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ABSTRACT

- The method of canonical transformations proposed by one of the authors ten years ago in -

®

cpgneotioh with a mioriscopic theory of supérfluidity for Bose systems, is genefalised here to
'-Fermi systems: and forms the basis of a method for investigating the problem‘of superconducti~-
vity. ' ; , \
Starting from FrBhlich's Hamiltonian,*the energy. of the superéqnducting ground state and
the one~Fermion énd collective exoitationé corresponding to this state;ére oﬁtained. It tﬁrns
out that the final formulae for the ground state and one-Férmion excitations recently obtained
. by Bardeen; Cooper and Schrieffer are correét in the f£irst approximation. The physical picture
appears to be closer to thevone proposed by Schéfrbth, Butlgr and Blatt.» ‘
‘Dhe effect on supérconduétiiity/of the Coulomb 1ntéracfioﬁ betweén the electrons is analyz— 

ed. in detail. A criterion for the superfluidity of é>Ferm1 system with a four-line vertex Ha-~
miltonian is established. '
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I. INTRODUCTION

I.I1 An outline of the present status of the énéofj”af superconductivitYJ'

Except for some results of a particular character, all attempts at constructing a microscopic -

theory of’ superconductivity have failed for a long time.
. An4essentialvcontrihution to‘the development{of the theory is.due to FrBhlich:(i)’swho~1n
1950 was the first to point"out that the phenomenon of»superconductivity is mainly due-to theb
interaction of the electrons with the phonons of the crystal lattice; i.e.Ato the aame interact—
ion which under normal ¢onditions accounts for the usual resistivity of the metal. On the basis °
‘of this assumption and using dimensional considerations; Frohlich succeded to predict the very
important isotope—effect, which was soon afterwards discovered experimentally.
fter the discovery of the isotope~effect 1t became evident, that the electron-phonon inter-
action must form the basis of any.attempt of constructing a microscopic theory of superconducti—
'vity.~However, due to the extrene mathematical intricacy of the problem, the first attempts to
fobtain correct solutions were doomed to failure (1s2). Nevertheless, it is important to note the
~important role played by these attempts in the investigation of- the applicability of perturbation
theory to this problem.'

Most instructivein this respect was the one—dimensional model, analyzed by Frohlich (3),
"where the problem ‘could be solved exactly. It turned out that these results could not have been
‘obtained by means of perturhation‘theory5 since the energy difference between the normal and
: superconducting states depends nonanalytically on the coupling constant, the dependence being of

the type exp(~I/g). As a result of a detailed investigation we now know that just this situation
was. the cause of the difficulties in the three-dimensional case. :

A new important physical idea has been introduced by Schafroth, Butler and Blatt (4)y who
. drew attention to and discussed in detail,the role of pair correlations, especially for electrons
‘near the Fermi surface.’These correlated pairs appeared to be essential in connection with the
~phenomenon of Bose~Einstein condensation of such structures. The appearance of “the condensate was
treated by the authors as the formation of the superconducting state. We stress the fact, that a
pair of electrons within the Bose-Einstein condensate has zero total momentum. In thevconception
of Schafroth, Butler and Blatt the Frohlich attraction between two electrons near the Fermi sur—
face 1s the main: factor assuring the formation of such correlated pairs. ds we wlll show below,
the ideas of Schafroth, Butlerand Blatt are entirely correct. »

A further move in the developmen+ of the theory, in which the framework of perturbation
theory was surpassed has been made recently in the work of Cooper, and Bardeen, Cooper. and Schrie-
ffer (5) These authors considered 8 simplified model, in which the interaction between electrons
and phonons 1s replaced by an attraction between the electrons, -which acts near the Fermi surface,

and only the terms which correspond_to the interaction of electron pairs with opposite momenta are»

retained in the Hamiltonian. Physically this corresponds’to taking into account only those pairs
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which belong to the Bose~Einstein: condensate.

Starting from the idea that particles with opposite momenta form bound pairs, ‘the above-
mentioned authors take the wave function of the ground “state "in ‘the form of a product of pair
wave functions, containing'parameters. The latter are determined by means of.a variational
principle for the energy minimum. It must be observed, that the method of Bardeen, Cooper and :
Schrieffer leaves unansmered a series'of questionsras e.g. the fundamentation of the whole pro-
cedure, the role of Coulomb interaction etc. which may render‘their results less convincing.

