-is eliminated, by separating from the 1 . . 

Hamiltonian the ·.part -quadratic in g , B , and diagonalizing it by means of the canonical trans-

formation 

I) +. 
-bl(-:: 11K !.: t '\('I(. °f-K, (I.J) 

" 

:1 
ii 

I 
1 r s 
.i 
i' 
1'. 

........ 
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+ 
where 1 1 ~ are the new Bose-operators and uk, vk are real c-number func,tions of k, which 

are subject _to the condition 
'l. z: 

UK - 'V'I( = f (I.4) 

The diagonalization mixes up the particle creation and annihilation operators and in fact 

means going over to a new ground state which takes into account the interaction. Note, that in. 

lowest order in "'y this procedure is equivalent to the following. Choose Uk and vk such, that 

the contribution of all diagrams of the form represented in fig. I, corresponding to the creation 

of a pair of particles with opposite momenta out of the vacuum, vanish. As this choice of uk, vk 
. . . 

makes it unnecessary to take into account.such processes there is no longer any obstacle to the 

application of perturbation theory •. 

In the paper referred. to, the following expression ·has been obtained .for the spectrum of 

· elementary excitations ?fa non-ideal Bose-gas 

E (~) = if No ll'l1V(l') + J.tl! r , v m 'ftK~ 
or, approximately, for small and large p, respectively 

E (~) = { ~~ \l(o) \~I 

E (p) = l!:!1 
+ N, "{1) 

1111 V 
In first approximation the ground state is characterized by zero occupation. numbers 

4 
~f ~r . From (:J:.6) it follows, _that for the stability of C0 it is necessary that 

il(o) = ~ 4' ('t) d'l ;:,, o ~r.s) 
since this ensures the reality of E(p). Condition (I.8) exhibits the predominancy of the repul­

sive forces. It is now easy .to show, that the considered model possesses superfluid properties. 

In order to see this, note that due to the translational invariance of the dynamical system under 

consideration, there exists covariance with respect to a change of .the origin of momenta and 

velocities. 

Making the transformation 

p ➔ ~-rnu 

and constructing in the new reference frame the ground state c0 , which we will denote by Cu, it 

can be seen that in the old "rest" system the state Cu will be the. state in whic_h the particles 

have the average vel~city u. It is easy to observe, that the energy of an elementary excitation 

. for the"moving" state Cu will be in the usual "rest" system 

E (p) - (p.u) 

Let the velocity u be smaller than a certain critical velocity 

(I.9) 

For such.velocities the energy of elementary excitations is positive. Therefore, the slowing 

down of individual particles due to their leaving the assembly, or, equivalently, the generation 



- IO -

of elementar~ excitations is not energetic~lly favourable. Therefore the state· Cu will be 

metastable for; tt;< U ,:. • Thus we have a bou;d assembly, exhibiting the property of'. superfluidity. 

Eq. (I.9) implies, that in the case of ideal gas, when E(p) = r2/2m 
El~J "fri -:O ~~ 

r 
and there will be no superfluidity. 

We note in conclusion, that the method.of ref. (7) has been recently extended in the 

papers of·Brueckner and sa:~ada (8), in whi,ch a more realistic.model of Helium II is considered. 

Let us now. pass on to an-exposition of the theory of superconductivity. 

+ 
51( 
+ 
f-1< -0 

Fig.I 

---"' 
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§2. SUPERCONDUCTIVITY IN FROIILICH'S140DEL+) 

+) This Section .follows the papers (6) and (I.Cl) 

2.I The principle of compensation of dangerous graphs, 

We take as our starting point a model proposed by Frohlich, in which the Coulomb interact­

ion is not introduced explicitly and the dynamical system is described by the Hamiltonian++) 

++) We use here a system of units with n = r. 

(2,I) 

(2.2) 

where E(k) is is the coupling constant, Vis 

the volume of the. system; K, K', q are the wave vectors, a+, a, b+, ~ the creation and annihil­

ation operators for electrons and phonons, respectively and s is a spin index with the values 

+ or-~ In.a rigorous treatment one should have included in Hint the repulsion between the elect­

rons, at least in the form of a strongly screened Coulomb interaction, since the electron- phonon 

interaction alone is unable to ensure the stability of the electron system. Nevertheiess, when 

using perturbation theory, we are allowed not to take into account explicitly such stabilizing 

interactions, considering them as sufficiently small. 

Let us show that this model leads in fact to the appearance of superconductivity. 

It is a well established fact, that usual perturbation theory, i.e. an expansion in powers 

of the coupling constant, is not applicable since, despite its smallness, the electron-phonon 

interaction becomes very important near the Fermi surface, ~oreover, as already shown by Frohlich 

for the one-dimensional case, the energy is not an analytic function of the coupling constant, as 

it possesses singularities in the neighbourhood of the or·igin. 

Therefore, we first perform a canonical transformation, starti:ng from considerations similar 

to those made in the Introductiop for the theory·of superfluidity. 

Note that the m~trix elements corresponding to the virtual creation of "particles" from the 

vacuum always contain energy denominators 

£l"1) + ... + ~ ("u) + w(q1)+ ... t l<J(q,.j 

in which z(~)= \E(l() _ Et-I is the energy of an• el~ctron (EM> EF) or hole (E{k.]4 Ep) which becomes 

small near. the Fermi surface. 
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In.general such denominators are not "dangerous" and the integration. over the momenta does. 

not lead to divergences, except in the case of the virtual creation of a single pair without 

phonons. In virtue of the conservation laws the momenta of the particles of this pair will be 

equal and opposite and the energy denominator 2,E(K) will then become "dangerous" for the 

integration. It may also be mentioned that the spins of the particles nill likewise have opposite 

•directions. 
.) 

It must be stress.ed that in ordinary perturbation theory, .applied directly to the normal 

state these denominators cannot appear because of the conservation of the number of real elect­

trons. But if we mix electron and hole states by means of a canoninal transformation, the con­

servation law no longer applies and such den minators can appear. 

Generalizing the transformation C+ .• J)-from the theory of superfluidity, we introduce here 
+) the-new Fermi amplitudes 

+ 

or 

where 

o(.l(O::. l{I< Qll,t '\I'" a..1(,­
t 

. o( ll1 = lh a.",- + v"' a. I(,+ 

+ 
C-\. K t :: Lt I( o( Ko t '\f"k o( Kl 

' + 
(l_K- = UK o(KI - '\/'K o(llo 
. '. 

Ur. VK are real numbers, subject to the condition 
l 1 u." t 1/'K =I 

and symmetric with respect to the substitution 

(2.J) 

(2.4) 

(2.5) 

It is not· difficult to verify that this transformation retains all commutation properties of 

the Fermi operators and is therefore canonical, Note also that it is _a generalization of the 
. . 

usual transformation employed to introduce creation and annihilation operators for holes inside 

the Fermi surface or for electrons outside it, Indeed, if 

we obtain 

U1<=1 
1 

'\fk::0 

U.K==O I 'V"k=f 

o( llo = Q 11,+ 

-+ 
o( l<o = - ct_ 1( ,-

o(KI = a.1(,­
t 

c,( kl = (t ll,-+ 

E (I<};:> EF 

E (1<)< EF 

E (1<J;,, Ei: 

E ('f.) < EF 

so that olllo,~or example, will be the annihilation operator for an electron of momentum k and 

spin I/2 outside the Fermi sphere and the annihilation operator of a hole with momentum - k and 

spin -I/2 inside it. In the general case when (th.,Vi} i- (o",1} a superposition. of a hole and an 
... 

electron is encountered. 

+) We learned recently, that on the basis of the paper (6) Valatin (25) has shown that by 
means of this transformation the theory of Bardeen, Cooper and Schrieffer can be put into 
a clearer-and more elegant form. 

__..J 
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It will be more convenient not to be tied up with the relation expresiing the constancy of 

the number of particles 
+ 1 a. KS 0. KS-= No 

11,s 
where N

0 
is the to.tal number of electrons, but as usual, to introduce a parameter :\ playing 

the role of a chemical potential. 

Thus _in place of HF~ we shall consider the Hamiltonian 

(2.6) 

In due course the parameter ~ will be determined form the condition that in the state under 

consideration 

N = No 

·we could introduce from the outset an expansion in powers of the coupling constant of the 
I 

electron-phonon interaction. In fact such an expansion would be in powers of the dimensionless 

parameter 

Note that there exists another small parameter in this ·problem, namely, the ratio of the energy 

of the sound quantum to the Fermi energy: ~F • The parameterp is not strictly small and accord­

ing to an estimate of Pines• (II) takes on values between O,I and 0,49, whereas the ratio 

is indeed small. As the coupling constant g enters the Hamiltonian together with the factor '(ij 

and as EF is the natural unit for measuring energies, it would.seem that the expansion parameter 

is of the form ~ ~ • Ho~ever, the computation of .the following approximation shows that the 

results of the first order approxilllil,tion are modified by quantities of the order p, rather than 
w 

p Ep • 
This is due to the fact that in the virtual creation of a phonon pair_without Fermions, the 

energy denominator is proportional tow so that in the resulting formulas f appears without the 
IA) 

accompanying factor Ep • 

Thus the accuracy of the approximation can be considerably .increased, if. one carr.ies out a 

renormalization of the phonon energy, or, equivalently, uses the method of graph compensation in 

order to compensate the contribution of the virtual phonon pair creation. Then the processes of 

virtual creation of a large number of phonons, appearing in the higher approximations, will not 

deteriorate the convergence as the corresponding matrix elements will contain 
I<,) 

a - in a suffi­r E.p 
cieritly high power, and the reduction of one factor 

longer destroy the· whole small factor in front of f' 
w with an energy d~nominator will no 
EF 

In accord with the sketched programme we carry out the following canonical transformation 

of the quantized Boson amplitudes (cf. (I.J)): 

~~ = ~~1 ~q -t f '\ i-11 
where :\11 f'\ are real numbers subject to the relation · 

(2.9) 



- I4 -

From.the transformed Hamiltonian we separate the part 

H.. ,-, + + ~ + 
o = L € L~) ( ol l(oo<Ko + o(l<t IX1<1) + 'l. w{q) ~'I f1 

k. , . l 

in which £ (K), w(ql are the 11 ·renormalized" energies of the Fermion and Boson excitations res-

pectively, and include the,other terms in the intetaction Hamiltonian. We thus obtain from (2.I) 

U u I II 
ll = + H0 t H + I{ 

where 

• V = eo~t = i 1 (E(,cJ-))vi + lw(q) 1/1 . k , / 

\1
1 

, · 'w.'::i))Y.z. + + . + 
· ri. = ~, '}(~) ( ~ (U.11. Vi' -t Ut 1 'll'1.J ( cx\•o cx'l<'-t t ~1<1 CXJ<1o)(~

1
+ fA1) ( g t ~- ) t 

1<, ~ I q ! V . i . i 
l(~~-q . 

, )½. + + ( -t 
-f 2_ 1c-1)(W(q) (UkUll. 1 -'lfkV°At)(ol1-;0 tXl( 1o + (Xk11-:Xk1J -~,tfq)(~'lt ~-'i) 

1< i.:'q 2V ' , k'•Jc•q 

1{11 = L i (£(k)- ~)(u;-v})- E {K)} ctk. tX't, + ix1t1 °'k1) + 2 2 (l:(11-)-71) l,h lrt (~u ti + IX 1(1 IX1r.o) + 
I( . k .-

, . !. t ~ + ,tt 
+l~W(~J(~,+}-<1)- w(q'J ~'1f'f + 1w(q)~'l_µ'I ( ~q~-1+ ~-'l~'IJ 

~ , . . . 

Let us apply the principle of compensation of dangerous graphs in order to compensate away 
. -+ + t + 

the processes of virtual creation of Fermion o{koil'-'t and Boson ~'I ~--J pairs out of _the vacuum. 

To the second order we obtain the following equations . 
· It I -1 I . 

:2. (E{'K.)- J) l-lttrk - < C.,,. CX1r.1 oCt.o H H. H tr>= D 
I 

* I •I I 
tu(~JA1f1 - < C.,,. 6-q ~'I ~ 1-l. Ji Cv) = 0 

where Cv is the vacuum state vector corresponding to zero occupation numbers. 

To the same order the renormali;ed energies f (k.) 1 w(1<) are determined by 
it 

_ (E(1<:J-~)(u~-vf) -l(1<.J- <c,r cx,,.a H1
(J-1.-'l(1t1f1H't. c,,->"' o 

* . 
w(q)(~;+,µ;J- ~('1)-<C.,,. ~, H'(~~-w(qtH';1 Cv-;-='J 

(2 ,IO) 

(2.II) 

It must be stressed, .that in the above equat_ions the expressions for the matrix elements 

take into account only connected Brapis. Due t6 the symmetry with respect to the pemutation 

SI);! (0) nothi_ng_would change in.Eq. (2,II) if o(ko,t1r.o were replaced by_r,{,,,f ,tc From Eqs, 

(2:IO) and (2.II) we obtain 

·{ . I 2t(k·k.1}w(l(-k 1) · L l } _U~-vt~• .it(t-k'}&.>(K-11
.) •( t 

E(k)- •vL -( ') _ ~ (~ktt-fUe.t} (uk,.vi,)-;\ Lh1'i -zv'-w(l<-lt.')-tE(kJ.ff(k? ~k!~+At-}Util{,C2.I2) 
. ,_ 11£.JK•k.+E{t}-tf(I<') 1· t' 

1'1,1-t,-(;\'ltf1)!.~2 (1'tVk•tt.{t,'Vk)% - . 
· · 2V 1 _, ( J - - 0 k, t W ~ t f (k) -t £ ( k ') 

•'- K ~1 

(2,IJ) 

............. 
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(2,14) 

(2,15) 

2,2.- Simplification of the expressions. 

We undertake now a simplification of the above expressions, which on the one hand are 

extremely complicated, and on the other hand still contain terms which are of a higher order of 

smallness than the chosen approximation. We shall retain only terms of the first order with 
·W 

respect to the adopted small parameter_ . f' _lop • 

We start with the solutions of Eqs. (2,IJ) and(2,I5) 

( ,_ -Vt 
(71+ (:::J1 _ _;_1 1~,UtV,.1+U.k1'V"d l 

, !"'1 l v "••' ~ q w(qJ+ t( ... J+ eM J 
k'- • =l 

. . . . . , , , -Sf. r6) 

1 11(-t) . 1 I . . . .3 1}r ~·{~JI ,"-~\,,,u.,v-~'.!c.) ~ 
w(1l '; :)(q) 1- ~ 2. (utVt•+L(.,v.) [----+---- I- ~ ... .,. , 'r zv i:.,•' - ££kit [(k'Jtwc~, 1£1'.Jtl(i:.'J-wc1, v. K,•' ..,,v-tt (t/+u• 'J 

~l~ ~•4 
Since u and v can differ from their normal values O, I only in a layer of _thickness < w in 

the neighbourhood of the Fermi surface and since £(1() .... IEM-1:FI , we obtain from (2,16), retain­

ing only the princiyal terms 

(2.17) 
E ( k} I. s.f 

For the simplification of Eq. °(2,12) we introduce the renormalized function g(q) 

""1c J == tc , ) 1_.;;.:_~41t("_'I_·· __ !!!l{J e"·'l'' r1 ;'. .... c2.rn) 1 q 1 't.) • ···· V 1<,11.' E(K}-:E(i:'J_j. · 
. . . k'-•='\. • . 

This renormalization is possible a_s long as the values of the coupling parameter are 

sufficiently small. -In any case they. are not allowed .. to exceed a value for which the ·renorma-
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lized sound frequency w{q)and the renormalized g(q) become imaginary •. The same limiting value 

for the coupling constant has been-obtained by means of another method in the investigation of 

the stability of the lattice with respect to the electron-phonon interaction in paper by s.v. 
Tyablikov and one of authors (I2) • . 

We put further 

1 (K) = E ( K) - .i 1 il(IM:'} w (11.-11.'J ( u.;, - v-:;) - A 
. 2V "' w(1'· t 1H f°(1:J+ E°(t'J . 

"'!.( ~ (' .'v) _ I ,;;.- '} IH'-'}w(K·k') 
- l~ - - ' ~-...,.,......,,....:..-....:..,,,..- u. ,,r I V "' w(K-K'YTT("J-+ r,.,.,, JC 1< 

Then, by (2.I2) we obtain 

and 

L i ) . l ~k.j l 
U.i.: = 1' t 1 + 'fc'"(1cJ+1'M J 

1 I ) 'j(~J } 
'V" = l. t 1 - 'f C'(tJ + lt(i:J 

C( _ 1 "'"° '¼'-(11.-K'Jw{K·k'J C,(1<'} 

~) - ~v ';, · w (K- k') t £(1< 1
) .+ l .<~) vc1(1C'J,t 31(k'J 

(2.I9) 

(2 ,20) 

(2.21) 

(2.22) 

Consider now the last term in the L.h.s of Eq. (2.I4), which is always small (for smallp 
-~ ~ ' 

it will be of the order We · ) . F'IU'thermore, when E (1<) increases to the order w the factor 

Ilk vk, vanishes praotical'iy. Therefore, in the chosen approximation, we may replace the deno-

minator of this term by 

[ W (K- 1'1)+ £ (k'J] z. 

Thus Eqs, (2.I9) - (2.2I) imply 

£(le:) { 1 
.. ,.( -+ l. "'° _j Ii:- 1<

1
) w (k• k'} · vt-cw ... {utu.% t t 

k' w(l(-k1Jt f(l:1}1 1- [E(KJ]f k k' t V'k lft•) } = ~ !1(1<J+ cz("J 

For the normal state, when 

1,(.1<: 9G(K} v. = e" (r..J 

we obtain 

11\. (i<J= E(k.J-) _ .L 1 i1Ct-i.:'1wci:-1t 11 (E>~(k'J-ep(K'J) 
2.v "' wCi<-k'Jt ltci:~-Ep/+ IEC1c.1J-Epl 

(2,2J) 

(2.24) 

N 

f11. (KJ:: (1- ~I\ (KJ) ll'11(1CJI 
( I ~ °j 1(1C-JC') ;:,(ll-k') ?"" "' = v 'ii c i:i c1e-11.'J + l.,<1<'') 1 _ c £°., (KJJ z. ( e~(KJ&~ (k'J + e F (1<J ep ('•-'>) 
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Here the subscript _!!·.· ·denotes quantities in the state (2.24),'.The state corresponding 

to the nonvanishing solution of Eq. (2.22) will be denoted by the subscript~• In both cases 

the expressions 1M-{E(x)-l:F),~(k}Will be of the first order of smallness but the differences J" (1</- l, 1~, 
~.(kJ•7,1tJw111 be of higher order of smallness. Therefore, (2 .2J) yields 

so that in the chosen approximation 

£5 (KJ-= '\ E': (k)-t c_ 1(KJ 

Note, further, that in Eqs. (2.2I) and (2.22) E(kJ, 11(k)f may be replaced"by· !EM- EFI. 

We are thus led to 

(2.25) 

where 

"'f(1tJ= E(1tJ-Ep 

This result has been derived without the restriction to spherical symmetry. 