However; after solving‘correctly‘the‘problem of 'the interaction'between phonons and elect-
rons, We can see that the" final formulae obtained by Bardeen, Cooper and .Schrieffer for the.
ground state and one—fermion excitations are correct in the first approximation.

On the other -hand:their scheme does not lead to a branch. in-the spectrum, corresponding to
collective excitations and the effect of Coulomb.forces has not been taken into account correct-
ly. A complete solution of the problem in the initial formulation of Frohlich, as well as with
the supplementary complications which arise, for example from taking into -account .the Coulomb
interaction, -oould ‘be- obtained 'by means of-a new method, developed by one  of the authors (6. _

This method is founded on the deep—lying physical, as well as mathematical analogy with the
phenomenon of superfluidity and is a direct generalization of, the method“proposed in 1947 ()
for the development of a microscopic theory of superfluidity. .

In the present work we give a systematic treatment of this method applying it to the study

of the ground state and of the elementary excitations, both one-fermlion and collective,

I.2 Resumé of the microscopic theory of superfluidity

: We‘start with a short review. of the fundamental‘principles of the microscopic theory of
superfluidity for Bose-systems. ' .
It is well known that all the particles of an ideal Bose gas at absolute zero, have their
momenta strictly, equal to zero and are in the so called condensate.
" However ‘inthe absence ‘of interaction such a condensate does not form a bound assembly, and
. therefore it cannot posses superfluid properties.
Indeed,—letﬁitnbe subjected.to.a'motion, such that all the particles of the gas have ve-
locities equalrto U. Then the total energy will be »

E= ‘Nmu
where N is ‘he number of particles and m is the mass.ff~ ,i s
Suppose that one of the particle collides with an impurity or with the wall of the con—
tainer, and hence its velocity u changes 1nto:the smaller- .one uI,,Evidently, the,total,energy
’ E= -L(N Dmu* +""£% 4 |
diminishes. Therefore, from the energetic point of view it is convenient for the individual

particles to leave the condensate and to slow down because nf collision processes, and this will



1ead to a gradual slowing down of . the gas as a whole. .
Thus an ideal Bose-gas 1s not sultable as a model for the study of superfluidity. The si-
tuation changes completely for a nonideal Bose gas, -the-particles of which are subject to inter-

actions, however small. The second-quantized Hamiltonian of a weakly non-ldeal Bose gas has the

_form - o : : _
Lo 1y . )
o Pnl’z;PﬂPt D
‘*PL‘PNP‘

where p is the momentum of the particle, \)(P) the Fourier transform of the interactlon energy
between a pair of particles, which will be considered as proportional to a small parameter, a a
are the boson creation and annihilation operators,_respectively,and ¥V is the volume of the eystem.
' An{essentialyfactor, ensuring the possibiblity. of solving the problem,.is the existence of
the condensate, 1.e. the fact that the'overwhelming;majority of the molecules 1s inithe lowest
energy state. Due to the fact that the cendensate contains a microsebpically large number of
particles Ny, one may neglect the noncommutativity of the creation and anhihilation operators for

particles out of the vacuum, ad; aq and replaoe them by c—numbers.: Then, introducing the new .
’ [) (] )

Bose—operators‘ : S - i; : VL
g < a Na aP‘ E g _a'O
one may transform‘(I;I) to the form.
] 'IPV‘E e ‘ :
HM 1\‘ VL)"" E\./ ZV(p)(e + eré‘ +22P P)"' H H - aIm +
where H' 1s an expression containing ternary and quaternary forms in the ,g,g .

Standard perturbation theory 1is not applicable to the Hamiltonilan in this form, as the mat-
rix elements corresponding to virtual creation of particles from the vacuum contain energy deno-

minators of the form

‘Such denominators are, in general, non-dangerous and do not lead to divergences upon in-
tegrating with respect top,,“.,P‘ s except in the case when two .virtual particles with opposite
momenta ipware created. In this case the-higher—order approximations will contain denominators
of the form: o (jf)n ‘

am - :

which lead to divergences. This means physically that even'for‘infinitely small Y the interaction
_between particles with opposite momenta iillybe extremeiy intense, iﬁxthese»momenta are suffi-

ciently\small; ) , ,‘ : : S
In the method of the paper (7) this difficulty 1s eliminated, by separating from the .

Hamiltonian theipart'quadratic'in 2 8 ’ andtdiagonaiizing it by means of the’ canonicalutrans_

formation

' % ~‘, , : R . . ; ".
%x = Uk St Vic i ’ ' o (1.3



where } ,g ‘are the new Bose-cperators and uk, Vk are real c-number functions of k, which
”are subJect to the condition ' T ) ‘
k uK - V.( = 1 Upzloyy Vsl - (1.4)
" The diagonalization mixes up the particle creation and annihilation operators and in fact‘
means going over to a new ground state which takes into account the interaction. Note, that in
blowest order in \) this procedure is equivalent to the following. Choose uyx and vk such, that
the contribution of a11 diagrams of the form represented in fig. I, corresponding to the creation\
of a pair of particles with opposite momenta out of the vacuum, vanish. As this choice of uy, vy
‘makes it unnecessary,to take-into account;such.processes there :is no longer. any obstacle to the
application of perturbation theory.,vv _ .i
In the: paper referred to, the following expression ‘has been obtained for thke spectrum of

'elementary excitations of a non-ideal Bose-gas -

E(P)_ \{No ‘Plv(w_‘_—L k- : - .’ L '(1-5)
or, approximately, for small and large p, respectively i »
E(p) = -—":V(o) 1P} | | _ (1.6)
lpl » S o (1.7)
E@ = o+ 222 ,

A In first approximation the ground state. Co is characterized by zero occupation numbers

EPZP . From (1.6) it follows, that for the stability of C, it is necessary that

v(o) = S@('LH"»?O - : (e
since this ensures. the reality of E(p). Condition (I.8) exhibits the predominancy of the repul-
sive forces. It 18 now easy to show, that the considered model possesses superfluid properties.
In order to see this, note that due to the translational invariance of the dynamical system under
consideration, there exists covariance with respect to'a change of the origin of momenta and
velocities. ' ' '

»Making the transformation
p>p-mu o 4
and constructing in the new reference frame the ground state C,, which we will denote by .C,, it
can be seen: that in the 14 "rest" system the state Cﬁ will be the,state in which the particles
have the average velocity u. It is easy to observe, that the energy of an elementary excitation

.fcr the"moving" state C, will be in the usual "rest" system .

CEp) - (pow
~ Let the velocity u .be smaller than a certain critical velocity
luk Uep = hin EE , - C(1.9)
. p Il
Fcr such velocities the energy of elementary excitations 1s positive. Therefore, the slowing

down of individual particles due to their leaving the assembly, or, equivalently, the generation

L]
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‘,of elementary excitations is not energetically favourable. Therefore the ,tate Cyu will be
metastable for; U, Thus we have a bound assembly, exhihiting the oroperty of superfluidity
Eq. (I.9) implies, that in the case of ideal gas, when_ E(p) ‘ P2/2m v

and there will be no superfluidity.

‘We note in conclusion, that the method of ref. (7) has been recently extended in the

papers of Brueckner and Sawada <8) in which a more realistic model of Helium II is considered.

Let us now;pass on to:.an-exposition of the fheory~of superconductivifyg

Flg.I
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§2. SUPERCONDUCTIVITY IN FROHLICH'S' MODEL+) , :

+)

This Section follows the papers (8) and (I0)

2.1 The principle of compensation of dangerous graphs.

.- We take'as our starting point.a model proposed by Frdhlich, in which the Coulomb interact~
ion‘is not introduced explicitly and the dynamical system is.described by the Hamiltonian™+)

++)

We use here a system of units with 1 = I.

. +
+ B
=2_:SE(x)ak,ng + %w(q) 8q 8, + Hunt @D

+ . ,

Hie = Z@()( lavsak':g t c‘”‘j' ‘4l<qM ’ (2.2)
‘ where E(k) is the electronxegergy,td(q) is the phonon energy, g 'is the coupling constant, V is
the volume of the. system; K, K', q are the wave vecfors, at, a, bt, b the creation and annihil~
ation operators for electrons and phonons, respectively and §‘ is a'spin;index with the values‘
+.or-. In a rigorous treatment one should have included in Hyng the repulsion between the elect-
‘rons, at least_in the form'of a strongly screened Coulono interaction,‘since the e¢lectron- phonon
41ntefaction alone 1s unable to ensure the stabilify of the electron system, Nevertheicss, when
using perturbation theory, we are allowed not to take into account explicitly such stabllizing
1nteractions, considering them as suffioiently small. ' : ;

Let us show that this model leads in fact to the appearance'of superconductivity.