By means of a simple renormalizatio.n of g(q) · and w (q) we have considerably improved the 

degree of accuracy of the theory, since we have used asymptotic approximations not in powers of 
CJ p but in powers of p EF • The quantity 

e~~t ~ 
must no longer be very small. It suffices that the solution C(k) 'of Eq. (2;25) be small compar-

ed with (..:I (i.e.only, "exponential" smallness is required). 

Eq. (2.25) has a peculiar singularity: forf, o .the ,!3olutio~ . C .vanishes as v.l'.p ( .. .A/tJwhere 

A:C41'1Si::>O. This is due to the fact that the integral in the r.h.s •. of (2.25) becomes logarit!1-

mically divergent in the neighbourhood of the surface !(K)•O , if we put C "' 0 under. the square 

root in the integrand. In this situation one can easily obtain the asymptotic form of the so­

lution, for small g: 

tt 
~t= t ~ ~t(l<_p'1(H:))~ 
.. , , •l .· . 

The cut-off momentum q,.,, does not appear explicitly in these expressions, due to the fact 

that, formally, one may consider that w (oi)-= 0 for l'tl> q M • 

OCil.tJI.KHCHHJ,.tii HHCTIJTY, I 
uepuwx accnenouam1P, I 

51,11;nJ11CTEKA l 
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\ 
2.J.- The energy difference between the normal and superconducting states •. 

We now evaluate the diff~rence 

Hs (>.) - H11 t>.) ·.· (2.26) 

.between the eigenvalues of the Hamiltoni~ri in the eigenstates s and·n for the same value of - --
). ,,, EF. In the chosen approximation we have 

H{,.) = u -< Cr 1{
1 H;1 H' C,,.)=: i 1 (E(k)-?.)tr;+ 1 W(q) !'; -< c,, H1

H:
1 
~' Cv) 

- I( 1 

1 or, after some manipulations 

H( .) "'°( ) t ._,. t I "° j1
(k-k1}i:i(K-Jt'} ( t ! . 

>. =:iL E(lc)-:>. tri.:+"'-"''~'f'! -yL ~l1t-1t'Jt'eM-t'e(1t'J Ut'll',.,t U.tVt uk,v-t') 
14 , 1(

1
1(1 W ' , 

kiK ' 
(2.27) 

For-the difference (2.26) we obtain from (2.27) after some simplifications and retaining only 

terms of the desired order of smallness 

' . 3 -

Hs (:>.) ~H~ f >-) =. - t eG-(K) :: C(k) -i eF M ~: CM 
or,: by (2 o2I). 

H,(~J-1{11{?.) t \ . ' 1 J l lM ]1. k.l ~(It] 1.t} 
v = -1(2.j, )di< ~c (1eJ+ 1 M 1 e~ M 1- 1~1(11.1+1'(1ejj + eFc l 1 + (c1c.,.,+1•c1e1j 

(2.28) 

N At 
In order to determine the difference E, - E.. between the energies of the two states., 

for the same number of electrons N = N0 , note that 

H('>-)=E(~)-i,!Y(~), - o~~J: N(~) 

We obtain, consequently 

N N - . ·· • ' - - . 
E - E = Es [ ?. 5(NJ1 - En [ ?.11(N)] := H~ [?.s(M]- H1,[A1,(N)]t [ '.>.3{N) -An (NJ] N = s ti. . . . . . 
=Hs['-s(N))-H 11 Ds(NJ]+ H11[?.s(IVJJ-H11[?.,.(NJ]-t [?.,(N}-'>. 11 (N)]N = 

=: H5 [ '»s (NJ] ".°• Hii Ps (NJ] + H11 Ds (NJ]~· H11 [;h (N)]- [ ?.5 (NJ- 'A,, (NJ)(~ H,.{~)) ·-=-
. ~;>. ).-.),,(kl 

~ 

= H5('>-s)- H11(?.s) + 1:[?.s(Nf;..~ 11 (N)]t' o;~;. 

~ 
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The second term of the last expression w~ll be_ of second order of smal).ness as compared 

with the first,. so that, in .the approximation under consideration 

(2.29) 

Thus the energy difference is determined by.the same Eq.(2.28) as Hs(~) - Hn(A)• 

2.4.- supercondutivity. 

We now establish the existence of superconductivity, since we do not·take into account . 
the aqtion of the magnetic :field it is more c_orrect to say t_hat we establish the existence of 

superfluidity for the electron fluid in Frohlich'.,s modei. This is achieved by showing that 

,there exists a state with nonvanishing average total electron momentum, in which the energies 

of the elementary excitations are all positive. In this way we establish the possibility of 

exitence of a current-carrying atate, which is stable with respect tp weak perturbat_ions., 
' In order to remain formally within the class of states with vanishing total momentum and 

to be able to use the foregoinfesults, we perform a translation of the origin in momentum 

space 

CJ.Jo) 

Evidently, .the state with vanishing total momentum· in the new frame of -reference will 

have in. the·original frame a total momentum. Np• 

On the other hand, the translation (2.JO) replaces .E(k) in the original Hamiltonian H 

by 

E(i<-~) = E("l- (i,,D;~~')+· .. 

1£(k) 
The additional term -(p , TK ) leads to the following additional term in 

which to b.e included in H11 • Supposing that the· momentum p is so small that 

a.ti,J. 

(2.JI) 

H -

are of the order C(k), the i~fluence of the addi ti~nal term on Uk,. VIC. , ··A, y- in II may be 

neglected due to its smallness and the onl1 effect wi11 be a modification of the energy of the 

elementary excitatfons: 

. We introduce the notation A for the energy gap separating the non current-carryihg 

ground state from the elementary excitations, i.e. A denot'es the value of C(k) on the Fermi 

surface. 
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Since E(k);:,,!l the elementary excitations·_rell!ain positive for ,the current:-carrying state if 
. •·. - . - . '. ,( ·. . ~ . ' . '. -· . . ., 

the average velocity of th~ electrons is so small that 

\ ~ 0
;~"'\ ~ A , E{k)"' EF 

or, in the sphe~ically symmetric case 

\1.t,KF\ ~ ~ 
where u is_ the average velocity. 

Consequently, for sufficiently small velocities tne current-carrying state remains stable 

·w~th respect to small perturbations: 

Of course, for· A = 0 this is no longer. tru!l, ·s-inc·e in this case the energ,ies of the elemen­

tary excitations coti1d take on negative ·values. Tl: must b~.str'essed, that insofar as we'do not 

take into accoµnt th·e action: ,of a magnetic field, the current-carrying state must be considered 

as metastable·. Its energy differs from the energy of the "restn state by an amount proportional . . 
to u2 •. This increase of·the energy can be calculated formally by intoducing into (2,JI) the 

supplementary ·term· 

' 
"" o(. ~ )tEM 

. 2-·· /_.· , ~- P· ';)Kql<~ .• 
.c,~" 1 ,1, J 

and taking into account its influence upon the energy of the current-carrying ground state • 

We want to stress again the analogies with the case of a Bose gas• In· that case the Fermi­

sphere is replaced by a condensate in the,lowest energy state~ In the absence of interaction, 

i.e. for an ideal BosA gas, there will be no superfluidity. It appears only in the presence of 

an at least weak interaction. At the same time there appears an essential interaction of particles 

outside tbe condensate with opposite small momenta k, ·a fact whioh is responsible f_or the inappli­

cability of the usual perturbation ·theory. 
~- . 

-In· the case of an ideal electron gas, considered above thesituation· Ls quite analogous. 

Without interaction there·is no superconductivity (superfluidity) and only the electron-phonon 

coupling, responsible for the interaction between pairs of electrons with momenta ±k and spins 

± I/2 leads to the app~arance of superconducti;ity. One can reduce approximately this interaction 
~ 

to an· equivalent coupling between the Fermions, which pushes the analogy with the Bose gas still - . . . . . . . . 

further. 

Until recently it was thought that only Bose-Einstein particles can exhibit superfluidity. 

Due to the situation that arises now _in the theory of superconductivity. this point of view must 
• • • • • ,·. • < 

be revised. ·,._. 

It is possible that nuciear·matter is t-'he real case on which the ·superfluid1ty of Fermi 

systems should be investigated. 

___J 
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- , -;-,-, T1IE m5EcTR'lThl OF-COLLECTIVE- EXC-ITATIONS 

OF THE SUPERCONDUCTING STATEx) 

·-------------
J, I,- Application of··the method of approximate second quantization to a system with 

Coulomb interaction, 

Until now we studied only elementary excitations of the simplest "individual" type-the 

appearance of a fermio~ of energy f (\i.r"o:r-a-phonon of energy w (1'). Now let us proceed to the 

investigation-of the more complicated branch 'of the spec~rum corresponding to collective excit­

ations of Fermions, A typical example of such excitations in Fermion systems are the plasma 

oscillations of a dense electron· gas, 

A correct and sufficiently simple analysis of these may be carried out by means of the 

method developed by Gell-Mann, Brueckner, Sawada, Brout and Fukuda IJ/, In order to obtain the 

fundamental approximation, one may restrict oneself to the summation of only those graphs which 

do not lead to the destruction of ·the elementary particle-hole complex (Fig,2), 

Fig, 2 

From the physical point of view the importance of this kind of graphs is due to the 

existence of the Coulomb attraction between a particle and a hole, In order to obtain these­

cular equation for the energy spectrum E(q) of the plasma oscillations one must sum over all 

graphi of the type represented in Fig. J 
I<'-+ q 

- I( 

Fig, J 

For this summation one can use the method of approximate second quantization and thus 

construct a simplified Hamiltonian which allows of exact diagonalization so that only the desir­

ed diagrams are obtained, yielding however the same contribution as the exact Hamiltonian. 

x) This Section is based on the investigations carried out by N,N, Bogolueov and in part 
(subsection J,4) by V,V, Tolmachov. 
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Under these conditions the diagonalization of the simplified Hamiltonian naturally y-ields 

the same results as the direct summation of diagrams.· 

In order to obtain such a simplified "equivalent" Hamiltonian the following requirements 

must be fulfilled: the complex of Fig 2 ts to be connected, the vertex parts of the simplified 

Ha~iltonian must give the same ,contribution as the vertex parts of the exact one, taken into 

account in the graphs we consider~d and, finally, the energy denominators are to be the same in 

both cases. 

The first condition may be satisfied by descr;bing the creation and annihilation of the 

particle-hole complex not by means of the products of Fermi-amplitudes, 
+ + 
()..K+q ~K ~k Q.k+q 

as in the exact case, but by means of Bose-amplitudesx) 

+ 
~I\ (K) > ~ q (K) 

with two indices k 1q. 

The considered graps contain also vertex parts li_ke those of Fig. 4 

Fig, 4 

The corresponding terms in the exact Hamiltonian are 
+ + + + 

pl\ (IC, k') Q Hq !11._ ~r.(.q gr., 

p; (K1 \1.1) g .,_, 0.k'-, £ .,_ llk-tq 
' + + ' 

Q~(k 1 k1} a,.,_-t~,.,_ e.,_,Q1'1+q 
-------·------

x) Notice that in the graphs of Fig, J all the· complexes are different: 
By using Bose-amplitudes. there may arise c11agrams containing several identical complexes, for 
instance with k = k', which· cannot be reduced to one, But such redundant elements will lead· only 
to infinitesimal contributions to the elementary excitation, since the integration is carrie·d 
out over all momenta k,k',k'' and we have a linear chain of complexes, 

An interesting situation may arise sometimes when calculat'ing the ground state, when it is 
necessary to forbid explicitly the repe\ition of identical complexes in graphs, In these cases 
{I4J one should consider the amplitudes ~,~ not to be of the Bose, but of the Pauli type, In 
other words we have to prescribe for all of them Bose type commutation relations, except for the 
replacement of the relation 

+ + 
~~-~~c1 

by 

'·-
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Therefore the interaction Hamiltonian in the simplified model is to be constructed of terms 

· of the form 

+ f 
pf (k, 'I') ~ 1 (11.J ~-q ('1') 

4 . 

p 1 ('J, 'J'} ~-1 (i,:'} ~'1 (It} 
i" 

Q '1 {) 111'} ~'1 (k} ~'1 (11 1} 

Finally, in order to obtain correct energy denominators it is necessary to choose the 

expression 
f l 1 f-t(K-tq) ➔ L(IO) ~, (ll) ~1(k.} 

~q . 
:1s Ho, the self energy of the particle-hole complexes. Here Ei" 

1 
E_ stand for the energies of a 

particle and a hole respectively. 

Thus we obtain as the simplified total Hamiltonian a quadratic form.in Bose operators • 

Writine; down the corresponding secular equation we obtain an equation for determining the energy 

E (~) of collective excitations, for the plasma oscillations considered. 

. For fixed q E(q) will be an isolated root of this equation corresponding so-to-say to, a 

"bound state" of a particle-hole pair, where as the continuous spectrum is a spectrum of ordina­

ry one-fermion excitations. 

We have just outlined the characteristic features of the approximate second quantization 

method as applied to the well known case of plasma oscillations of a dense electronic gasI5, 

since this method will be the basis of our investigation of collective excitations of the super­

conducting state. 

J.2.- Collective excitations in Frohlich 1 s model. 

At first we notice that in Frohlich's model, which is being investigated, there exists an 

attraction between electrons with opposite spins and mom.enta ,1a. k with k in neighbourhood of 

the Fermi-sphere. An attraction of this kind also exists between holes. It is.clear that such 

an attraction must exist also when the corresponding momenta of the particle·s of a pair are not 

exactly opposite, but, say, equal to ·k + q, -k with sufficiently small q. 

Let us proceed, as usual, to fermions (k,O), (k,I) characterized by the amplitudes 

+ -1-. 
o(l(o / ,:/.. ko j IX. ~I , CX~\ 

Note, that the creation of the pair 

·+ + 
<X11+~0 o(k1 

does not modify the spin but modifies the total momentum by ·the vector q. Thus, the existence 

of an effective attraction between the. fermions with (K-tq,o), (k,1) for sufficiently small q, is 

easily detected. 

This gives·us an important hint as to a programme of applying the method of approximate 

second quantization. 

_ _....J 
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correspondingly we introduce as an "'indecomposable element"'°of the graphs ·the complex 

which is charactrized in the exact treatment by the products of Ferm_i amplitudes: 

In our approximate model we associate to this complex the Bose-amplitudes 

with two indices. Now we shouid obtain the Hami~tonian r· describing the interaction between 

two different complexes in_ the formx) 

Then adding the pair self energy we obtain the simplified model Hamiltonian 

r ~-L 1 E(H~)-t E(•i'\ ~rM~l'Mt r' 
",Y 

(J.2) 

· The diagonalization of a such quadratic form may be reduced to solving a system of linear 

homogeneous equations with. respect to the c-number qu~ntities l.f K, 'Xk /I5/ · • 

1 i (K:trJt t (r.)-E 1, 'fp(tJ =-;·.Arc~,•'} '.r(i'J t f, ~ (!(, lt'Jir (~•, 
(J.J) ri (K-~H 1(1t)-t I: 1 l~(J::J =; g_l1:,1t'}lf,,(1::'J+; .A_l'(~,1t'};(r("'' 

with· the normalization condition· 

(J.4) 

For a given fixed momentum p the energy of collective excitations E ~~,- is determined 

by an isolated root of the secular equation corresponding to (J.J). In order to obtain explicit 

expressions for A and B we remark that in the simplified model 

Ar ( t, 1t'),: < ~-,, (KJ r' ;, c11•>>o 

By (1',ll') ~ < ~-r(J::'J~r(t.)r')o 
where the expectation vatues are with res!Ject to the 11 B-vacuum11 , In the exact Frohlich model 

. such vertex parts are brought into existence only through the exchange of phonons, 

x) Without any calculations one can see that the quantities Ar (k,k'], B,.(K,k'} must be 
real, because the Hamiltonian of Frohlich's model is invariant with respect to time inversion 
and contains ·only real coefficients •. 
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Taking into account, in first approximation, only the exchange of one phonon we put 

- Ar (t,t')=- <<X'r1 o<i:ti,o H1H;1 H'~t~p~ 1 i:,1):, 
(J.5). 

- Br (t,r.')= (o(t.'1 o(k'-l'o o(,~ o(lt)'O H'H;' H'>o 
where H' is the electron-phonon interaction Hamiltonian (cf. the formulae of§ 2), which may be 

written in the form: 
I 

I ,., ( ~{q))"i" ) t + 1 H-:: L ~(q) 2V (uk'V'k1tUt111' .. (o("oo(,.11-t o(,,olr.,.,)(f>'\+,-,)t 
l(Ai 
tLk:q . , 

~ l)t (+ + ) + ) -t L t}(q) (~ (U1Uk1-'l/"._V.,) <X~ o(k1o + ol.t11o(111 {,'\+ ~-, 
K, 11-', q 

. 11.'-k•q 
Substituting these expressions into (J.5) we obtain 

11 ( ,1 "'1 c· , i:; (t-k'J( · { 1 . · 1 } + 
.rip t, 1' = i 1'-k ) ~ Ut'tr U11.+p- 1fkt+r'V"ktp)(Ut•Ur'V,/V'i1) ~ ~ ~ -t f (i:'+i.J + 'l (k]t Gl ('l.i.1t.J 

. f(k-t/')+ f (k'}+w(k!.k) . r . 

+ a,.Crl J_ (u' ,, , +u ,,,. J(u v; tu ,r ) aic J w<,J (u.ti,,,.,,+ul,,,.l,+rJlu•-1rv1 +uit11'11.+rJ CJ.6) 
. a :.v "fr k • xtp kt' Jr. 11. ,"'tr t . er r zv r cv.'+r,J + l £1:'J+ r C"-+pJ-t ni:1t rz{pJ 

11_, ( '), ... t. I w(t(.0J(Uu,'lrt1tUk1 V-u,J(U11.t.r'll"kfl.(1<,rkLI')_ 
I' 1'.,ll =-~(t-k-rJ 2.V E(k')-t1(kt)'}-iw{111-1'~,, 

. . ( } ,.., ( } (U •tp'll'k t lit V'1ttp ](U tLy ,rk, .+ l(a,1fwtr} 
,.., (k-k_'.ir) (Uk+r"'•'-t.U..,,'lf'up) Uklp'V't +Ut'll"kt.l" t a'(r} '!ft. E ~ J ~c +' 

-fCi-k'+~J w z.v · n--.,+ici:'--rJ+ i:i(k-k'+l'J o 1.v cx-trH cc•-+ "'Pl 

+ r (y) w(rJ (U1<+y1'-. t Uk 1/"k+p)(U"tr 1f1<1 t U11 y".=.I") 
. 'LV . E (11. 1-p}+ f (k1) t w ,.,, 

To simplify these complicated expressions, we suppose that for small.values of p 

g (p) = 0 

This assumption seems to be reasonable from the physical point of view.(II). 

(J.7) 

we can put 

Let us now simplify these formulae, in order to get rid of terms of smaller order, than that 

taken into account in the chosen approximation. First we notice. that in the process of collective 

oscillations only large momentum transfers k - k 1 are essential, as may be seen from the 

equations (J.J). Therefore in quantities of type 'w(Y.-k1-p), ~(k-'k1-~} which depend smoothly on 

the momentum, we may neglect the additional momentum p. Further, since the enereY iayer, which 

in fact determines the effect, coritains'.only energies ?(~ small compared with~, we replace . 

~ 
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(as was done in the derivation of the equation for C(k)) the quantities 

£ (k) 1 f ( t.1-r} , , .. 
by 

where as before: 

We thus obtain 
J (IL,tr.') ) ( Ar (1;:, k') = -v (u•'tpl(14+p -'Vi,.'+riruy L(,_,Uk-'V'.,'lfkJ 

Br (v., 'J.'): I__(~II'} (u,,.., ,rk, + u,., 'V'Ht- )(1-h'-r v-... t -v-,.,.,, u ... J 

The expression J (k 1tr.1) here is the sam_e as in the equation fo_r 

We put for abbreviation 

LA.~• u._ - ,r ,,.,,,-.. = L ( i<, tr.'} 

U.v.• '\l')I. + '\ft.' l.(k = M (k, tr.') 

·Then Eq. (J.8) may be represented in the form 

Ar{IL,IL')= JC~•'' L("-tr,l'+r>L(11.,k'J 

Br (i:,v.')-=- J(~"-''M(Hp,tr.')M(v.,•L~J 

C (k): · 

(J.8) 

(J.9) 

J.J. The resolution of the secular equations. Longitudinal excitations, Considering 

the secular equations (J.J) and introducing the new variables 

lfr(tJ+ Xp(k)= ~,M 

If,, c--1- Y-rCi.J-: e,M 
One obtains M(i:-tr k'}M (k i:!..~)t M{i<-p k'}M(K )I. l.+p}) . 

. \ ~l~!~ t()I.-~) + t(k1}0~(1'-)- ~ ~J{1L,1L'}{)..(k~F,k't~~L(!L-p,1L'-p) l..(t,tr.'}+ ' J . 2. I . ' JBp(i.'): 

1 i tr.ti>- E(k-1!) 7 · • .L ~ JC ,, {. L(ktr 111't~l- L (x-r ,t'-~J L { ') M(t-+r,-.•J M(~,)l.'-rJ- M (t~h "'JM(t, t'+ ~J} ~ (•· ,
1 ::,lE-. 1 i -r J~p(k.)+ V ~ 1£ 1 )1. 2. k11' - .2. • Vp ~ 

(J.IO) 

{ 
?(u,,Jt tcH> + r Cti 1 ~, ("-J- L 1 J (IL,t'J { u" .. r, ll'-t~J.+ L(t-p, t':t! L (k,•'J- M (l<iP,k'J M(K,t!..~,; M(k-r,k'J 111 £", x~rJ J ~P l"-'J 

~ .J V k' · 1 

:: \E - 1 ('t-t~)~ £(11.-~ J Br (11.J+ ~ t, J (tr., k') { L(ur, i:'t~) ~ L (11.-p,k'-~) L(t,tr.') + M(Hp, l
1

} M(x; ~'-p)~ M (K·p,i'JN (k,k4'1 e,{x'l 

(J.II) 
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Consider first the case p = O, Then (J,IO), (J,II) will_ simplify and·we obtain: 

i 'f32(1t}t l 1 (K} 00 (t) - J... i.. J(k; k')00 (t 1): 'f.Cj} 0 (k} 
V t' 

2. htMt ct(t) ~o(t) t .L 2.. C(k)C(t')-'f('t.}'f(k'} J (t,x'}~o(t')::: E &o(kJ 
. V k' iJZ(k}t Ci(k} ftt(k')-t~1{1t') 

Note_ that according to (J,9), this system admits the solution 

~o(~)= 0 0
0
(t)= S C(kJ 

~31(1tJt l 1(t) S = l<>~t 
£=0 

(J,I2) 

(J,IJ) 

We thus reach the important conclusion that the spectrum of collective excitations starts from 

zero, 

Let us turn now to the investigation of the collective excitations for small, but nonvanish­

ing p • To avoid complicated calculatio·ns we restrict ourselves to the case of radial symmetry. 

First of all we must expand the· coefficients which enter our equations in powers of p. 

Since in the interesting energy domain E(k) · is extremely close to Ef , we admit that 

J(R+~)= s(~.e)+ J(kJ 

where Sis the absolute value of the electron velocity on the Fermi-sphere and e is the 

unit-vector in the di_rection of I{ • It is more convenient_ to choose the direction of p as a 

·reference axis for e • 
2 

Notice further, that in the expressions containing It+ C(3J we may neglect the variations 

of C(J) as compared with 1 , since C(1J is a slowly varying fu~ction. We obtain 
. ~u 

l((k-t),)-= U{I)+ Speo ~
1

+•·· 

I(1c+~): E{"'s)+s~e. ai{11+ ... 
. ~j . 

It is convenient to introduce the number 1 ~nd the unit vector e as new arguments in 

place of the vector k; Thus we are led to asymptotic formulae of the type. 

L(tt11 r't"}+ l.(r-h l(L11J T""' cc' 
r' r '' 'L(kt')=.it-»- ··--ts"'e..P,{i'f')-+spe:P{"'"')-t 

.2, . , !I.. ~;~1.4 c1. i'f"-tc'1 r , ,. .,. ... 

L(t-+p,~'-ri~L(t-p,1t'-~'L(1<,1t')= s~e.,Q
1 
tr,T')+ s~e.'Q1lr,1') 

M(kt~, k'JM(~,"L;) t M{k-r,k') M(,.:, x1
-1p} = ! _ n' - cc' . t ( sr>'-{ eo'- R,(r, "f,j .. eoeo' ~2lr,T')-te~t ~~(u')➔ rl1/r r'} 

i 1. 1 lJ'+ ct h"+ -:rt . ' 

l\,\(1t.+p, ,,.,, M(t,t'-r)- "'1 {t-~, t'J "'?(r,~~fl = s ~4 s, (r, r') + s; t: s'l (r, T' )t ... 
i 

We now apply ordinary perturbation theory to the secular equations (J,IO), (J,II), considering 

the quantities p and E as small of the first order. We put 

G(IL): 9o(l) + s~eo 01(~}+ ... 

~(ll)= E~1l'tl+ s~e. e,(TJ-f ... 
C 

eo (1]= s ~Il-t ct s" '•"l'-!t (J,I4) 

~ ...... -------~----......... ----_____,;_____.---~~-~-~------
... 
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Substituting these expressions into (J.IO),(J.II) and separating terms of different orders, 

we may express er ( J ) , ~1 (1), 'ij'dJ) in terms of the 80 ( J ) • Using the resulting expressions, 

we expand the equation (J.IO) to the second order of smallness. Thus we are led to the relation 

(J.!5) 

where F(E,sr,)(.) is a quadratic form w.ith respect.to E,,~ . Vie multiply (J.I5) byC(k}[%Vt(kJJ"' 

a.nd take the sum over k. T·aking into account Eq. (J.9) we obtain 

hence 

E = o(s~ 

where d. is a numerical coefficient. 1,So, if we omit terms ·vanishing together with the. parameter 

-1. an r-= ~ clE , we have 

Consequently, we obtain two roots for E. In order to determine the sign we turn to the norma­

lization condition (J.4), which we write in the form 

Hence 

and therefore 

E>O 
Also, in the chosen approximation 

Let us note now, that collective excitations will exist, as long as 

where· b. is the magnitude of the energy gap (i.e. the value of C at J = 0). Indeed, in the 

opposite cas~ I:= Ee(~) will overlap somewhat with the Fermion spectrum 

and ceases to be an isolated root of the secular equation_M This_ intuitive consideration may be 

confirmed by a direct calculation. For simplification we retain only the 'principal terms with 

respect to the parameter p and replace the function 1(t1 k'} by a quantity ;r which is constant 

within the energy layer 1::1' 1 • .. , .,, and zero outside it. 
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In this approximation we obtain from (J.II): 

. f (k-tt>)- f (k-p} 
E- ~ 

~ (11.J = - e,,c"-J r f (k}-f ~ £(1t•j,J 

Substituting this expression into (J.IO) and restricting ourselves as before, to the principal 

terms only, we obtain: 

\ f (It) t f(k-tr)-t t~-p) 
t 

cs - rc1r. .. ,,,~ f(Jt-,,, l 
'£(11.J+ ·fo .. ,,, .. r,k_,,, ) 8,.M ,,;_ jv !. e,,c-,.•J 

% k' 

The corresponding secular equation is 

1 = I.. 1_) ~ 1 ,.. ~ + ~ t""( J 1 
2.V It. 1 E (1t) t E (lt-t ~ - E E (1t]f £ It-~ -t E ] 

On the other hand the equation for C in the considered approximation has the form 

C:l.cI..l-
2.v e(1tJ 

Therefore our secular equation may be written in the form 

. I I I 2.)--+--- -1=o 
1r. 1"Ec.,.1+HttrJ-E eM+U,-rJtE ?c1r.1J 

For fixed p ·this equation has a continuous spectrum 

E= E(lLJt £(1l-t~)t o(t) 

where O ({;) ➔ 0 , V ➔ co 

(J.I7) 

The continuous spectrum starts from E:iC:2~ and is charactrized for a given p by the vector 

index J:• It corresponds. t_o the excitation of two "individual" fermions. The discrete spectrum, 

corresponding to collective .excitations,• exists only for .those values of p for which the 

equation (J.I7) has an isolated root 

E < .2~ 

It is convenient to · write (J~_I7) in an integral form. We have 

ti oo 

~ Llk ~ d! j . i + 1 . - f } =• o 
··I o· lt~1tc1 +fo-urt)'-tct-E h1-te.'+1(~-,l't)\C1 ➔ E '. h'L-tct. 

or 

4' CI, iJ +4'C~ f, i.)~ 0 

· where 

d f .. --
+1 °" . . . . - 1 } 

~ () ,v)= ~t~.l 'i11i"+"Ti,dt-t(.tv-ttJ'-:r .111+}t 

__J 
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For Sp<::< C we obtain for E the value 

unity up to I:= 1C , 

(J,I6), ·But the ratio E will be of the order of 
Sf' 

P~a.,r is determined from the equation 

Hence 
· s p"'"'" = ye 

where y is a numerical coefficient. 

By the. way, we remark that these equations might have been obtained without simplifying the 

structure of the function J (1',~'), Their applicability is determined only by the smallness of the 

parameter p , Due to the fact that collective oscillations exist only for momenta I'< p ... ~x. , 

the nonvanishing·of £,(~Jin the absence of electron-phonon interaction is not paradoxal, Indeed 

in this case the formula (J,I6) will have no domain of applicability, since ~=O. 

Till now we considered the collective excit.ations only for the superconducting state, Let 

us now analyse the role they play for a normal state, For simplicity we consider the case p = 0, -
Then from Eqs,(J,I2), (J,IJ) we-obtain: 

(J ,I8) 

' (J,!9) 

Consider the radially-symmetric solutions and· rewrite Eqs, (J,IS), (J,I9) in interrral 

form. We obtain 

t00 

1/lle(~J- ~ etn'1e(1'>c:t,'= E~tiJ 
-oo 

(J.20) 

too 

1.1~1tM~ ) 111
, etn')~{11)t:li'= E8(1) 

• "'11111 I · 
(J,2I) 

where 
ti . 

( ) 1 ·r E_ NL ) w(kpU{NJ} M-
p 111 = f,;,. J (~} 4-(l~,.t(HJ 1,1,.111\t w(k.,f",c,-tl} . 

•I ik 1t•kp · 
We introduced the infinite limits of integration in the equations (J~20),(J,2I), since 

their exact values are unimportant, the int"egrals' b~ing. 'practilally determined by the contribut­

ion of the interval ll I ~ W · , 

*"" 
C1 h) -:a s p{H') 6(1 1)dt' (J.22) 
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f,;» . 

c1 (1J= I f,
1 
e (11'Jt}£'fJa1' 

Then from Eqs, (J,20), (J,2I) we obtain 

S(l)= 1 Ill C1 (1} + t, C.dT)E" 
L/11- st 

(J.2J) 

:Jubstitute this expression into (J,22) and note that C1 ("1),CiCJJ, p(n') are even functions of 

1,, 1
, Consequently, 

()(J 

C 1 {'~} =_ ~ f (H') 'l;,t E'" C1 (1'},fr' 

whence, for small p = p(o,o) we obtain an asymptotic formula of the type 

t . t - .!:. 
- E ~ I/ Wo e (' 

where Wo is an average (A) , So, the energy of collective excitations turns out to be a purely 

imaginary quantity, a fact that points to the instability of the normal state, 

This kind of colle~tive excitations is Yesponsible for the instability, for positive energi­

es, of the fermion and ph'onon excitations of the normal state. 

J,4, The Resolution of the Secular_E..9.uaj;iQns. Transversal Excitat_i__g_ns, 

We have investigated only those solutions of the secular equations (J,IO), (J,II), which 

may be represented in the form of the series (J,I4), More exactly, we have restricted our atten-

tion only to those expressions for 9, (k.) and ~p (k.) 

9i, M = e (1~1 ,11:.1, c~,) 

~PM= e (1~1, lit!, C1t.~p 

, 'tor which 

(J.24) 

These solutions correspond t_o longitudina; waves. But besides the longitudinal waves there 

exists a.- class of solutions of another kind corresponding to tran_sversal waves. In other words, 

for these equations: 

8r(t)= 8(1~1,11'1 7(ql} [ll.~J" 

~~ (ic.J = -e o,,, ,._,, ct.})J t1<-~J" (J,25) 

where the index n denotes the component of the. yec·tor product in the direction of n. 

For the sake of simplicity we _consider the case p; o. In _this case it is sufficient to 

examine the equations (J,I2) and (J,IJ), But now we shall look for solutions which are not 

spherically symmetrical, but have the form. 

&, (t) = ea (11t1) e, 
~o (11.}-:. to (l!tl) e,_ 

__J 
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Without loss of generality we may consider for convenience p as directed along .the z-axis and, 
'·.~',,,.:~ 

n -along the x-axis; ex is the x-component of the unit vect;;'r" of k, For 90 (1111) and ~.(11C1) we 

obtain the equations 

where 

i f('i}9o(IL)- ~ 1,J(k1 1t'}9 0 (1t1J~ E,'3o(k} 

2. £(ll1~o{ll)-t .Ll J(k,k') ~t1o.J('.(1t'];,INJ(1t'l \}o(ll;]='•Ee~('lf) 
V •• f(kT f (k'} · · 

ti 

J (~, 11.') .. 't' ~ J (111.1, lll'I, ll'-l'4h'l'-Z\'kll\'lt-) t dt .. , 
· E (1tl-=- ~ ~-i(tJ+ c1(kJ 

(J,26) 

(J,27) 

Further, it will be convenient to restrict ourselves to the case, when J('K,v'} is localized in the 

neighbourhood of the Fermisphere and may be repla_c~sJ. Jnside; th_e, lay_e:r; Er: i_i:> by a constant J , 
~ ~ ."; ~ -- _, 

Vie admit a similar approximation also f9r J (1' 1 ~,} ind replace. it_ by a ._constant "J" inside the 
, + • ·, • - ~:.;. • - - ~ ._· ; •• -~ :· ., ' ' 

layerl:i:i(.) and by zero outside, Under these.a,ssumptions the secular equations (J.,26), (J,27) 
• ,;f- . :, ·; . • . ~- .. ' : ', -. ' • : - . ' 

may be solved without d_ifficulty, 1f we introduce new variabl(s. in place of 0o(k} and &a(t/ 

y' ."f(k)· . c .. : ;; f . > 
~ = V l ro, ~o(llJ ll=Jl~~(ll) 

t V . tC•I " . 
where the summation is extended over the domain E~±-w' in the neighbouhood of the Fermi sp~ere, 

~ ~- -.. ., t.: 
The equation for E takes the form: 

! 2 2.-rtM -1 _11 C(k) E' ~1 1Me .¢~ 

D(kJ -V D(1<l V DC'kl 

L "2 C(t/E 
V D(k} 

_j: 1 zct(~ ~1 
V D(kJ 

11 !j(k}CM 
V D(k) =O 

. (J,28) 

r 1 121.E 
V D(k} 

- j l ZJ(kJC(tJ 
V - D(tJ 

where .. 

We perform· an asympto~ic expansion, o~ the de:t_erminant (J,28) for small Can~ restrict our­

selves ~o terms that do not vanish for C -:,Q, In fact this expansion .will be with respect to 
. _,, '.', : '., :·. ' '. . . : ~' ,-· . "' •. ~ ' ' . C C . 

the parameter - or -::- , The final expression is w w 

where· 

f = £ 
2.C 



\,, ''· 

- ).J -

In writing down Eq, (.J,29) we have for simplicity omitted a term which leads to superfluous 

complications, This omission corresponds to the neglect in the initial equation (J.27) of the 

term J(klllt'I in oomparison with C£•J((l1J I since, f'or momenta k and k• near the Fermi surface 

the former vanishes, whereas the latter remains finite. 
• 

The examibat1on of 
C 

the roots of' Eq, (J,29) is not difficult and yields the following re-

sul t, For small 'i:i Eq, (J ,28) has a single root for p in the interval 
q 

For 
.., ' -1 <. p < tJj 
p near to -I the root starts o! from zero, Its value is 

£ C !C {l Ct~,, 
For p increasing from -I to O the root inoreases and reaches the value 2C , where it goes 

over into the continuous spectrum. For p olose to zero 

E = !C ( t- t' t lM' Y) 
For p increasing further fro~ 0 to ("1. tf ft the root runs through the interval (o, U} in 

the reverse direction and for 1 close to ( 4' '/ft it becomes 

E = .zc {~'f (◄- P"'f) 
The root we considered appears from the first factor of (J,29). The second factor may have a 

root only in a quite narrow domain_ of values 

. I ./ .. t - ... p"-fM\i .,_ tl:I t 
C 1M C. 

which for C -, 0 asymptotically. tends a point, Therefore the consideration of this root '1s ·of 

no interest, It should be noted that if p' ~oes outside the limits (J,JO) there appears a 

purely imaginary root which indicates the instability of the ground state in this case. Some 

remarks on behaviour of the root for nonvanishing pare in place, Without any calculation one 

may conclude, only by inspection of the secular equations (J,IO), (.'.l,1II), that for small p 

\' 
£ (~> •·fe1.,. et>"'' 

where S is the velocity on the Fermi sphere and o(, is a .numerical factor. 

Finally, some words about the physical mea.n1ng of the ·transversal solutions, Let us con­

sider the physical quantity 

IM,.i Vh) ~ -i t [ h 11,J•"'; ~ 1 (J,JI) 

which represents _the 0111•1 of the velocity field V(,.) , In the second quantization representation 

__....j 
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EQ, (J,JI) will be 

t . t i(IH1,'I.) 
(o..i<,tQK11t t l\._w,-ll..~:--)€ [1',IC'J M "to t V {'l} :: i_ 2_ 

V i,,, 
+ + 

Going over from the operators ct, 0. · to o(,o{ by means of the IA 1'V'" -transformation we obtain 

t 
\'le attempt tq represent this operator in terms of the collective Bose amplitudes ~1 (k}, ~1 {It} • 

It is not difficuit to observe that this procedure may by carried out by substituting for the 

operator (J,J2) the following "model" operator: 

(J.JJ) 

Transforming the operator (J.JJ) to the new Bose amplitudes which diagonalize the quadratic 

form (J .2) ,- we obtain: 

+ 
.We recall, that the new Bose amplitudes 1, 1 are connected with the old amplitudes ~, fl 

by the transformation: 

~, (1L}: 2.) 1,. lf1 (11.;~J-t °Ir J'._~ (Kj fl) 
r 

According to (J.24) the longitudal waves considered before turn into zero the sums in the curly 

brackets in (J.J4). A quite different situation arises with the transversal waves. On account of 

(J.25) the expressions in curly brackets no longer vanish. Thus, the transversal collective 

oscillations.represent curl-structures. It i~ quite probable that their·properties will have 

many features equivalent with those which were investigated for rotons in the microscopic theory 

of superfluidity. But it has not been established that a special branch of the spectrum charac­

terizing these excitations exists. 