It 1s a well established facé, that usual perturbation theory, i.e. an expansion in powers
of the coupling constant, 1s not applicable since, despite its snallness, the electron~phonon
1nceraction becomes very important near the Férmi surface. Moreover, as already shown by Frohlich
for the one-dimensional case, the energy is not an analytic function of the coupling constant, as )
k_it posseéses singulérities in the neighbourhood of the origin. . v

Therefore, we first perform a canonical transformation, starting from considerations similar
to those madeyin‘theclntroduction for the theory-of superfluidity. :

Note that the matrix elements corresponding to. the #1rtnai creation of "particles" from the

ey

vacuum always contain energy denominators

(K1) 4 vt € (Kg) 4 Q)4 t w(qz;
in which E(k)—lE(k)- Ey 19 the energy of an electron (E(K)> EF) or hole (E(k)< Ez ) which becomes

.-

small near the Fermi surfaoe.
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In-general such denominators are not "dangerous" and the 1ntegrat10n over the momenta does.
not lead to divergences, except in the case of the virtual creation of a single pair without
phonons. In virtue of the conservation laws the momenta of the particles of this pair will bve
equal and opposite and the energy denominator Z.E(K) will then become "dangerous" for the
integration. It may also be mentioned that the spins of the particles sill likewise have opposite
.directions. ? - _'

It must be stressed that in ordinary perturbation theory, .applied directly to the normal
state these denominators cannot appear because of the conservation of the number of real elect~-
trons. But if we mix electron and hole states by means of a canoninal tran;formation, the con-
sérvation law no longer appllies and such den minators can appear.

Generalizing the transformation (I.3) from the theory of superfluidity, we introduce here
the-new Fermi amplitudes +) ' )

+
& Uk gt ~ “} a
Ko & K WKyt ) i (2.3)
.O(m-z(.(xax-'*"vkal’f
-or - +
ag’+ = Uy Ko + Vi °(Kl
a K‘ = uk dK( - 'Ull(dkb . o ) (2o4)

where Uy Vi are real numbers, subject to the condition
" U+ V=l ‘ A (2.5)
and symmetric with respecf to fhg gubstitution )
It is not'difficdlt to verifyrthat this transformation retains all commutation properties of
the Fermi operatorsiandmis therefore canonical. Note also that it is a generalization of the
‘usual fransformafioﬁ empioéed to introduce creationiand aﬁnihilation operators for hples inside

the Fermi surface or for electrons outside it. Indeed, if

U=t |, vy=0  E(K>Ef

. ux-;o"\rk=1 ,"-E(K)<EF

we. obtain : T E : ' -
. = X
oAy = Oy n =0 EO>Ee
4 .4 .
dko = -a-K," d“: a!l,‘f CE ()< EF
so that duo,ior_example, will be the annihilatlon operator for an electron of momentum k and
spin I/2 outside the Fermi sphére«and the annihilation operator of a- hole with momentum -~ k and
spin -I/2 inside 4t. In the general case when (ulx&) # (0,1, a. superposition of a hole and an

/

electron 1s encountered.

+) We learned recently, that on the basis of the paper (6) Valatin (25) has shown that by
means of this transformation the theory of Bardeen, Cooper and Schrieffer can be put into
a clearer and more elegant form.
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It will be more convenient not to be tied up with the relation expressing the constancy of

the number of particles . ‘ '
' ‘ zaksaxs-N ‘

where N is the total number of electrons, but’ as usual to introduce a parameter' P} playing
the role of a chemical potential. o '

Thus in place of HFL we shall consider the Hamiltonlan R

H=He = AV | . (2.6)

In due course the parameter A will be determined form the conditicn that in the state under
consideration . ) o ‘
N=N : o (2.7)

‘We could introduce from the outset an expansion in powers of the coupling constant of the
electron-phcnon‘interaction. In .fact such an expansion would be in.powers of the dimensionless
parameter B ' -