Thus we complete the investigation of the ground state of one-Fermion and collective 

excitations in Frohlich•s model. It should be emphasized that the method used for the computat­

ion of the ground state and one-Fermion, excitations is a regu~a:r one. On the contrary, the 

method of computation of the collective excitations is rather to be interpreted as an approxim­

ate summation of the most important diagrams. The·q~estion of the excitation of various collec­

Uve osciliations in a system represents an interesting but very complicated problem. Pa.rticu­

larly it would be desirable to consider collective excitations, based not on pairs but say on 

quadruples of Fermi amplitudes. 
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§4. THE COULOMB INTERACTION BETV/EEN THE ELECTRONSx) 

-4.I. Outline of the problem. Up to this moment we considered explicitly only the elect­

ron-phonon interaction. The repulsive Coulomb interaction between the electrons has not b~en 
Q 

included into the I•miltonian, 

It is easy to se~ that all our preceding results may be trivially generalized to the case 

when Hint contains a screened Coulomb interaction term which we can consider as small, so that 

the perturbation theory approximation be valid for the whole Hint· 

Such an approach gives us essentially the same results as above with suitably modified 

numerical factors, such as, for example, 9 . 
However this procedure is not satisfactory from the physical point of view and does not 

give an essential improvement of the Frohlich model. 

Firstly, the· electrostatic Coulomb repulsion is more intensive that the feeble attraction 

caused by the exchange of virtual phonons •. Secondly, as we shall see later the screening of the 

Coulomb interaction essentially modifies the stucture of the energy spectrum of the longitudinal 
I . 

collective oscillations. 

- So we shall extend our previous conside_rations to the more realistic model described by the 

Hamiltonian 

H = Ir£ {k} - ). ; a.KS a.KS " E "''?) i, ,, '" /f,.1, +-Ht: 
~s 1 

where 

1-1," = E jlf}m-

( "· '! ', '/1 .r) 

., 
(J../t.r alC~ 

"' ', .,. /leT.lff, e.ov: 

and 

l<'-H.: f 
He.· is the Coulomb interaction between the electrons 

with 

. + + 
11 _ )' ..!.. T ('" · K., 1<. 'J a tl . .cz a , H~ -L -y- - · "'1,kz, z, , 1c1s1 1c,s-2 •,r, 11,s, 

(
K,,Kz, "1~ Nz',, ,,~'') ' 

1<1~k1•N1'k1 · · I 

I (1t,, It,_, Jc~, k,') = 
e• 

/lc,-k// :t 

( 4. I.) 

(4.2) 

(4.J) 

We shall use the method developed in §2 and shall carry out the compensation of both the. 

two-boson and the two-fermion graphs. Therefore we can use the ratio o/GF as a small parameter 

and retain only the main terms in the resulting asymptotic formulas. In our method it is no.t 

-------------------
x) Th_is part of tbe paper is based on results ·of D, V. Shirkov. 

l 

\ 
I 
I 

_..J 
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necessary to consider the Coulomb interaction as small, and therefore we have to take.into 

account graphs of all orders with respect to ff~ . 
In order to simplify the calculations, we suppose that the canonical transformation pa­

rameters u,11 differ practically from their normal values only in a very narrow spherical layer 

near the Fermi surface. On the basis of this assumption we can retain in our formulae only the 

main terms with respect to the effective thickness of this energetic layer. Note here, that, ,, 
according to the results of §2 this quantity is 11 expontially 11 small as (i1exp (-;) in the case 

when the Coulomb interaction is omitted. 

This ass.umption seems to be quite reasonable, as the Coulomb interaction can only reduce 

the effective value of the parameter!• Besides, after obtaining e~plicitly the approximate 

equation for U and l.f we shall be able to evaluate post factum the effective dimension of the 

energetic layer in which U., lf differ from· their· normal values and at the same time confirm the 

correctness of tqe assump.tion. 

4.2. The Compensation and Renormalization Conditions. ~et us carry out in (4.I) our 

canonical tr·ansforriiation of the Fermi and Bose operators (2.4)., (2,8). In the transformed 

Hamiltonian we choose for the "free Hamiltonian" H0 the following expression 
' + 

H
0
-==U + L ECl'}{~o«ko.,. °',oc1",) •l ~Cf)/,1, 

~ K f 
where l,1e, , WC/C) are the renormalized energies of electron and phonon. excitations and U.. 
is the energy of the ground··state.--Then.we._have_-:-·~----

J-/ = HD + H,;,t 
where the· 11 interaction Hamiltonian" Hint is 

where 
1J '= co11.st .. 2. l. { E (kJ- l) u.! + 2. "''fl/"; - V-

" f 

HI= I [ (G (ltJ• l) tu!:. u!} - ic11J J 1:;,0"lt• +;,,,ti(,,,)+ if (E,11,-A) UA'. ~ (;1Co;1e, + "'"' "'"·) 
K . . ~ . 

In (4.4) He and Hph represent the expressions (4.J) and (4,2) respectively, transformed 

to the new amplitudes. 

· · In order to write down the compensation and renorma.liza.:t;ion conditions it is convenient 

to introduce the more compact 11 time-dependent" formulation of the b_asic ,expressions, which is ,· . 

quite· analogous to the one used in quantum field the.cry~ For this purpose note that in terms of 
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the "S-matrix" 
.. . . . 0 

S_ = -T ( e - ,)ji,-..\(eJdl:) 

the sum 

P. ( E) :. X R,.. (/;) = H,-,,t +- ~ ... t G-~ H,;.t; 
0 

ht?,/ 

can be represented as an eigenvalue 

/Uc/CE = /lC~ 

of the energy· operator R 
.:, 

~ ,- j /.1,-,., (t:Jdi:) 
ll. = H,.,,t. s_ = T (H,;,1: (oJ e _.,. 

+ .•. 

Here Hint (t) is the i~teraction Hamiltonian in the interaction picture 
-1'H0 t lH.t 

/.1,-,.t {tJ = e ~i,t e 

(4.5) 

Let us consider now the compensation and renormalization conditions. The compensation 

conditions imply the vanishing of the sums of terms corresponding to graphs with two external 

outgoing electron Unes (fig. 5) and two e~ternal outgoing phonon lines_ (fig. 6). 

=O =O 
Fig. 5 Fig. 6 

The equations for determining l/, £C1£J and wc9J represent the conditions for the vanishing 

of the contr.ibutions from electron self-energy graphs (fig. 7), phonon self-energy graphs 

fig. 8) and vacuum. graphs (fig. 9 ). 

-0- --0- 0 
Fig. 7 Fig. 8 Fig. 9-

In figs, 5-9 the _circle designates strongly connected graphs which .cannot be represent!ld 

as two parts linked by one or two fermion lines or by one or two boson lines. 

In terms of R the. compensation and renormalization conditions can be written as 

< o(IC1 tl{ICO R > = 0 .& 

<rt,, Pi R. >c = o 
... 

(otJC.o R «,c
0

)
4 

= 0 

<p,Rfo,>e=·o . 
,< {2 >e = 0 

(4,_6) 

(4.7) 

(4.8) 

(4.9) 

(4.IO) 

., 
• _ ___...Iii 
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The subscript "c" indicates that here.we deal only with terms corresponding to the above 

mentioned strongly ~onnected graphs. Eqs. (4.6)~(4.IO) may be written.in a clearer form in 

terms of functional derivatives of R with respect to Fermi and Bose operators in the interact­

ion picture 

- 1'£ (MJt­

o(/(\1 (-I:)= «1ev e 

- /~,,Jt 
fl, tfJ = 11 e 

.,. .,. ;~,,J't' 
I ,.4, (t_') = f, e 

. + + 
Performing in Eqs. (4.6)-(4.9) the. oommutations o! tJl,ol,!3,f with R, we are led to express-

ions containing sec_ond order functi~nal derivatives of R. Taking into account tre condition of 

strong oonnection, one can p~rform expli(?it]J the func.tional ·differentiation or' the terms H'(o) 

· and H"(o) in the Ha.miltoni~~ H,;.t (D) • H,-,,;. Eqs. (4.6)-(4.IO) are thus replaced by: 

I ' , S''R' I lu,J {t-,.~'J 
2 (Ec1c,- ).}Cl.V'u. + ~S.t,,u-, s;ll,.(t'J ~ e- di-cit'= O (4.iI) 

(4.:4) 

2! {€£1CJ-l)1J: + '<£.wcoJ.fA1
2 

- 1J • <'k'). = O 
"' 1 / C. 

(4.I5) 

• 

Here 

• ,· J H,';..t {fJJf 

R/:. T [ (HcCo)1'tff" (oJ) e -..o . ] 

C/r n/SS DA is the right functional derivative, o ft - the left functional derivative, which 
+ 

anticommute with each other and with ct,oi • 

4.J. The final form of the compensation equation for electron graphs. Here we shall 

simplify the basic compensation equation (4.II). First of all let us make the transition from 

the ·°' -representation to the 4 "".representation in ·the f~nctional derivatives 

l f S 3 S S ft = IA" (' + - 'V'" (' I - = u +- . ,,. z.r" 
oi'ktl¼J oaic,.ltJ 0 a.1t,-ltl s;,o(+1 I' Ja...11,-(tJ da",..-<+J 
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' + 
In the limiting case, when u, Z/' take their limiting values (2.24) the operators a.(fJ, ato 

introduced here may be written as in the form 

alt,tT {t) :::. a e-,. t,,,.,t 
It.IT 

+ + 
a.tr ,1-, = a.""" e 

/i:,,uf J 
,1. ,, i i(lot · 

a,, .,_rt:)=ta_ .. _ e J "•- ... ., + 
•"- t + I -I [.(10 

a.k,t: c+; = ~ a_k,; e 

for k. > l<J: 

(4.I6) 

for K < kr 

+/ I 
where a. , a. are the creation and annihilation operators for holes inside the Fermi sphere. 

In fact we have introduced here another representation for the electron operators which we call 

the a.1
~ representation. 

We obtain 
. <' 2 1 S2R' 

:i [eek,-). J u1e. u" + j .• /i',11,{,f,#t'){ " 1? ~----)] 
ll,.u., dt.lt'e <ta.k,.,.(f)Jak,,. re.1~·<st{lt,JIJfq1t,-(t') G = 

=: jdtdi 'e 
·'°;-"~' te.,.e') · fe' S2

ll' 

· I u; <ra {t';Jl {tl}flf:Yso.k~(tJJq _u'.li 1 
It,+- -k,· . e ' _ ", (4.I7) 

Now we can use the assumption that the width of the energy layer _in which u,'IJ' strongly 

differ from their normal values (2.24J is very small and retain in (4.I7) only the main terms. 

In the l~ft hand side this procedure replaces the expectation values of the second functio­

nal derivatives over Cv by expectation values over C
0

, the Fermi sphere state. 

The application of such a procedure to the right hand side would turn it into zero. There-

fore it is necessary to make a preliminary transformation of the coefficients of 4~ U 2 in 

order to separate a small parameter of the order of magnitude of the product uu. This transfor­

mation can be performed by means of a procedure·well known in quantum field theory under the 

name of the "generalized Wick theorem" (cf. /I7/,§J4.2), using the following formula for the 

chronological contraction 

7 _,'£,,.,.J/r-r'/ 
a.,._;.t-r-Ja._";-'r') = (Ta,,_~.,_(t)a._1e~- (i-•;~ = - uk,V:C' e 

(4.I8) 

z z 
Taking into account that ~1e. and Uk differ from their limiting values (2.24) only in the 

neighbourhood of the Fermi surface we can write down Eq.(4.I7) in the form 

i J ({(JU" Vu. ::: { ll1e'- lf,/) I. U", lf,,, Q (I~, k.'} (4.I9) 

"' 

....M 
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where 

(4.20) 

(4.21) 

. The subscript non means that the expectation values are taken in the state c0 • we also 

recall.th~t, according to the sence of the limiting process,· the functionals R. and R' depend 

here on the Hamiltonians 1~ the a.' -representation. Ror example 

I/ ) ·/t"fJ.-,. + . 
";," =c_;, I'?) '.2-v- a/(Sak.'.s f/1,+f!.,JO,-,.fi,) 
. ( ~,,.',y, .s) 

k. .... 'I 
Introducing a new undnown function 

(4.22) 

CCJo=;>---; U"'~' Q<1<,~·.1 
JC' 

(4.2.J) 

with due account of Eq.(2.2I); one can write (4.19) in the form (2.22): 

, )' cc~~ 
Ct")"' 2 L.. Qc1c,u.'.)_/r===~ 

>t.' . Y C 'c•'.J4-J 2c1e'.J 

(4.24) 

Before studying carefully the effect of Coulomb interaction on Q andJ , let us establish 

the connection between the ground-state and.one electron excitation energies With the solution 

of (4.24) for the case under oonsideration. 

4.4. The Ground State Energy .and the Energy of One~Fermion Excitations. The ground 

state energy must be determined·from the vacuum renormalization equation (4.15). Using twice 

the "generalized Wick theorem", taking into 

l 
,,,.i - ,' i:,11Ht-t'J 

t ..,,,_ e 
a.ic,+lt-Ja.;"•• lt'J • -ii,11,ct'--t-J . 

- u.! e . 

account (4.18) and 

e>~' 
(4.25) 

(4.27) 



- 4I -

For~ and u differing from their normal values this formula represents the energy of 

the superconducting ground state l{. For z.s.• ~{1;:h·l{ = BF Cu/ Eq. (4.27) describes the energy 

of the normal ground state 7J. 
II 

Taking into account the identity 

jC/.C.J 3 
2 , Ge,,,,,_} 1,,., - eF, ... I · + 

11"-G"''"' '=- [ U.ic-Br,,, .. ,] = ~ [J. -Vi l i J - -n- l :I.. /chn-]'"cKJ 
,,,.,'"] ,~J •• 

which follows from (2~2I), and Eqs. (4.20),(4.2)), in the limit of small C<HJ, ccic'J(correspond­

ing to the neighbourhood of the Fermi surface), the difference Us - Un turns out to be 

Tc10 t ]Cle.I :j ,. _ _ .!. t_ , _ + 0. (4') 1 + ¼-V.,. 2Lv'C. .. .c;t-]."-Jl0i.'"-){1. VC&Clc'J+J\1e) F { /c'c«n-:rzcio) , .. (4.28) 

Now we shall analyze the energy spectrum of one-Fermion excitations g,~, for the super­

cond!Jcting state. The renormalized energy L0 

is determined by Eq. (4.IJ). Carrying out the 

transformation from the c< -representation to the a" -representation in the· functional 

derivatives in the last term of Eq. (4.IJ) and using then generalized Wick theorem", one can 

-express f as the sum of three terms 

£(1<J = u ~ r, , 1.c1 1- v-~ zz. cu, + uic. -u" [J cic1 

In the neighbourhood of the Fermi surface, where i is small, we have 

ff (lt.J = - £2 CIC.) : JCK) 

and by Eqs.(4,,2I),(4.2J) and (2.2I) 

UuV1c. E. 3 Cw)= 21.t"'tr"2 Q lk,k'J l.l"-,1.f'", 
le' 

Ca<1cJ 

:: vct.cu)'-]t,I</ 

(4.29) 

Note that on the Fermi surface itself, where u; = u; ,= l/2, and JO<,:) is equal to zero, 

we "1:1ta1n fr.om(4.29) 

E-Clc.,:I" Cc",:,} 

Thus the one Fermion excitation energy is separated from the ground state energy by the. 

gap CC1tp)= .1 . 

4.5. Transformation of the Kernel Q~. We shall now take into account the fact 

that, as a consequemce of the compensation of graphs in fig, 9 the functional R depends on 3-' 
only through the small parameter l':::le,= . Hen~e the r.h.s. of Eqs. (4.20), (4,2I) can be 

expanded in powers of } 7. and only the first two terms retained. It is more convenient to ex-
.1 pand R. The first term of its expansion, independent of d' , will be denoted by Re. It has 

._____. 
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the form 

(4.JO) 

where 

(4.JI) 

The second term ~,~, proportional to g2 , can be represented as 

(4.J2) 

where 
0 

fl
1 
=-,T (H,.~lo) J ai: J.1,.," L~> s..) _,. 

0 0 

'R2 : (: o" T { H"{o) J tit Hf" Lt) J ,.H' H,,.. (t'J s" ) 
-..o _,,. 

L 
' l )z.Jo ,·.;,'i;(t'-r} 

Ra-=- ~,,,wc7,( ,+-r, dhH:.'e 'T(l-lcoJd, wa,.,(+}df,(t')06(t'JS:) 
. 2Y ' P'J -.. 

We can. carry out another step in the simplification of the kernel Oph• Note that the 

maximal energy of phonons is small with respect to the Fermi energy. On the other hand, accord­

ing to (4.I9) only momenta k,k' in the neighbourhood of the Fermi surface, where r, ... 1 , i,"') 

are also small, is essential. So the sum ~tK•k'J+££1CJ+- t,~!) is small, and the contributions to 

Q containing this sum in a deniminator are large. It is evident that such contributions cor1·es­

pond to graphs (fig.IO) which can be·split into two parts by a vertical l~ne, intersecting 

only two fermion lines (k), (k•) and one phonon line (k-k'). 

fig. IO 

The circies ½ and {,_ in fig.IO stand for generalized vertices including Coulomb cor­

rections to all orders. From the point of view of the "time-dependent representation" all ver-
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tices in r;, must be later in time than each of the vertices in ~ • 

Thus 1n the approximation under consideration, the kernel Q(k,k') of Eq.(4.I9) can be 

reprexented as a sum of two terms 

Q (kjk1) = Qt: (l(,k') r- C)plo ((,(1 u.!.) . (4.JJ) 

.The first term Oc corresponds to pure Coulomb interaction (4.JO), ~hile the main part of 

the .. second term, described by the graphs of fig. lv may be represented as follows· 

z o,,,.l","''' = 9 ''P"'''J{l,•14,>z. .· A (j,JC,lr.') · 

C:. '1"' i'cu, • f,,.,J . Y· i Cf = ± (k-K

1

) (4.J4) 

A is a product qf factors arising from the generalized vertices 4 and r; . In the limit 

of switching off the Coulomb interaction we have A = ··I. In general · 

A (q,k,u.'J' '"' 
,.. ,. .· = L (Mtr"t-.N.,-) P(J" (4.J5) 

V lt:,,, ... i:CICH ''"'' l (5" 

The quantity P tr corresponds to f, . It equals 

:. Jo · ,·8~,1, 1-ltt"",..,-i'zt11'J $2/L (8J 
P =-, cl~dt'Je e. ( "" · ' ) 
± _.,. . . Sa.r1<,t lfJ S aN~t {t') o (4 • .'.36) 

where 
R_

1 
{8) = T {H1 (8) Sc} 1 ' 1-

1-1., lt) = ~V- ~ ap•q,, QP6 ll:J . 

The functions Mand N correspond to the·vertex r; for RI and R2 .·•It can be shown that they 

have the form 
0 82R.,, (o) ) 

Mt = JJ-cJ~•< (' • <c> So..tu~t (t'.J o 
- . l>A,t 1c,t -- . (4 • .'.37) 

o . $2 [H,(dJP.1(~J] .. 
.J.=-,·JJ.BJt-Jt'(. .) ~4.J8). 
· t • "° . . Ao.tu,t Ct) So..tu~t-Ct'I 0 

4.6. The determination of /I +fa a~d c;;; • We shall now determin·e the sum l+fa from the 

condition of compensation (4.I2) for the phonon graphs represented in fig. 6• Perfdrming the 

functional differentiation and neglecting all terms except those of the order g2 we get 

lw,,,J.,t, - f'1>"''1' o,-tf41l&Z,r):: o (4·.J9) 

where 
0 • .. {.L~..1, 

I f I "'''·' ~ ... ') . ♦ + . Zt1)=rv= J-tat'e . l<T(H,CDJ"-",(t>41C'.l(-IJO.t,(t 1Jae,l-t'JS:)>o + 
. _,. 

0 .• """' 

• ( . I "''ft )' · • ,i. 

,f-t J Jt e ~ <T (a11,c0Jq,,.,,0J °'f4 l't)Ot,Ct) gc )>o 
(4'.40) 

-t'O 

1111111 
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Solving Eq. (4.J9) with respect to ( A+f')2 , we find 

Consider now Eq.(4.14) for the renormalized phonon energy 

transformation, we get 

,.. 
w • Carrying out a similiar 

(4.42) 

'] l~l~Jt -i~"I''°) ~ ... + . iv dt(e +e . L<T(a.lls'oJa",,co1a(6{1}{l.e',-tt-.JS(.)~ (4.4J) 

Solving Eq. (4.42) with respect to tj- with due account of (4.41), we find 

i - qi"l) l 't "'' + z,o,' 
~"J} = ---;(/===·1==-'-:--> "''1) 

Vi. - 2g2"JJ zca; 
(4.44) 

4.7. The connection with a m·odel problem. Now we shall show that Z(9>,'Y<9),{A+)•d", ~ 

as well as .A in Eq. (4.J4) .can be approximately expressed in terms of the solution of a·model 

problem. 

Consider the model system, described by the Hamiltonian 

H l.J --;- ...... - ... + = Ho•H,kt" , ,no= f.._ Uk}~l(,a,o ... 2.:. £{1()Q1t,a1c, 

l<>1C,,J k<K;,s (4.45) 

H, - H ~ _L [ ( J a a ·) 
11,t- - ( V'J.V° ic,s IC+i11 IU + KS Qlo'j,.5 

Here H0 is the Hamiltonian of the Coulomb interaction in the form (4.J)', and ~ a small 

parameter. ·The ground state energy 1f of this system can be expanded in powers of g · 

(4.46) 

(4.47) 

Comparing Eqs. (4.40), (4.4J) and (4.47) it follows that in the limit of small w , one 

has the identity 
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-.Zccp = Yc'f J = - 11: 
as a consequence ot which Eqs. (4.4I),(4~44) become 

t 
(}. +}f )z.= 
. 1 ., J,j + 2g'<1J111 

w<c,1 = /1 + 25','I) VI eu,7; 

(4.48) 

(4.49) 

(4 • .50) 

Now we want to·construct the quantities which from the point of view of the considered 

model, correspond to M,N and P in.Eq. (4.J.5). 

Consider the matrix elements 

v1 • < a..t", i 'R &:.t "~.t ~ 

W1:. • (a..tl<,t ~: J..t1<~t> 
6 

which correspond to the graph of fig.II 

~ 
'Fig. II 

These matrix elements can be expanded in powers of f 

V: r: ~trO" +- ••• 11' 
w .. $ tvd' .,. ••• 

• 1 tr 

The coefficients lf,r,Wr have the form 
c,-

u.,. = ( a.~,d"' T ( o,,, (OH H..1(0)] S) ;,lf'IC',tf);, -
0 . 

- i (a."""·"" J 1-1, Co) T { [ u,, (9)'" H..,,a>J s.) a:O',c~d >o Je' = 2 _( MIS +.A/,r) 
- 00 

w5'" = - i J < a.c,",' T ( l u,,ceJ'" H.,,,sJJ ~) J6" .. ," >o • 

_ f'c11,.- ic1e') + wc1e-1e'J p 
.. 2. " ,_, tr 

l£1e)+£c1c'J 

Substituting these coeffioients into (4.J4), (4.J5) one 

obtains 

Q . (k ') :)'<,)4'ljJ0,+}(,J'- 'C'"ll'. W. f" • " -= _____ .;___.::....:.,_:.._ f d' " 

a,1;-. t,ic}t- c,"') ~ 

(4 • .5I) 

( 4. 52) 

(4.5.J) 

1111111 
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The expression ~ introduced here 

~ ( ... , - ) . '?Alo-·= E c1e) + t cu') Zv.r 

is in fact independent of 'ltkJ+ i"ck'J. 

By Eqs. (4,49) and (4.50) Oph can be rewritten in the form 

(4.55) 

where -j - is the renormalized value of 

(4.56) 
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§ 5- QUALITATIVE DESCRIPTION OF THE EFFECTS COULOMB INTERACTIONX) 

5.I." Approximate determination of the renormalized C, and 3 , In subsection 4,7 

we have reduced the problem of the determination of A•;u,~ , Qph to the solution of a model 

problem with the Hamiltonian containing only the "kinetic energy", the energy of the Coulomb 

interaction and a term describing the interaction with~ weak external field. 

Here we shall estimate the quantit~es A+)'t,~-· in the· approximation of a "~trongly compressed" 

etectron gas, where the Coulomb energy can be considered as small as compared with the kinetic 

energy. 

It is well known, that in problems with Coulomb interaction one cannot use direct by 

expansions in powers of e2, as these oontain divergences in the region of small momenta and 

leads to a situation similar to the "infrared catastrophe" in quantum field theory, 

The procedure for correcting such expansions became completely clear due to the results o! 

Gell-Mann, Brueckner and Sawada/IJ/. It ·follows from their paper, that in order to improve the 

lowest order approximation (with respect to e2) one has to sum over the graphs composed of 

complexes particle-~ hole mentioned in§ J. Now we follow this procedure, gmving it, for 

convenience, the form of an approximate second quantizat;on. 

First of all we introduce by means of the canonical transformation (2,4) the Fermi ampli­

tudes for the particles and holes with trivial values of the parameters U,'\/·: 

u"' • B, '"') , u-" = GF ,~; (5,I) 

The representation (2,4), (5,I) is in ~act the a• - representation (4.I6), in which all 

previous results were obtained, 

Consider now the Fourier components of the""space density of electrons 

!'1' = f (i"~,.s Qlt,.s (9,#0) 

Transform them into the a'- representation and retain in the resulting expression only these 

terms which do not vanish after their operating either !rom the left or from the right on the 
It 

"vacuum state" Co~ C respectively 
0 0 ~ + 

C o1. = 0 , oly co = 0 0 ., (il=O,f} 
Then we obtain approximately. 

where 

/ '" .. i'f) =.f 0' (k,tc~'l)o(" .. 'l•O ~"•' ~ )J (k,k-f I er'k,-f o/11-9,0} 

..M ( "•f ) • "" 1', .,. {If u;,_ 

x) This Section is baaed on the investigations carried out by N,N, Bogolubov (§§ 5,I, 5,2) 
and v.v. Tolmaohov (§§ 5,J, 5,4), 
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According to the rules .of the approximate second quantization method, we replace the 

products of Fermi amplitudes by Bose amplitudes 

and obtain 

~he substitution of 'this expression in the Coulomb interaction energy 

In the same way, in this approximation, the interaction term with a 11 classical field" in 

(4.45) becomes 

As shown in Sec.J, in order to obtain the correct energy denominators we must take for the 

self energy the following expression, 

I. ls:,,., .. t,ic+f i f1'"'f1''9 
"•1 . 

Thus the complete Hamiltonian of the problem under consideration, is in the method of 

'approximate second quantization, 

H =1:. [ i,ic, .. r," .. 1,Jf,,cJf,(l,J + 
"·1 
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We see that this Hamiltonian consists of a quadratic form of Bose amplitudes and a linear 

form proportional to ~ • 

In order to evaluate the effect of this linear form on the shift of the ground state 

energy level ·and to calculate rr;, one can use the well known method of. translation of the 

Bose amplitudes 

P, (1<1 ..... 111 (I<'+ c, (JC,) ,, 
'#- + ;f< 

ft (I<)- /1.9 (k)~ Cf (k,I .I r=:1:p 

where C and C* - are c -numbers to be determined from the condition of the vanishing of 

the linear forms 

'JH ::: o ,,, 
Explicitly these conditions are 

a# - " ,, o/, - I 
f= Zf' 

{lei;) +E.CIH'f)]C'f(kJ +- :Zne: 2.M (k 1 1<~'fJ')((f) 
Vlfl 

1- r M v'2V (t<, I<+ 'I} = 0 

it 211e% S 
( fc,"-'tCk+-111C C1<J+ - 2M(1<,1c-1JXc,J+.c::-::MC1c,1<-oJ=-O 
t -f Vi?l2. v2-Y- I . 

"' X ,1, = '2: [ .M (k,k4-C1, c,, c1cJ + .M c1e,1c-1; c_
1 

c,oJ 
f< 

where 

. These condition yield for X the expression 

r,; Fc'IJ 

X cqJ = - g V ~ i +- ~ Fe J 

''f '2. 'I 
where 

f ·"" f M2.c1e,1oqJ M
2
Ck,1<-qJ ~ 

Fe > =- - L- - - ~ .. ,.. 'f . V ,c. £C&cJ+ (CIC+'fJ (CIC) ♦ £Ck-'jY, 

(5.J) 

Note here, that in the first approximation with respect to J the energy shift equals 

~ . " :t . l till ,:✓2v 2 l M C1e,1c+p) { cp Ck J + c,, (ie)} +- .M (lc,lc-p) ( c_f (le}+- c_,. {Jc)) J ~ 
" s . 

= 1zv- ( X Cf J,,. X (-F J) 
By (5.J) th.ts expressions can be written in the form 

:1 
1tne-z. + - f='c,:,J 
I f'lt.. I 

tiV - S" - - -2 

F'crJ 

The quantity F(q) may be reduced to the form 

- ..:. ~ .,u1
,1c,1<,,.~J = ..i ~ Be;'"' f)F'(IC'.} Fe~,- t.. ... ,. ..,,..L... ,... -

1f' ,c. !CICJ-,. t::Clc'f'o) V •~' €Cw)- C{kc 1') I ~-IC.,., , .. 
(5.4) 

____...... 
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here ~(k) is the energy of the electron elementary exitation with respect to the Fermi surface, 

so that 

,comparing Eqs.(4.46) and (5.4) we obtain 

p 
1 

· Fcp) 
1f :-- "f ~ 

~ 2. :/. + _!!.S. Fc. J ,,,,2 -,0 
(5. 5) 

Substituting (5.5) into Eqs. (4.50) and (4.56) we obtain 

Comparing (5.6) and (5.7) with the corresponding expressions from 2.J it follows that 

for small q the Coulomb forces practically destroy the renormalization. 

5.2. Discussion of the properties of Oc and Oph_• Now let us turn to the quantities 

(Eqs. (4.2I) 1 (4.JJ) ) and ll, -W in Qf'i, (Eq. (4.55) ). One could carry out an 

approximate analysis of these quantities in order to obtain their properties in the region of 

the "infrared Coulomb catastrophe", where the Coulomb interaction is not small. However, 

inasmach as such an investigation may give only a qualitative picture ~nd as the correct"analysis 

is much more complicated (such a correct analysis is now being carried out), we shall not under­

take here such an investigation, and limit ourselves to a qualitative discussion pf the·pro-

~erties of Oc and Oph • 

Note, for this, that the main result of the preceding subsection 5.I consists of the fact, 

that the Coulomb radiative corrections are summed as a geometric progression yielding a formula 

· of the type (5.,). This result is not an accidental consequence of the approxi~ative .second 

quantization method used, but follows from the general structure of the Coulomb interaction. 

Another well known consequence of this general structure is the property of Coulomb screening. 

So we can state that, taking into account all Coulomb corrections to a given vertex of the 

graph describing the electron scattering with momentum transfer q, leads to aa.factor.of the 

form 
1 
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Just the same factor occurs in the Eq. (5. 5). It is also clear that inserting (5 .a) into the 

usual Coulomb vertex o/"ea/Y'lf/ 1 , one obtains the screening 

I ltn•., 
T/011. 

0

J. + i,,,~,. c/>tr;J 
I 191& I 

-= 
~ney'"V" 

lflz"- yqea ¢17; 
(5.8) 

At the same time the appearance of the factor (5.8) in a non-Coulomb vertex (for instance 

in a pho.non vertex) yields a cut-off effect for small ff/" (Cf~ (5.6), (5.7)° ). • 
·a 

Now turn to _the Oc, Oph• In the lowest order with respect to e the function Oc reduces 

to the usual Coulomb vertex. Thus the complete expression for Oc is f~nite for small /q/2 

as a consequence of the screening effect. The main part of Ophto the first order, corresponds 

to the usual phonon vertices. So the complete expression for Oph must vanish for q = o. 

5.J. General Properties of the Fundamental Compensation Equation. Consider, in con­

clusion, the compensation equation in the form (4.24) in the simple case of radial symmetry. 

In this case one can reduce this equation to the one-dimentional form, taking as the new 

independent variable 

J 
c,,~ 

c,rJ = .l. Qc1,J'J>icJ'J -==="=- c/7' 
2 v1'z• c2q'J (5.IO) 

with 
1 { 2 4/1<I 

'h(1J = 2n& ~ d/7/) 

and 
Q (✓,:,): {; j~ (t1c1, /lc?e)de' 

For the analysis of this equation near the Fermi surface we replaqe Cz(f}under the square 
' % , • 

root in the denominator by the constant A : C roJ. such a simplification is correct from an 

asymphtotical_ point of view, as for ·very small J the approximation 

/J,2-1- Ca(]'l (.T'¥A :t 
is quite good. 

Thus we obtain the "quasilinear" equation 
I /, . C(.F') 

_C(I}::: 2J Qc1,J;h(J'Jv.;:J=,z==,_=4=-z d7' 

C (O) = & 

(5.II) 

(5.I2) 

As was shown in subsection 4.5, the kernel Q consists of the pure Coulomb part. Oc and 

the phonon part Oph 

_- Q : QC +- Q fl, 

-----
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It follows from subsection 5~2 that Qc may be approximately represented in the form 

(5,9), corresponding to a screened Coulomb interaction, Accordi~g to (4,55) the ter• Oph is 

essential only in the neighbourhood of the Fermi surface for /J/~w. 
Consider now the following auxiliary integral equation with the kernel proportional to Oc • 

and introduce the corresponding resolvent G4 

(5.14) 

Due to the singularity of the kernel of Eq. (5.IJ) for A = o, the resolvent G
4 

has 

also the same singularity and can be represented as follows· 

(5.15) 

(5.16) 

Now note that Eq. (5.II) may be reduced to the form (5.IJ) with the aid of the substitut-

ion 

J {]) "! jQ11,. (LJ')Jt(]'J(J"~~'~ J.7 1 

So, taking into account Eqs. (5.14), (5,I5) one has . 
'CJ J = ff { QP" t1, 1'J- f J r;.;,c1.rJQ,,,,, r1~I'J d1 " -

'Ii iC1J j CC1/ -- -===-Q(J~J'JdJ" h(J')---- dJ 1 

2 YJ"'#- A a pit _ (J"'-,.~ a. 

As was noticed, the function Qph is important only in a small neighbourhood of the Fermi sur­

face where both its arguments are very small. Hence the integral term 

} r;,1.u: (1,J"JQ,,,,. (J~J')d:," 

is smail and may be omitted. For the same reasons one must replace h(J') and '2:{J) by their values 

on the Fermi surface h(o) and Z{O} • So we obtain 

CCJJ = ff{ Q,. (l,J')- !!!1 Q,.,1. (J~J') J1n:J11(0J - (:{7'} d]'; 
. . . 'I , 2 /Jh&+ 132: . ;· VJ'Z~A 2,. 

, The analysis ~f (5.17) oan be carried through by me~ns of the asymptotic method from seo.2. 

(5.17) 

However, for -the sake of simplicity, we use here a more crude version, replacing Oph ( J-", J' ) 
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by the constan~ value Qph (o,o) inside some region 171< /:; and by zero outside this region. 

With due account of w°/c:l >> I, it yields .... . , 

"" C I 

J J 2~J CJ'J CC]) ,. a -C: U - 7:£0J £.. A h'ard a d:;' for /'y I< t:; (5.I8) 

where 

It follows from (5.I8) 

CCJJ,. A 

..f = Q,P.,, {0.,0.)11(0) 

A is to be determined from the equation 

. 2.:: ~ 
1. = .f { 1. - ~{O) .f.,, T) L .4 

'",. -~<]<Ci 

(5.I9) 

S~ one can see that the Coulomb interaction changes the effective parameter .f 

J - J (d - 2(0) t.,,, !,:; ) 
where i.£0) is determined from (5.I6) 

For the crude estimation of the value .;!; (0) replace the function - <0 CJ,'I'JMJ'; in (5.I6) 
. C 

by its average value 

/J - <t,re. Z, 

.re - Ke Ii 
C 

, Kc ~K, 

inside the region /]I< C:, ~-E'F and by zero outside. 

Under this condition the equation (5.I9) has the following simple solutipn (for g; >>4 ) 

fc 
~to} 

... J. 4-J',: t,,. (~ff,: /41. ) 

Substitution of this value into Eq. (5.I9) yields 

th~ 
1. = I' ( 1 .:. A a ) t,. zc 

lrft.l.. 2 £', 4 
A 

(5.20) 

5.4. A Criterion for Supercondictivity. As was shown, the Coulomb interaction effect1-

vely reduces the parameter J and thus counteracts t~e appearance of the superconducting 

state. The superconducting state can not exist for arbitrarily small J'. The criterion for the 

existence of supercondictivity has the form 

, Jc. 
f > j_ + /c. e.. ( f, /t::} (6.2I) 

Note her_e that in the theory of BCS /5/, in place of·Eqs (5.20), (5.2I) one obtains the 

formula 
U; 

i = C j>-/cJ -€tt 7 
J' '> J'c. 

·J act 

___......j 
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In our theory the effect of the Coulomb inter~ction, counteracting the appearance of 

superconductivity, is essentially reduced by the "large logarithm" ~ (l,, /t:;). 
Note also that in the case when 

J'e > f > .i .j. Jc e" ( € F I w) 

·the kernel Q = Q._ + Q ,•· may be negative everywhere but the superconducting state exist. 