‘ P 2 dn

Note that there exists another small parameter in this problem, namely, the ratio of the energy
of the ‘sound guantum to the Ferml energy: %i » The parameterp is not strictly small and accord-
ing to an estimate of Pines' (II) takes on values between 0,1 and 0,49, whereas the ratio %;
is indeed small As the coupling constant g enters the Hamiltonian together with the factor Y‘
and as EF is the natural unit ‘for ‘measuring energies, it would seem that the expansion parameter
is of the form p E: . However, ‘the computation of the following approximation shows that the
results of the first ‘order approximation are modified by quantities of the order p ’ rather than

pE -
EF‘I‘his is due to the fact that in the virtual creation of a phonon pair without Fermions, thei
energy denominator is proportional to(u so that in the resulting formulas . ¢ appears without the
accompanying factor %i e ‘ ' l

ThuS»the accuracy of the approximatiOn can be considerably.increased; if.one carries out a
renormalization of the phonon energy, or, equivalently, uses the method of graph compensation in
order to compensate the contribution of the virtual.phcnon pair creation. Then the processes of
virtual creation of a’'large number of phonons, appearing in the higher approximations, will not
;deteriorate the convergence as the corresponding matrix elements will contain. oy E in a suffi—
ciently high power, and the reduction of one factor %ih with an energy denominator will no -
longer destroy the whole small factor in front of ‘o . ‘

In aocord with the sketohed programme we carry out the following canonical transformation

f

of the quantized Bosen amplitudes (ef. (1.3)): ,
T . : (2.8
e‘\’)q@q*f‘iﬁq SRR S A (2.8)

Where)“,},(‘,l are real numbers subject to the relation'*

M- pi (2.9)
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From.the transformed Ramiltonian we separate the part

2 E () (Lo olno + dn"(x\) + 51 ‘*’(‘ﬂﬁaﬁq

in which ?-‘LK) w(q) are the " renormalized" energies of the Fermion and Boson excitations res-

pectively, and include the other terms in the intez’action Hamiltonian. We thus obtain from (2.1)

H= U+Hot <" B ' -

. where

V.Uz (oMt = i.i‘( (E(K)‘))V:*’ 2‘“(‘])}4:

H= z 4. (4) -—i)) (ukvl"" Uy/ Vi) (Olko dk’d + dn"‘k'o)()fqu)(gq-t 6-4)—1'

¥, X9
k’ x—q .
+ %(q)(‘f‘—‘]—)) (lhuu' "AVKVK’)(OIK ko t °(k’1 k{)()f"/»‘q)(?q‘! 8-q)
AN
Klex=g

: z{(E(x)-z)(un-v )- em} G o(m du n)+ 2Z(Em 2)u.v.(oa. o(., + W)+

| +i{“’(‘1’(’a***1’~ S@j 3‘1?1 " Te@ A ( ooy Bfa)

Let us apply the principle of compensation of dangerous graphs in order to compensate awayA
the processes of virtual crea.tion of Fermion b(;,ﬁn and Eoson (31 5_1 pairs out of the vacuum,

To the second order we obtain the following equations

2 (E09- 3) s ~ <c omouoH W e =0

L% y (2.10)
‘ where g ‘c"', is the vacuum state" vector corresponding to zero occupation num‘o’ers.‘
' To the same order the renormalized energies S(x), L(x) are determined by
E{x)~2 uK Vx E(k) (C dy. H Ho~ E(H"Ho( C 0 o
( )( ) v 9 ( o~ ) Xo \r> (2.11)

w(‘\)(?‘qi‘}*q)* u(a,) <c qu(H, w(q))"u NS >

It must be stressed .that 4in the above equations the expressions for. the matrix elements
take into account only connected graphs. Due to the symmetry with respeot to the pemutation

(I) 2 (0) nothing would change in Eg. (2. Il) if D(to a[,w were replaced by o{," ,a(h ‘From .Eqs.
(2 10) a.nd (2.11) we obtain

‘ . . ,, - et
. L gt(x- 1)w(x-x) ' PRI ~_“n Ve 471 ) (k-x1)
{, E(-k). ZV’% B (k-r)+ E(x)+ E () (st ) (=) "} R Z Bc-w)4 HlHe(n')( e/ ) ”""’(2 IZ)

Mgy - Oyl £ 5 G gt

Vo B+ Em+EY
¥-xeq :

‘(2.13).
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e . ‘. (
£(x)= | ‘) {x~ k’)A’(K'k') Al . v - Ut -t) -
E‘( ) {E(k) ZV%w(x- ')+ Elk)+ 'i’(x') Ok'k',"/ux-l) (u‘ +Vx) 2}( R )“ .