Thus the negative sign of Q is not sufficient for the absence of.superconductivity in 

contradiction to the basic-statement of the theory of BCS. 

The above qualitative considerations may certainly be surely_refined on the basis of 

Eqs (5.I6) and (5.I7). However completely ~onvincing quantitive results may be expected only 

on the basis of explicitly taking,into account the crystalline st~ucture of the metal (this 

is now under investigation). 



- 55 -

6. FERMI-SYSTEMS WITH WEAK INTERACTIONx). 

6.I The Formulation of the Bardeen-Cooper-Schrieffer Theory 

In the.preceding sections we considered the electron-phonon interaction only by means of 

Frohlich•s Hamiltonian~ However, the principal results of the treatment with Frohlich's Ha­

miltonian might have been obtained by operating with a model Hamiltonian from which the 

phonons are eliminated. 

So, Bardeen, Cooper, Schrieffer5 , in agreement with the.earlier results of Bardeen and 

PinesIB, start directly from a Hamiltonian in which the interaction between electrons and 

phonons is replaced by a direct electron~electron interaction. In terms of our notations their 

original Hamiltonian is 

where 

+ I H = L. E lt)a.. res Gt"s + I{ 
t,S 

H' - - .i·!, 
- 2.V s.,s,, L. t1(t;•"1'l•.'-ltf/-'l.1) J:. 11 + 

..... "' s \.( I( t ll I " ... "' k! wi(tf- k1) • (E {It,)- e MJ'z ' z ' ' r, S1 lh,r, 
11 ... , ''.f I 'f 
k1 ♦ 1C1,: JC,•tlra 

(6.I) 

· Bardeen, Cooper and Schrieffer carried out a further simplification of this Hamiihtonian • .As 

a fundamental ap_proximation they omitted.in Eq. (6.I) all the terms, which lead to the des­

truction of a pair of particles with opposite momenta :tk and spins :!"-f • The Hamiltonian thus 

obtained is: 

,.( -__ J. ! ')t.{t-k1Jt...'"{l<--..1
) + + 

l(t( - v ","' , .. NH,'J-(E(1tJ-E{-..1)yt a._1r.~- a_ 1<,- ct re,+ a. "',+ 
(6.2) 

The treatment of the Hamiltonian (6.2) by means of a variational principle forms the essential• 

part of the quoted paper. 

The consistency of the choice of the original Hamiltonian (6.2) as well as the correctness 

of the approximation (6.2) is insufficiently investigated in the mentioned paper. In the 

present section we shall show that, as long as one deals with the energy of the ground state 
, 

or the Fermi branch of the elementary excitation spectrum, such a reduction of Frohlich•s 

Hamiltonian to a model of the type (6.2) is in fact valid. According to our calculations, huw-· 

ever, the model Hamiltonian is to be chosen in a slightly differ~nt way, namely 

u.1 _ t °" ,1-(1<'-ll)~(t'-1cJ 1- ;-n~ - - - J.. ___:O:.,__ __ __. ____ Q_ a. 
v k,IL' t..J(t-k']t IEM-Erlt 1e(1t}-EFI -It~- -i,:,.tl..t<;t a.",t (6.J) 

x) This section is based on investigations carried out by v.v. Tolmachov. 

1111111 
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Matters are much more involved, when ~he special Boson branch of the elementary excitations 

spectrum of Frohlich' s Hamiltonian, connected with the collective effects of the ele.ctron-phonon 

interaction is investigated. For it the mentioned reduction no longer occurs. More exactly, in 

this case we can still use a Hamiltonian of the type (6.I), but the Bardeen-Cooper -Schrieffer 

approximation, which leads us to Hamiltonians of types (6.2) or (6.J) is no longer·applicable • 

. The fact that the ~honon operators may be excluded from the Frohlich Hamiltonian is not 

astonishing. ·Indeed, by• means of Feynman's procedure, well known in Quant'um F.ield Theo~y, we 

can always carry out a functional integration over· the virtual phonons and arrive-at a fourth­

order form in the Fermi amplitudes of electron states. Such a fourth-order form, however, would 

be non-local, since 1t would contain another time integration. Phys.ically this means that the 

fourth-order form would automatically include retardation effects of_ the electron;.;,phonon in­

teraction. 

A Hamiltonian with electron-electron interaction of the-type (6~I) is only an approximat­

ion to the mentioned fourth-order form including.the retardation effects, when the latter·are 

neglected. From the point of view of energetical relations this means·that one riiay use the 

local Hamiltonian only for the calculation of excitation energies, small compared with the 

average energy of the interaction-transmitting agent. 

Exactly such a situation arises in the calculat1on of the energy of the superconducting 

grou~d state. As established in the preceding sections~_in this case the difference between 

the energies of the normal and the superconducting states is small compared .. with the averaBe 

energy of a phonon.x). When calculating the Fermi branch of elementary·excitations one also 

may neglect the effects of retardation. Indeed, in the preceding sections we found that the 

influence of th'e interaction on this branch ·is limited to energies much smaller than the 

average energy of a phonon. At higher energies the Fermi branch turns into the usual Fermi 

excitations ·of an ideal gas. Thus, for the evaluation of the influence of interaction. on the 

Fermi branch of the spectrum it may be admitted that phonons possess infinite energies and 

therefore the effects -of retardation may be neglected. 

The retardation effects also have no influence on the special Boson branch of Frohlich's 

Hamiltonian, since all the Boson excitations possess sufficiently small energies, much less· 

than the average phonon energies. 

So for the calculation of the energy of the ground state of the Fermi branch and the 
' special Bose branch:•·of the spectrum of elementary excitations we may replace Frchlich' s Ha"." 

miltonian by one.of the type (6.I) with a direct electron-electron interaction. We emphasize 

x) We are entitled to speak ab~ut the average e~ergyr'of a phonon, since (ae may be seen 
from a detail·ed consideration of Frohlich's Hamiltonian) phonons of all posUble 
frequencies have the same importance in the effects of the electron-phonon interaction. 
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once more tha~ here we· speak about the general form of a local four-field interaction and not 

about a simpified one as (6.2) or (6.J). As for the latter simplified form, it does not in­

clude collective interaction effects and does not exhibit the special Bose branch of elemen­

tary excitations. 

6.2. The compensation equation. In order to take into acoount this collective interact 

ion we shall from the start consider the H~miltonian 
. . ... 

H = ! (E(I<)-;:,.) Gl ks Q"s t k' .. ,,-
(6.4) 

H'=- .1.1 I 'J{~ik/;~.,ki} a1<t',1,a.K.,r,!k,',-'tli1rs. 
%l, 111 1£ tt,,ki,•:,k: ll1+t,;lff+w[ ICfUf · . 11 

where, as in the preceding sections, the parameter " , introduced into the Hamiltonian plays 

the role of a chemical potential~ Considering the potential of interaction _of two particles 

a_s invariant with respect to a transposition of .both particles and B;.lso invariant under space 

reflections we obtain that J(~ 1r/;~ 1 ~) is a raal function and has the properties: 

J' ( I(; 1 k: j K1 1 kt) ; J ( "1 I Jc, j i< 1 Jet) 

J ( t1' 1 t/. j 1!11 Jc,): J (-1<: ,-J:f ;-k1 ,-ki} 

J ( I<: , ic: j k11 let) ,:: J ( l{l 1 )(~ ~ k, 1 led 

Now as in the case of Frohlich's Hamiltonian we go over to new Fermi amplitudes by means. of 

~the same canonical transformation. In the present section it will be, however, convenient to 

write it in a somewhat different form: 
. + 

O...zsv.s = U1t.oll(,-S t 2S11'1t"-",' I . 

1. 1 
L<1t+'ll't =4 U1e., 'If" uAl 

(For comparison with the preceding sections we remark that 

transformed Hamiltonian will be 

H -= U + Ho + 1-1. 
1
-t H' 

. I 

where 

U-:: 1 1 (E(K)-;,.)'lf'; 

k . 1 t f ~ 
H0 -= 2,(E(k.J-l)(th-ir1<.)<X1<,s k1S 

(6.5) 

(X k -.L;; o( kO Jo( 1(-!. a ol111 ) • The 
I 2 . J'J 

~~ . . 

I . . ' ') ( f ~ ) H .= - ~v l I . ~ (2S,k,, 2S1 k: j H1k, ,ZS,Jc1 "'JC£ ol.kf.,-s, + 2 st 1f1e;oC "i,Ji){uK/Xtzr': + 2 s,,r,.,I kz.r, I( 

Si,$1 k'1 I kl I Ir, I Y, . + . . . . . f 
K,+ kt= k{+ kl lt1~ t: , x ( u. ~ o{. I</ ,-s, -+ H 1 'If r_; ol ~ ,s1)(u.i,:

1 
o{ "1;', + 211 ,r ", o( 1<us,) 

11 f t ) H -= L (E(1'J-~)%.Sll..,V1c. (ol.t,,o(i.:,-s + ol1<,-so<1t,s 
1<,s 

.....-....Iii 



Applying ·to this Hamiltonian th_e principle of compensation of' ndangerous 11 diagrams in or\ier to .. .. 
forbid the creation of a pair of fermions d.. "t! o( ic,_ \ out of vacuum,· we obtain the follo-

wing equation f'or kw. 1 V'w, 

I t -
where C,r is the vacuum _amplitude with zero occupation numbers o( kS !X1<s • There will be no_ 

change in Eq •. (6.5) 1f we transpose the spin indices, + and= , since the- ori~in~l Hamilto­

nian is invariant under this transformation •. Froni (6.5) we. obtain 

(6.6) 

where 

?:(tc.J: E(1t]-A - .L l J(1e', K; JC,1t')(~;,-v11~) 
. ~ zv-~ . . . 

Introducing the new function 

C()(J = v'. l. J(1e,-1<; "~- Jt'J u",v-k, ... , . 

Eq. (6.6) may be transformed into that for C(k) 

C (k) = .l. ~ J(IC -1'. k.1 -Jc') C(k') 
V ';, , I I 2. 'l (le') (6.8) 

where 

Besides we obtain 

(6.9) 

C(icJ 
U1r.V'1t= €(kJ· 

The equation always admits the trivial solution C(k) = O and correspondingly 

This eolution describes not the superfluid state but a normal one. Apart from this trivial 

solution Eq. (6.8) can have another nontrivial eolution, which leads·to the superfluid state. 

For eimplicity we restrict ourselvee to the consideration of the case of' epherically 
/ 

symmetrical solutions of the equation (6.8). Then, replacing in the latter the sum by-an 

integral, we obtain· 
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where 
tf ti . 

~ (IC,k'):: '-~tn)1" ~ J(Jc,-ICj l(~•k')Jk = 1.(lz1rJ'- ~J(11el,lk111~1kll+ lk'l'-.211tll1i'1t-)dt (6.IO) 
-, . 4 

As has been mentioned above, the equation (6.9) has nontrivial solution~ for certain k'(k,k1• 

In order to wr.1te down the conditio~ on l,Ul(,k') for the existence of·such a .solution, we 

proceed as .follows. Let the kernel ~(Ii:', IC') vary continuously from the form for which the non­

trivial solution·of the equation (6.9) is absent to that for which 1~ is present. Because of 

the continuous dependence of the nontrivial solution on the form· of the ke3:~el, during the 

change of the form of l<('1t1 1t 1) , the nontrivial solution must smoothly ·depart from the trivial 

solution. Therefore it is sufficient to restrict our attention to the following equation, 

instead of the old one (6.9): 

llO 

C{k):-.2lh C(ICf) k'.'(10 )flt C(lcF) - f i fl((Je 'lt')k'LC(k') t<'-.Jci: 1&.i llk'-k jdk' 
E1(kt) 1 

P F E1(1Cp) ~ ctk' l: 1 11(1c'Jl P 
. . 0 

(6.n) 

The right hand side of this equation coincides asymptotically, for small C with that of Eq.(6.9), 

Introduce now a new function 

C(1t.J 
- _{(1t}=- C(1t,.)l+i W 

The inverse relation is · Hl<F) 

C(K}= P(t) E'(Kp) e -w;; 
i ~ (l<p) 

The solution 'C(k) will be close_ to zero if f (I{,) goes to zero through positive values. 

The equation for f (K) is 

E'(1eF) P(t) = 2.K(k,1Cp)­
ll2. t 

I' 

00 

)i,[~(k,k1)/(K') l<'t E:(l(F) 

0 '. "'" 
✓ 

K(.. llp ] 
l"J(ll')I ftt ! lk'- kpl die' 

It should be noted that the equation (6.I2) -is a linear integral equation. 

(6.I4) 

For a certain form of the kernel ~(k1k1} the solution of Eq. (6.I2) will be such that 

l~p)>O • At the s~me time the nonlinear equation (6.9) will have a nontrivial solution. 

For anoth~r form of the kernel K(t, k') the· solution f. {x.) will be suoh that ~ (kp) <O and 

Eq. (6.9) will have· no nontrivial solution. Thus, the condition for the exc1stence of a non­

trivial solution will be 

f(ICFi l((K,Jc1
~ ;;,,0 (6.IJ) 

where the second argument denotes a functional dependence of on the kernel K (k1 k') • 

Notice that the criterion for superoonduct~vity in presence of the Coulomb interaction, 

--



obtained in subsection 4.J, may b~ derived without difficulties from the ~ondition (6.IJ). Let 

us discuss qualitativel~, what is the.form .of ,interaction K(k 1 k'). favouring the appearance of 

a nontrivial solution of the equation '(6 .9). First, for positive and sufficiently small K(tF, %,.,) 

(corresponding to an attraction between e~ectrons in the neighbourhood of the Fermi sphere)~ (kF) · 

will be also small and of the order of K {1ti:, 1<.,) , and consequently, the second term in (6 .I2) 

will be of higher order of smallness as ·compared with the first. The system will be in the 

superfluid sfate. 

Another case when a nontrivial solution exists, is the case of an interaction which is 

localized en the Fermi sphere. In this case the second term of the right hand side of (6.I2) 

will contain a small parameter which represents the ratio between the length of ·1ocaliz.ation of· 

interaction and the radius of the Fermi sphere. The system turns out again to be superfluid •. 

Notice that the superfluidity may be proper to Fermi-systems with negative kernels ~(k~k} 

corresponding to repulsive forces. It is only necessary that there exists a domain ink-space 

where the kernel varies rapidly. Then in this domain the derivative ,Which enters the integral 

term of.the right hand side of (6.I2) will be large, and the positive second integral term may 

exceed the negative first term. 

Without considering in detail such nonregular. interactions it should be noted that the 

superfluidity is chiefly proper to Fermi systems with-predominance of attractive forces. In 

the microscopic theory of the superfluidity of Bose 'systems7) it has been shown that for the 

appearance of superfluidity in such systems the opposite situation, namely the predominance of 

repulsive forces, is necessary. 

Thus, the criteria for superfluidity of-Bose- and Fermi systems exclude each other .• This 

circumstance is in a good agreement with the fact that a system like Hel is not superfluid. 

Indeed, it is hard to believe that the intermolti:cular forces in '1-te,;. are essentially different 

from those in Het • The latter being a Bose system is superfluid. 

Let us return now to the equation (6.II). For small C it has the following approximate· 

solution 

(6.I4) 

where 

(6.I5) 
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These .formulae describe the solution o.f the nonlinear integral equation (6.II) the better, the 

-·closer we are to the point of appearanoe of the nontrivial solution. From the direct considerat­

ion of .Eqs.(6.I4), (6.I5) we· see, that .for the asymptotic .form o.f the superconductive solution 

only a comparatively small partJ(ic
1
-1q1c'1-k'}-o:r the total form J(~1k1 ;J<l,t1J ·is essential. 

Thus.~ w~_shot1ld obtain exactly the same .formulae, if in the equation (6.8) vie put from the 

outset 

f (Jc),.. { C1(tt.J +· (E(kJ-Er:J' 
___ (6, I6) 

or, what ·1s absolutely equivalent, i.f we started not from.the Hamiltonian (6,4), but from-the 

simplif~ed one: 

, + : + 
Hucl. = - t 1 J(Jc,-k; "',-1<') a._Jt'- a_k _ a.k'+ a. k+ 

. ' 1<
1
t 1 I I I I 

(6.I7) 
k,H' 

In ,addition, Eqs .(6 .a); (6 .I6) completely coincide with the corresponding equations .for Fro'h­

lich1 s Hamiltonian, i.f- we put· 

I 
1 

_ it(IC-t') W (IM') _ _ __ 

J (1<,-1<; k ,-1e J - w(k-•')-+\E(ic->=-e-trp)t~t re11tTJ-E (1e,.,1 
(6.I8) 

Thus the reduction of Frohlich1s Hamiltoni~n to _the simplified model Hamiltonian (6.I7),(6.I8) 

is justified with respect to the function C and the-quantities connected with it. 

The above mentioned reduction may be carried out also .for Frohlich's Hamiltonian with 

Coulomb interaction. Indeed, according to §4.J for that purpose it is only necessary to put 

~ J (Jc,-k j Jc
1
, - IC')= Q (le, 11.

1
) (6.I9) 

A calculation o.f the groun~ state energy gives 

1 -II , . > i'2.(E{1tJ ... ~)'1r1r. +<C,v-H c., = 
k 

= !2. '2,(E(1tJ-':>i)'lf':-_ .v' 1., J(k',1<; 1<,1t') ,rktu;, - v' L J(l(,-k;1c~->c')1.C1cv. «.,,va.-, 
k "• 

1 
' IC 111 1 

k;1<' I 
K~ll 1 

For the case of the Hamiltonian (6 .I7) this .formula acqu_ires a very simple f"orm. It may be 

trans.formed into 

l {EM~ E(kpJ- f(kJ} 
k 

where !(k) is given by Eq, (6.I6). For the difference between the energies o.f the normal and 

the superconducting states w~ obtain the .following expression 

... N EN "'") ~ 
Eh - $ = .t l f(k.J- ~ (ll} + I:: (kpJJ 

---
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which coincide with the analogous expression for Fri:ihl1ch 1 s Hamiltonian, given in§ 2.J. 

There only remains to calculate the energy of; the elementary excitation .or the Fermi branch 

of the spectrum. This may be carried out by means of the. following formula: 

(6.20) 

For the calculation of the vacuum expectation value in this formula, one should keep in mind 

that o(k,\ is not to be paired with b( k,½ • Notice, further, that if we replaced in Eq.(6.20) 

the spin index ! by --l we would, certainly, ob_tain the same result, be_cause of the invariance 

of the Hamiltonian (6.4) under such transformations. After some manipulations on (6.20) we find:' 

and by the use of (6.9) this formula may be transformed into 

(6.21) 

. fhus, the quantity E'(K) we have introduced is, in fact, the energy of an elementary excitat­

ion. For the case of the Hamiltonian (6.I7) Eq. (6_.2I) may. be written in the form:. 

(6.22) 

which is entirely analogous to the relation· for Frohlich's llamiltonian in§ 2.2. We have 

investigated (6.4) by means or the principle. of compensatio~ of "dangerous" graphs, restricting 

ourselves to the first order of perturbation theory ~nd using this principle in the form 

(6.5). It may be shown, however, that the taking into ~ocount of higher orders of perturbations 

theory adds nothing new in principle to the equation for C(k). This situation was demonstrated 

in detail in a paper by s.v. Tyablikov and one of athors/I9/. 

Indeed; to the second order the principle of compensation o:f' "dangerous" graphs acquires 

the form. 

(6.2J) 

The suffix "oomp" denotes that besides the graphs of first order drawn in Fig, 12, it is 

necessary to take oare only of the second order graphs, Fig. IJ. 

Fig. I2 Fig. IJ 
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These describe the creation of four particles from the vacuum and.the subsequent turning 

o! three particles into one. The second or graphs, of fig. I4, do not need any special compen-· 
' 

sation, since,-because of the stated compensation rule, they will be automatically compensated· 

by the third order graphs of the same figure. 

> 
~ 

.>e::> 

~ 
Fig• I4 

The equations (6.2J) yield, restricting ourselves for simplicity, to the case of a k_ernel 

J (1'1, 1'1 j I(: J k.I) localized and constant in the neibourghood of Fermi-shell: 

i 1 ~(ltJ-(~r 1 {u~ v~ - (L<t,'Vic,){U1,Vt,JHu~,-'lrx~J 1 Ultvk-: 
llhltuk3 l1(1tJltl!(k,Jj+fJ(lc1J)-t l"f(lts)I 7 
l<z-lt1-tt3"'k . 

\ 

= (u~-'lf1:1) Lr 1iuki vk, + ( ~l I U11,'lli,, { (U11,tr11s){t111Vx,J ~ u;, 'Vx! 1 2 
1 V k, 1c,,1ti,k3 l'f{t.JI+ IJ(l{,JI+ l'J(IC,Jlt IJ"(IC1JI L 

~-~4~~1C ' 

where ~ (t), = E (11-J- E (kF) 

Hence the corrective terms with J 1 are in fact somewhat smaller since they contain the pro­

ducts U'll" with the same index. The latter lead to an exponentially small contribution and, 

as may be seen, do not change the asymptotic quantities obtained above. 

6.J. Collective excitations. The influence of Coulomb interaction. 

Let us proceed now to the investigation of the collective branch of the Hamiltonian 

(6.4). Considerations analogous to those of subsection J.2 for the collective branch of Froh­

_,lich's Hamiltonian point to the.necessity of diagonalizing the quadratic form 

where 

r'= I 
","'•~ 
1'#-\' 

r = 2 { 'r£k+~H T(1t11 ;,.ck, ~r(1c.J-1- r' 
",~ 

;, (It)~, (i1JAp(k,~') + ½ L ~~(x]p.,,(11.') 8/1',x'J +½I, t,.{1t 1
) ~,.{t.J Bt'{1c,11•) 

(6.24) 

k,k~I' 1<,11,r 
kO' 'llO (6 .25) 

--
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In turn the ooefficients Ai,("-,"') and Br(k1 1t'] are oonneoted with the matrix elements of the_ 

original Hamiltonian by means of the relations: 

.. * . ,+ + 
. ~, (t, t') = < Cv olt, o(kt~O H rJ. k'+ro o( t:11 c,,. > 

* . Br(~,t'}-= (Cv <X1:14 lXt!yo o(IC4 o(kt~D H' CT:> . . .. 
(6.26) 

for whioh, explicit expressions may be obtained in the sa~e way as iri subseotion J.2 •. 

In the case of a Fermi gas with weak attraotion. we have in fact the sanie eitua.tion as in 

sec. J. Repeating almost liter~lly the considerations of that section we may prove the 

existence of oollective excitations of different kin~s; longitudinal as well as transversal. 

In the present section we shall discuss the infl,uence of the Coulomb interaction between 

electrons on the ooll~ctive ex~itations, ip.vestigated in tlie subsections J.J, J.4 fQr Frohlioh 1 s 

Hamiltonian •. In order to ge_t: at least a rough idea about the situation, we restriot ourselves 

to the consideration of the Hamiltonian: 
+ I H: L (E(k)-i\J c'.A.u a," + I{ 

11,s 

ul _ I ~ ~ . l 1( . ') ( , 1 + · t 
n - "'V ~ L... . . ,- k1,r, +11 lk,-)(,1)7 a.k's D..JC' C!-111~ a • 

'- St,St ll1;1ti1):/1II: l t l t I 1 11,t1 (6.27) 
11,-tkt• kt+~f 

M,,,I ka' 
the intera.ction :r(k1k1) represents a direct attraction b!ltween electrons, whioh appears 

from the eleqtron-phonon interaction and is localized in the neighbouhood of the Fermi· surfaoe. 

The intera-otion 'V(lk~ - .,_, 1) desoribes the Coulomb repulsion between the electrons! 

Computing the matrix elements (6.26) for the. Hamiltonian (6.27) we obtain 

A~(.,_, 'i1)::: ~ ~-J(t'+r, 'tt~)-1- 'V(tll!.tr)} l-(1c,,'J L{ht' I "-
1+~} + 

+ _L \- J {t. ,U)') + V(l~t}) I\\ (ll', k'-tp) M (1<, l-tp) 
.v 

Sp(¥.,¥'): Vi- J (t.', t.'-rJ t v{1r1} ~ M•(k, l-tt') M (ll~ td-y) -

-¾ {-J(l£,Y.Lp)~11{lt-•'1)) M(1!.~ktp)rt,4{k,YL~J 

These expressions are quite complicated. We can, however, consider the case of small P• 

In the terms which contain 'V(1rl)one may retain this quantity only, since· for small . p the. 

Coulomb V(l~I) has · a strong singularity. On the contrary the other terms V{llt-1111) may be 

included into the phonon interaction, _since in the collective excitations, which are·being 

considered, onJ,.y large momentum tran~fers 1£- "-' are essential and in addition to this, as 

shown in subsection 5.J, in expressions, where the Coulomb repulsion is joined to the phonon 

attraotion it is always screened. 
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Thus 

A~ (k, k') ::- :r(~lt'J !.(1t,1t'Jl.(11+t, .,_'+;J+ ~~, 11,1( .. ,HrJM(k~ -~rJ· 0

(6 .28) 

B11 '(k,lt') '= j{1t,••J M{k~lt+~JM(k,lt(.~J+ ,,.M l\1(11.,11+pJl\f{1<~1< 1-p) 
r y V 

The secular equations which correspond to (6.28) are of·the form: 

( £(1tJ + E' cic+rJ~ 'E' c1t-tJ) \>.,(kJ- {; t, r (k,k'J{ 1 (1c, 1r'J 1..(u,, ,,~,,J :1..<11-,t,, k~,, J 

t,.\(1'',ll+~)M (1t,1t'-pJ- M{t\ t-n M (k,11 1+~) 7~ ( 11 
- 1 fV'f k/t 

f ~ L, J M(1t,Hp}l\f{k' k't-p]t M(K',k'-pJM(t,k·p)+ M(l<,k+p}M{t',•'-p)-t M(t,11"';JM{k~k 1tpJ}fr,{1t?:: 
2.V k' l . . . , 

,= (E- rc .. +n- £°(•-"')e,,(i,.H.L 2.r(t,-.'JJL{t,k1 L.(1t+p,11'-;J;L<11-r,k'-,,J + 
1 . V ~ l . 

N C11',1e+~J M (1c,1t'-r J - M (k~ 1t-r, M (K,Jr'+rJ } 0 -+ 2. ,, (1<') -

-¥v ;{MC1t,1ctpJM(i,1t'+pJ-~(11.1,11'.;rJM(1t,k•pJ-M(K,1t-pJM{1c\1tlpJ+ Mlk,1t-pJ11-tt11~1c'-+pJ} e,(11'J 

(6.29) 

( 'i (kJ t i' (1c+~J~ te•-►> )e,,c1:1 - ~ i J (1t.,1r'J 1 L(1C,11'J Lc11 .. ,,, k'-+pJ ; L(11.-~, 11'- ►' + 

t M(t',k+~)M(1t,1c'-rJ+ M(rc',1c~rJM(ic, 11 '+t,J J e,.(1t.'l+ 
' 2 

+~I J l\f (1c,t+;1 M lt~ 1t.'+pJ + l\f (1t.\1t.'-pJ/\f (1c, "·1'J- M {11, " .. ,, r..c"~ ll'-pJ- M( It~ •'-fpJNC 11. ;,.-,,jJ e,.(k'J ~ W l . . 
k' . : . 

= (E- £(1t.t)l1-~£(1l-~1)~,(~J-+ ~ ~1(1t,~'J1L(1<,)? L(1::+-,,,k'-+)l);L(1<-p,1t.'-1'} 

- v.Q} Li fl,f {ll,~t ~, M(~', l<~p} - M{Jt', 1tlpJM(k,1t-)I}-+ flt (11, hp )MM k!.;J-M {11,1c-11J M {1t.',1t!f,;JJf},M(6 .JO) 
2.V l' . . 

These secular equations di!fer from Eqs. (J.IO), (J.II) by additional terms with the 

Coulomb interaction. 

From the structure _ot the_se terms it may be observed directly that the so called, 

transversal waves ot subsection 4·.4 turn these terms into zero. Thus, we reach the important 

conclusion, that the influence of tae Coulomb intera_ction is reduced only to the modification 

of the effective interaction. 

The situation with the longitudal collective excitations is somewhat more complicated. 
-:-

' --- ---·----·~-.••--- --- ·---·~------~--·•·-·- -- ---- ·--
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Taking into account the Coulomb interaction explicitly, these excitations are modified in such 

a manner that there appears an ordinary plasma branch of the collective excitations. One may 

easily prove that this is true, by retaining in the secular equations (6.29), (6,JO) only those 

terms, which are essential at sufficiently large p, when Ua,11'1t may _be replaced by their normal 

values: 

Besides it is sufficient to consider in (6.29), (6.JO) only the terms with the Coulomb interact­

ion. For this sake it is convenient to proceed from the functions t 1 & to ·the original 'I, X. 

They will satisfy the equations: 

(6.JI) 

(6.J2) 

which may be easily solved, and lead us to the following equation for the definition of E: 

I= ~fr] 1 1 1 
+ 2. 1 

J 
(6.JJ) 

V II. E -s (ki'J.f-E(k] II. -E- E (k-t)'1+E(k] 
, ... , ... lit: lltl-' kp 

, .. _,.,, 1ft, llr.tJll?ltf 

which corresponds to the Sawada - Brout•s plasma secular equation IJ • 

For momenta p , smaller than those, corresponding to the energy gap fl 
' 

we can no 

longer replace ~~ 1 \1"1 by their normal values and the nontrivial behaviour of Wa, V11. becomes 

essential, Here, physically, we encounter a very interesting dispersion of the plasma frequency 

at small p. This dispersion turns out to be a peculiar-property of a superconductor. and 

may be used as a basis for the experimental definition of the quantity C which enters ·the 

theory, 
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§7 CONCLUSION 

7.I. The Thermodynamics of the Superconducting State. 

Up to this point we considered only the ground state and elementary excitations. Now we 

want to analyse the thermodynamical aspects of our model. Let us first note that collective 

excitat1ons are not important in this case. Due to the smallness of the maximal momentum of 

collective excitations its contribution to the thermodynamical functions (in the absence of 

current and magnetic field) may be neglected. 

Indeed, the effective volume of fermion excitations in momentum space is proportional to 

1<,c.4 

(c -is the sound velocity on the Fermi surface). The corresponding volume for collective 

excitations is Qf.the smaller order 

A'lc3 

So, for thermodynamical purposes, one may use a Hamiltonian in which only pair interactions 

have been retained. such a Hamiltonian, as shown above, gives a correct description.of the 

ground state and the elementary excitations of one-fermion type. An interesting feature of this 

Hamilt·onian is that the free energy may be evaluated exactly. This calculation was performed 

by Zubarev, Tserkovnikov and one of us (20). From their result one can get Bardeen, Cooper, 

and Schrieffer's formulae, originally obtained by means of a variational principle in the 

approximation when J is constant· near the Fermi surface. 

We reproduce briefly the mentioned calculus. Let us consider the Hamiltonian 

1-l = I-lo+ 1-1,·.,t: 
+ 

1-1 • Z: ( ccic,- l) au a,a 
o ic,s 

(7.I) Ir + .,. J.I, •-- a. a. I ,,.t -v- -11,- .,,.a";.,.a."~-:Jc1c,k'J 

Here J is a real bounded function which prectically vanishes outside a certain finite range of 

.the momenta k;k•. 

As will be shown, one can construct the thermodynamic potential 

H 

'f = ;:. -;.»'=-~t,,3/e- 8 

which is asympt ot ica~ly exact for V' ➔ "° . 
Performing our canonical transformation (2.4) we obtain 

II = /.{ (O)" H I , H (OJ :: V + X 111c. 

k 

H1 = - =f;E. J(k,k.'JB" B1e 1 

(7.2) 

(7,2) 
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where 

-1- i- 2 2+ +. 
8" = "'" ~ ( c(lt.o o(ICO ~ cl11., «11.1) - UH."""' cl1co + zrle «1eo d"' (7.J) 

+ . 
The new operators ~' 111<, 8.t: all commute for different k. 

Applying statistical perturbation theory to (7.2) we obtain after some transformations 

where 

- l{f•J t H (IIJt, 

8,c (t J = e ale, e 

Now we use the supplementary statement that if 

- H,.IB 
.s1 ( e B,.) = o 

for ali k, then each of the .:ltn tends to a finite limit as y .. ..o. 

(7.5) 

To·prove this statement, note that if (7.6) holds, all the terms in the sum (7.5) for 

which there is at least one momentum Kf or "t which does not equal any of the r_est of the 

~·, KJ , drop out. and really the sum (7 .5) contains only the terms for which there are no more 

then n different among the K,,-K,',, •. K,,,N: momenta, and hence are proportional to vn., yielding a 

finite value for JL.
11 

• As both terms in the l.h.s of (8.6) are proportional to Y ( for y-,, o0) 

we obtain 

SQ we are led to the following expression for the thermodynamical potential of the mentioned 

type 
. - - H.1c 

1t ::: .u - B 2. e" 3/' e " 
k. - ' 

(7.7) 

So we have only to determine kN,Li. from the condition (7.6) and then use (7.7). 
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obtain Carrying th;s programme, we 

~ 
J.-e- d , " . c,1c1 =;;= .c:.. ;Tc1e,1e'.I u~,u;_, 

....t2.CIC) t + e- --;;-
i 

...12 (l,C.) = ( (£,1e,-l.)_z.·~ cz(k.J 

and hence C(Jt)must be determined from the equation 

C . I ' . ( ..11.(lt'JJ C CIC'} 
(/c.) : - L... :T(IC 1,cl) t,h. - --2Y ' 261 Jl. (IC.'} 

which always admits the trivial solution C CkJ =O • 

In explicit :form (7.7), becomes 
:.rz,//(,1 

~ {. ·. C'clf.) ti, J2.(k) I.J (1 1/' = L. E<1tJ-'l + - - - ..12.<1<.J- 26 c;,, + 
J,(. :ZJ2.Ck) 2B . 

e-~) j 
2 

Considering this expression as a function of C (1<.) we have 

a1/I -= c'-c1e, ~ { 2 ..!... · th ..IZ<1eJj -
d c',1e, J C2

(k) a./2(kJ 2JZCIC) 28 -

where 
j(,c) : 

.s-J, Jt - x 

2 )(.1 ~1. z l!. 
.2 

>O 

~ I ( -E.!_JtJ J 
~IJ tJ- / 

(7.8) 

Thus for C z. j O f always has a lower value then :for the trivial solution. 

Hence the phase trensition will take place at the same tempereture, at which eq.(7.8) 

will have a nontrivial solution. 

7 .2. • The Electrodynamics of the Superconducting state • 

The question o:f obtaining the electrodynamical equations is more complicateg. One must 

take into consideration that a systematic motion o:f electrons is always connected with a 

magnetic :field and superconductors exhibit specific magnetic properties, e.g.· the Meissner 

e:ffef)to 

Restricting ourselves to the case of weak magnetic fields, we naturally lodk for a linear 

dependence of the current on the vector potential. 

Two t_ypes of such dependence:, are known from phenomenological considerations, London's 

equations and Pippard's equations. London's equations are local, i.e. j(x) is determined by 

A(x) in the same point. In the more general Pippard equations the relation between j(x) and 
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A(x) is given by an integral formula. . ' 

It is easy to see without any calculation that in the linear approximation of our theory 

as a consequence of the spatial correlation between electrons,'we shall obtain equations of the 

Pippard type. 

The corresponding integral kernels must be smeared over a spatial region·with linear 

dimensions characterized by the specific correlation length of particles with opposite spins. 

Here an essential difficulty app·ears because, in order to obtain the equations of electro­

dynamics one must take into account collective oscillations, especially transversal ones. On 

the other hand, and this is of the utmost importance, we must take into consideration the 

existence of boundaries since ~he spatial correlation between electrons amounts ·to I0-4 

and the penetration depth of the magnetic field is of the order of Io-5cm. 

I0-5 om, 

In order to clarify the statement about the range of.spatial correlation, let us calculate 

the pair correlation function' F, { Jt,,c'; ~.-~)for electrons with opposite spins at absolute zero. 

With the usual definition of .the correlation function we have 

Here 

. 
I 

are the se9ond quantized wave functions. The average is taken with respect to the vacuum of the 
• + + 

occupation numbers Ol'b t('"' 1 «c, "'"' . Expressing · tJ.Jc; in terms of c:<"" and ~i ·we obtain 

F.. t · I .z. I I . -,., ......... ~! 2 . 
.z (JC·"'; ~ ,- 1/a) = ya {f v:) + yz f U1c ~ e ... 

where h0 = 2-v''Z u!_ - is the electron df:nsity. 
I&, 

This expression shows that in the normal state where C(JcJ• o (u,.,~ = o)there 1s no 
' ' 

correlation between electrons with opposite spins. 

In the superconducting state flic 1"k essentially differs from zero only in a small neigh-

bourhood .4 I( of ·the Fermi s~face, with .4/c defined by 

• 
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and the'uncertainty relation gives for the correlation iength an amount 

I -Y 
AX - - ~ /0 c-m 

A.Jc 

Note that the correlation .function for electrons with parallel·spins 

~ z z -lC1~1-Jc2 )(.¥-X'/ 
~ (1'-x'; ½, ½ J =-_L-_ v., ~.i ( 1 - e · 

. ~~- . ~ 

i~ determined mainly by exchange effects and, pravtically, is the same for the normal and the 

superconducting states. 

Neglecting boundary and collective oscillations effects, the Hamiltonian should have the 

form 

I ~ e z · H =-
2
- L- .{1c- z..11) _.,. /"II -1-- ~i.t· ,., . 

Jc,.S 

with constant A and H. In this way one should be able to. get equations of the London type with 

a non-linear dependence of the penetration depth on the magnetic field. 

In order to improve the theory and to ob\ain not only qualitative information about the 

Pippard functions, a detailed investigation of the full Hamiltonian including interactions 

between any two particles, not_ only with antiparallel momenta and spins, is required, as well 

as the taking into account of the existence of the boundaries. 

7 .J. A Qualitative Picture of Superconductivity- •. 