(2.14)
85k~ l')w(x-u) L 11 IS
‘ "‘"5-5 yerl 4 Mx~nt) (U, Uyr + U Vi) +
’ r [w(K-x’)+ Tts [g(u)]l( er' 4 ) ( x Ui t Yy ) o
3 LR (x-¥)+ Ex e
+ Quv, 1 Z 30( ) w(x- x)[w(x~)+ zu)] (roonr 4 fxest) sV
LR+ 0] - LEW] /
PO 2 2 w[ﬂ)a[i))]”‘) v 1 . ) _}
= - +Uypr —_— e e .
w(‘i) = w(‘l)(lq’r}‘e) 2y kz"(ux 1 Uy _,l) ]g(thfl"-;(ﬂl RT3 ).
' : " wma=g :
. 2,2.~ Simplification of the expressions.
We undertake now a simplification of the above expreesions, which on the one hand are

extremely con'plicated and on the other hand still contain terms which are of a higher order of

smallness than the chosen approximation. We shall retain only terms of the first order with
respect to the adopted small parameter p E ..
T3

We start with the solutions of Eqs. (2.13) and(2 15) | S ‘

[} ' "/Z
(,Aq+ﬂ‘1) - ‘{1_ 2 z (u.\r. + Uy V.) '}

w(q)+ g+ T
l l=il

S o S .16)
N 1 . N s : '_ ‘u .,1u.:V" -go
w(qi: :ﬂ>(q){1— ‘é_z%’k I(umqu,,vt)zL L3 M{ “’"I K

) 3

g g(nH o)+ B@) ?(Uf'ﬁ'(!’)-‘:"(q SIOATICATILLY
o U T =q - K'—l-.’
Since -u and v can differ from their normal values

0, I only in a layer of thickness <w in
the neighbourhood of the Fermi surface and since

E(x)..]E(k)-Epl ’ ‘w,e obtain from (2.16), retain—v
* ing only the principal terms ' T o

’iﬂ ) 8 (8p(x) )2
(gt py)" =41~ m’ s(x)—s(zv}'

x'-x=q

w(q —-< : q £3
Be (k!
( )= w(q){i 1 2"( ) 1 ec(ll e (kY ﬁ

‘ o E(K-EX) ‘
where 9 and O are defined by vers, ' A
: 1 E(@)>Ee 0 E(x)>Ep T
9 (K)={ B (1= ’ -~ (@an
& F
o 0 E(<Ep 1 . E(%W)<¢Eg S,

For the simplificatlon of Eq. (2.3I2) we 1ntro'du'ce”the renormalized function  g(q)

g & qet(_‘) agflf) 9;:(!:’) } (2.18)
%(‘U 3(47% ,.,y gl,: E(") E() '
S kxEq

This renormalization is possible as long as the values of the coupling parameter are

sufficiently gmall. In any case they are not allowed to exceed a value for which the -renorma-
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1ized sound frequency G(q)and the renormalized é{q) become  imaginary. The same limiting value
for thevcoupliﬁg constant has been obtained by means of another ﬁethod in the investigation of
the stability of the lattice with respect to the electron-—phonon interaction in paper by S.V.
Tyablikov and one of authors (I2). »

We put further

HOE E(k)— L3 3N B (keny (ud - vii) - > (2.19)

w K=Kkt E(x)t eCv)

.