In conclusion let us say some words about t~e physical nature of the superfluid or super­

conducting state ~ • As «11. are the amplitudes for superpositi'ons of particles and holes 

. (±11., ~~,2) the Fermi sphere expands in general. There appears a characteristic correlation 

between particles (± k 1 t: f J and ho.lea { i: k, ±J) •. One can present the picture in t_he .following 

intuitive manner. 

There is an attractive interaction both between particles-{rk, ±f) and holes (:i:K.,,t:jJ. 

Then it is _profitable from the: point of view of "interaction energy 'to dilute• the Fermi sea 

with holes (~k,%-}). On the other hand the expansion is not profitable for the kinetic energy. 
. . . 

The balancing of these two factors leads to the lowest energy state. 

In the normal state, using a suffi_ciently high approximation, one can al.ways obtain the 

correlation between particles with momenta k + q, -k+q but the value q = O presents no 

particularities. In the state C
4 

on the contrary.ij" we have a gap. In connection with this it is 

clear, that for example an interaction term of-the form 

I '°' + ~ .-
y4'.; :Tc1c,c'J a..,+ a_Ji;_ q_A:~- a~~+ 



- -- -----,-----------

72 -

which for -v-. "° gives an infinitely small contribution in the normal state, plars an important 

role in the case of Cs 
Of course we are not allowed to simplify the picture too much and introduce the concept 

of bound pairs of particles, Indeed, taking this concept seriously and calculating the binding 

energy of this pair one obtains a quantity of the same order as the energy of interaction 

between different pairs, 

In fact the system forms a bound ensemble of the same type as for Bose systems, If it is 

possible to make use of the terminology of quantum field theory which is not quite clear, but 

is nowadays in some sense "quasi-intuitive", then-it is possible speak about virtual pairs and 

to consider Cs as a bound Bose condensate formed of such virtual pairs, 

· The analogy with Bose-systems may be continued, Indeed, besides excitations of one fermion 

type, which corresponds to the dropping out of the ensemble of single particles, there arw 

also excitations of the ensemble as a whole, 

The existence ·of correlations between the particles in momentum space naturally gives 
' rise to a 1correlation cloud• in ordinary coordinate space, 

{ 

This •cloud• has an interesting structure in the case of the superconducting state, An 

electron with definite spin _is surrounded by ·holes which· effectively screen its charge in a 

f th. d f IO-' At h 1 di t f the order I0-4. Io-5 th range o e or er o cm, muc arger s ances, o cm, om, ere 

is a weak predominance of electrons with opposite spins as a result of an attractive .~nteract­

ion, 

The authors are much indebt·ed to S, V, Tiablikov, Y ,A, Tserkovnikov and D ,N. Zubarev for 

clarifying discussions and helpful advice, 
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APPENDIX I. ON A CRITERION FOR SUPERFLUIDITY IN THE THEORY 

OF NUCLEAR MATTER x) 

It was noted in Sec .6 that a system of Fermi-particles can possess superfluidity under 

certain conditions, which, roughly speaking, reduce to the predominance of attractive forces. 

So it is natur~l to consider the qu~stion fo superfluidit¥ for nuclear matter. 

This 'problem is complicated, due to th_e fact, that nuclear interactions are strong, so 

that'perturbation theory expansions in powers oft.he interaction are not applicable. The most 

consistent method would be obtained by a generalization of the graph summation method of sec.4 

A rigorous realization of this program is sufficiently complicated and so we.think it useful 

to consider .a simplified model which allows exact integrat_ion. 

• In this theory of nuclear matter nucleons in the nuclear mm:tter are considered approximate­

ly as free particles. The effect of the interaction reduces essentially to an effective alterat­

ion of dependence of the energy on the momentum of the nucleop. In nuclear matter the· energy of 
&/. . 

the nucleon is not equal to p 12M , but is a function E<,J which may be approximated in the 

usual way by an expression of the form 

1'2. Er,,,., - ~ V 
. 2 .M~ff 

Y<O 

In this framework the ground state of nuclear matter is described by the wave function Cn 

which corresponds to the usual Fermi sphere, where all states ~ith ECjJJ_< E;: are ooo.uj;>ied, and 

all others are free. 

In view of this fact, we consider a model dynamical system with the Hamiltonian 

~ 

H a 2, {£(I:)- CF J t1. ~tf' ti/Ctr 

k1tr 

f . .,.. .,. 
-I-zv-~ J" < Jc, k/ I tr,, l7i, trf, tr,"1 a.*"i qk"i '!1e1'a' ~'-';' 

(k,c:-.rJ 
( A.Z:.j) 

Here <1' is a ·discrete index of spin and isotopic spin of the nucleon, EF a parameter, which 

plays the role of a cliemical potential; the subscript F is to remind us of the fact that 

in the n_ormal state it is equal to the Fermi-energy, V is the volume of the system. 

The model character of this Hamiltonian is due to the fact, that only interactions of 

particles with opposite momenta are taken into account here. 

x) This Appendix is based on a paper (2I) 
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It is easy to see that the interaction Hamiltonian Il' · is not effective in the·state Cn• 

Indeed, calculating 

we found it to be finite when Y➔ "'°, and the energy should be proportional to Vin this li­

miting processX) 

The model considers explicitly only· the specific -_1nteraction_s which are effective in the 

special case of the "superflilid" state Cs • The "regular" part of the interaction is implicitly 

taken into account in the effective energy of the nucleon E(k). 

Let.us show that the state Cs can be found asymptotically exactiy in the case y .. a,. The· 

conditions !or its existenae can also be obtained. It is convenient to introduce the abbreviat­

ion q for the pair ( k, - k) ; q and -q describe the same pair, the ~um over q runs over diffe,­

rent pairs. Now we need the new index 9 .. i:i in order to express k as (q, p ). As_ a discrete 

index f and C, will be designated as S~ (~f). In the new notations the Hamiltonian under consi­

derat~on, (A.I.I), takes the form 

(A.I.2) 

Using a modification of the technique proposed by D.N. Zubarev and Iu.A. TserkovnikovC20) 

(see also § 7.I), we introduce C - number functions .Af (S1,.r4 ) and rewrite the Hamiltonian 

(A.I.2) in the form 

where 

and 

8, (s~, Sa) = a.f.S-1. a.,.s, - A, (.r,, Sz.} (A.I.a) 

' . -~ 
x) It can be shown, that applying perturbation theory to ('I.I). with Cn as a solution of th, 

unperturbed eqµation one finds that the corrections of any order are infinitely small tn 
the limit of y .... DO 
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As Hf is quadratic in the Fermi-operators its diagonalization is achieved elementarily 

by the linear canonical transformation 

a.,,• L { u,9,s,.r'.1«1,, + ur9,.s-,.r'J .:,1 , j 
S'. 

The functions U,'V' must satisfy orthonormality conditions of the form 

:I=~ { /J.c9
1
s,s";ut9,sJ.1"J+ J {9,s,s'')11r,~s~.rNiJ= J;,.,., 

s• 

-~ = E J Zt.r9,s, s")11'(9,.rtJ") + ur9,~s",1ur9~.,-:.s•.)J = o 
.s ,, 

(A.r.4) 

(A.r.5) 

After determining U,V from the secular equations corresponding to (A.r.J) the express­

ion for Hq takes the form 

• 
1-('I = r, ~ f l., <fJo<f.,. °'1.s 

From the latter it is obvious that the ground state C0 of the Hamiltonian H0 is a vac.uum 

state for the new Fermi-amplitudes 

°'Ks (o ::. 0 

We choose the c-number functions A in ~uch that 

"' < C0 81 {.r1, Sz. J C0 ) = 0 

.... 
and notice also that /-10 , 'B9, B9 with different q commute one with another. Using an argu­

(2o) • 
ment of it can be shown that the contribution to the ground state energy of Hr is negligibly 

small as compared to the contribution of 1!0 r Ho in the limiting case v➔ ct:> • Roughly 
. 2 . V speaking this fact. is due to the finite character of Hr in the limit - eio whereas the 

energy is- proportional to v. 
So with a corresponding choice of the functions u,v the expectation value 

- .... 
H • <C0 IIG,) 

gives an asymptotically exact expression for the ground state energy of the Hamiltonian under 

consideration. 

This consideration provides a recipe for the_practical definition of the functions u, V. 

s·ubstituting Eqs. (A.r.4) into the expression for II we have 

H = X { E<tJ- Cp) X,; ff,S', .r') uc9, .r, s ') + 
,,., .S' 

I ~ ,... . ii" 
+- 2"V'.' L.. I (9,p1,s,,sa, s£s/ J f Ev rr,s,, S":z. Ju.,,, Sz, s, Jj{2 l.ltf,Sz.~S) Zf(~ s.,'":.rJ} = 

(9,1~ .r · " . 

~ft,, 'Zf) 
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Then U, ,r would be obtained by minimizing the form t(u, tr) with the supplementary conditions ' 

(A. I.5). For these values of u. and v- , E. gives the -energy of the ground state. 

The corresponding stationary condition has the form 

Ji e S [ £ + L ( ~ {f,s,s';J (f, .s, .s'.) + ./" lf,1,S')?(f,",S'} ~ lf,S,.r'J,{19,.,.,s,) j = 0 
f,4,1' 

where ).,.f" are Lagrange multipliers. 

Obviously this equation always admits a trivial solution 

u., : e~ c1,i;,, I v;= 4't91J;.,, 

~-o ,1 z- &9,c <9J ( t;r- Et1J)tf'.s..s1 

In the corresponding state c'"' 0 
the interaction is not effective and only the 

the Hamiltonian (A.I.I) contributes to the energy. 

(A.I,7) 

(A.I.e) 

first term of 

In order to determine when the energy of C/"J is not minimal and ~onsequently the ground 

state CJsJ is characterized by a nontrivial solution of (A.I.7) one must use a standard 

S·-procedure of the calculus of variations. Constructing the second variation 6 for the 

trivial solution one obtains 

with 

S'i • 2 /E,,p-E,/!f l'/,.r,s')y,19,s,1'; + 

~~•' 

+ iv-L I ''l•f'I s,, la, s{, s/) y., ff, .r,.1.rz.J f 1,: .r,~ ; 3 'J 
(9, ,:. .. '-") 

the.functions tf are subject orily to the antisymmetry conditions resulting from the variation 

of the orthonormality conditions: V,,191 .r, .r'J = - ,; (~ sJ s). 

After returning to the original system of indices (of. (A.I.I)) the second variation takes 

the form 

S"t • ~ /Ecic,-E~ Jf t1c,,r,tr'Jip<1t,r, tr')+ 
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and. the antisymmetry condition takes the form 

?f(-1<,ti;, er,) =-Y,{lt,(F,,~J 

l'Z.-
Obviously .the second variation d t is negative 11' and only if the equation. 

i /r(Jc)-/:F /'If (k 1 ",, c1a) + 

+~L_J'(k,1c'Jcr,,~.(f';,11;')rJ!{k~d":,<r;. 1J:: £'f'(k,~,o;; (A.I.9) 

( k~trf, tr2) 
admits an eigenfunction with the negative eigenvalue E. 

In this case the energy 01' the state c~n) is not minimal and a new ground state C
0
(s} 

arises. This state is characterised by the nontrivial solution of Eq. (A.I.7). It.is interesting 

to notice that Eq. ·(A.I.9) written in configuration space (with a velocity independent interact­

ion) 

:l I £,1e,- CF l 'f ,~. c;, tr'z.) +-

+L c.Pcz/i,;,~,~;,~·J111li:,1T;,6z~ .. -Elf(i'/~,t1"zJ '~.~ . (A.I.IO) 

is very similar to the Schrodinger equ~tion for the two body problem in the center of mass 

system. The difference lies only in the special form of the kinetic energy operator. This 

difference naturally disappears in the case of vanishing .density when E,= : O. 

Then equation (I.IO) can be used for the investigation of the problem of superfluidity.of• 

nuclear matter as a criterion of the instability of the normal state. 

For these purposes it is convenient to make use of a variational principle and to minimize 

the expression 

,2 L J / t(l~J- EF /. / i/' (Jc., 6:,, crz ,/· d it + 
o;,"z 

+ L I<t> (ij o;,~, ~:,1 1)'f(t~ ~.,trz.) iptl d":,~ 1
) d~ 

'-·""· "::.) 
where 

1f (JcJ = _!_ · ·j : .- llti9. 
{:lnJ'la Y,l~J e . d~ 

with the supplementary condition 

I J /y,11:,6",;c1"z) /2✓?= 1. 
o;, "z 

(A.I.II) 
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If the special choice of the trial function lj, leads to a negative sign of this expression, 

then in Eq.(A.I.10) £-' 0 and our criterion is satisfied. 

Let us note in conclusion that in the model under consideration it is possible to construct 

an asymptotically exact form for the free energy. 

The equations here are nonlinear and sufficiently .complicat~d but the equat~ons which 

determines the oritical temperature of the phase transition into the normal state is linear. 
. •. . . . . .· (22) . 

As shown by I. Kvasnikov and one of the .authors these linear equ~tions differ from Eq,(A.I.IO) 

only by the fact that E = 0 and by the replacement of 

by 

where G is the critical temperature. 



; 
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APPENDIX II. ON A VARIATIONAL PRINCIPLE 

IN THE MANY BODY PROBLEMx) 

We studied here only the spatially homogeneous problem. But in a number of cases it is 
.. , . 

very interesting to consider·spatially inhomogenous problems. So in order to obtain exact 

electrodynamical equations in the theory of· superconductivity we must take into account the 

boundary of .the .superconductor. It is also very important for the further development of the 

theory to take .into account explicitly the crystal lattice of the metals. 

Especially in nuclear theory the consideration of .the matiter as unbounded is a very rough 

simplification. For all these physically very different purposes we propo·se here a nevi approxim­

ate method, which is a natural generalization of the well known Fock method<24 ). 

Consider a dynamical system of Fermi-particles with a Hamiltonian of the form 

H=2 iT<f,f'J-lSff'}afaf' • 
+ ~ 

.;. ~ ~ J ( .f" .f :z, f./, I/ J 4 1-. a.12. QI~ 41~ 

here ~ 
+ 

is the chemical potential, 4, a. 

characterising one particle states. 

are the Fermi amplitudes and f 

Let us perform a linear transformation of the Fermi amplitudes 

al .. L {t,,,, cty + Zfi:,, Jv ) 
y 

(A.II.I) 

is a set of indices 

(A.g.2) 

In order to preserve the commutation properties of the Fermi amplitudes the transformation must 

be canonical and the c-number functions U, Vmust obey the following orthonormality conditions 

* . J,,r ;:; r l ll;v J,," + u;., ~,,, J = i,,, 
(A.fi.J) 

11,t : [ { "111 Viv I- lli11 1y,ll} : 0 

Substituting (A.fi:.2) into the expression (A.;fl.I) and t'aking the expectation value in the vacuum 

state C0 : 

C(,,C0 ::: O 

corresponding to the new Fermi-amplitudes we obtain 

R = ~ l TCl,I') - l ~,, / P, I/,/') ~ 
. ~ . 

4-f Lj(/,,I,, JJ, I,')¢ (1,,1,. I <l>flf, ,'; 1) • F, {I,,/, 'Jr, I fa,lz 'J- F, I I,, I,') F, lf,,/2 'I~ l'{u,ll'J(A. U .4) 

·x) This Appendix is based on a paper(2J) 

I 

I 
\ 
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where 

The functions ll, V are determined by minimizing the form t{u, VJ · with the subsidiary con­

ditions (A.II.J). 

The corresponding stationary .eq_uation has the form: 

lcu,vJ .. ecu,v; +2 [l (J,f'}JfE,f 'J --.;u f~f'J'l (/2,''I -~_;%(/,/')>/"If,/'} j 
.· l,I' . ·.. . 

where A.,J" are Lagrange multipliers. The variation !it, Iv and SI,(,.,., tif are considered 

here as independent. 

Now we come to the formulation of the new approximate method in the many body problem. _In· 

this method we take the functions· n.· and ,r _satisfying the stationary equations, which minimize 

the form f C u,v_J • For these· functions: the corresp.onding e
0 

is treated as the wave function 

of the ground state and E.{11,vJ as _the ground state energy.· 

The question of the fundamentation and limitations of the method is complicated. We shall 

restrict ourselves only to several·remarks •. We assert on the basis of the results of Appendix I, 

that the method provides _the exact solution of the problem in.the case when in the Hamiltonian 

only interactions between pairs with opposite momenta. is taken .into 'a~count. 

on·the other hand, we maintain, that among the solutions of the stati~nary equation there 

_is always present the one exactly corresponding to the well-known Fock method(24). 

Indeed let ·us take the set of. functions fJ/,, orthonormalized in the usual sense 

and divide all l1 -into two parts F and .G. A finite number of the indices N (N - is the 

number of particles) belongs to F - the Fermi. sphere. The others belong to the complementary 

set G. Let us choose 

u1,, = o , Zyµ ;: ',v )I E J: , 
(A.:g.7) 

LIi" = ~JI I ?y., = 0 , ,, 
~ t; 

Obviously all orthogonality conditions (A.y.J) are satisfied. If we substitute.these tl. and 

t into the form I then~ v~nishes and it depends on Fr only and thus only on UJ with 

. ''" 



- BI -

,J E G- • Let us denote by c.:, the indices v belonging to F and define ~"' from the minimum of 

the form l( .. ·1..;•Jwith the subsidiary conditions (A.!J.6). -
The corresponding stationary equation has the form 

G tF{oJ=O I fF: £ ( ... _,.,/t.1 .. .) +2__ )(ff') J(f,f') 
. f,f' . . (A.II.8) 

It is easy to see that we formulated here just the usual Fock method. The wave function of' the 

system C0 corresponds to the state where individual particles occupy all the states 'f/t.1 

the other states cpf tl are· free. 

On the other hand it is clear thatEq. (A.II.5) always. has a solution of the type (A.fi.7) - -
with 'f.fw chosen with the help of the Fock method as the solution of Eq. (A.y.s). Consequently 

our method may be considered as a generalization of the Fook method and in any case its domain 

of applicability is not narrower. 
C' 2. ... 

Calculating as in Appendix I, the. second variation " £(1.1,v) of the "normal solution" 

(A.:g.7) we can obtain the instability condition. This condition is formulated as ·the eigen­

value problem for the corresponding system of nonlinear equations. 

Practically this condition may be. used e.g. for. obtaining a superfluidity criterion in the 

model·where the cristal lattice is explicitly taken into account. 
. . ~ 

In conclusion let us note that the method summarized here may be developed further by 

means of an investigation of the chain of equations for the "distribution functions": 

+ .. 
•· ~t ... °'f3 i~· .. °'I! = /:sn {i: ,ft, ... f1;J/ .. !;J 

For example in the stationary case, ret~ining ·only the functions I:.: (f,J f
3

} and F (~,· I. J 
.. - 0+ 2. Z+o T, 1 3 

in the equations we shall-obtain again the original equations of our method. 

In the case of explicit time depend_en.ce of F'o+a , Fz+o in the approximation linear in 

-the deviations 

St' 
F0+'2 - FO♦ i J 

F - I=' St: 
2+-o 2+ o 

we shall obtain the equations determining the spectrum of collective oscillations. 
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