N ' , .
Civ = _l__z § KKISEH) v - (2.20)
V 4 DK+ E (k) + f.\l)

Then, by (2.12) we obtain

. Ly .g:l} 1__‘_ E13) .
detjgzt e -weel! @2
and ’
~L 1y~ 4o, ) X'
C(K)--— Z (k-x") & (x=~x) C(x) o (2.22)

= w(x DER{ITE E(K) O +3)

Consider now the last term in the L.h.s of Eq. (2.I4), which is always small (for small p
it will be of the o;dez-u)efyb). Furthermore, when 6(@ increases to the order w the factor
W Vi, vanishes practically. Therefore, in the chosen approximation, we may replace the deno-
minator of this term by » ‘ ’
| [ &(k-k)+ Eexn]™
Thus Eqs. (2.I9) - (2.21) imply

o | o N o - |
£ {1 tyL &f: »:)i egnk‘ 2] (1 e+ VY ) }: RO CN (2.23)
. 13 = o _ ‘

For the normal state, when

Uy= Bg(x) Ve = B8 (1) - : (2.24)
we obtain

_ e §%tk05(ztv(9609-epdﬂ
?n'(x)“ E(X)-) FZVS' w(K ')+ ‘,E(K) Epl‘f’ IE(K’)-EF'

),.Lz 3o B x-v) (86 (W84 B¢ (K10 ()

A
pA R (u-t’)+ T.ni- [E,w]*

£, (K)~(1 vz.\(x))lxnck)l . Wg
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: Here the .subscr:ll.pt “nv.denotes quantities in the state (2.24).:The state corresponding
to the nonvanishing 'éolution of Eq. .(2.22) will be denoted by the subscript S in both cases
the expressions§(x)-(sx-F),nigwill be of the first order of smallness but the differences B(x}-f,uq
9,(-»7,(9#1'1'1 be of hightr order of smallness. Therefore, (2:23) yields

E )= V-0 5204 (-0 ) Wu RN~ (x)+c’m
so that in the chosen approximation _
gs (x) = ‘g:(x)-f &Y R SR

Note, further, that in qu. (2.2I) and (2.22) g(k), }3(x)] may be replaced by ) E (¥~ Ee]. ;

We are thus led to

L= S Foosew) e g @)
200" J B0k T+ TR0+ 15001 V32000 + ¢ 0v)

where ST
. 3(W= E(x)-Ep

This result has been derived without the restriction to spherical symmetry.

By means of a simple renormalization of g(q) andw(q) we have considerably 1mproved the

degree of accuracy of the theory, since we have used asymptotic approximations not in powero of

’ p. but in powers of ¢ T E . The qua.ntity

pegr am' ISR
must no 1onger be very small. It suffices that the solution C(k) of Bqg. (2. 25) be small compar-
‘ed with «@ (i.e.only, "exponential®" smallness 1s required). ’
. Eq. (2.25) nas a peculiar: singularity: forg 20 the .solution _C .vanishes as vxp (—-3/5‘) where
A=const>0 « This is due to the fact that the 1ntegra.1 in the r.h.s. of (2.25) becomes logarith~
mically divergent in the neighbourhood of the surface §(k)-0 y 1f we put c=0 under the square
root in the integrand. In this situation one can easily obtain: the asymptotic form of the so=

lution, for small g: ey
, , B "

Ctk): -4"’- gj’('(r ﬁ(T-—t_))w(kﬂ:Lﬂ—t))

A
T(ke(20-0) + | 3000

t
13‘

P 7‘;1-(:_5@)'( K r%.zf‘:; ii& %(K,ﬁ(T-‘))"u‘
G LR S =

| Nd (vﬁ_-'-"ﬁw(lml)
awo = S (zz)fx{‘ S w(;‘(.‘-:(T.’;H; }dz

The cut-off momentum qM'does not e.ppea;r explicitly in these expi'essions, due to the fact

that, formally, one may consider that w(q)=0 for !ql>qM '._

O6ReRKHEHMIl HHCTHTYT |
SACPHBIX MCCRENOBANRE. {
BHUGIMOTEHRA |
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. é.}.—rThe energy difference between -the normal and superconducting;statés.»

We now evaluate the difference

o E 2.26
He () - Hy ()) e e (2.26)
_between the eigenvalues of the Hamiltbniaﬁ in the eigenstates §‘andi2 for the same value of

% ~ E In the chosen approximation we have

HO = U- <CvH Ko C, )= zz(sm e +iw(q))u, -G, H H"H'Cv>

. or, after some manipulations

n Z 3 (R-K) B (X-x)
w(l- 1t £+ E()

H (x) =23 (E0-D% %w(q)/u;

t,.2 .
v, Ue Vy Uy Ve
(u{ w + i x V) (2.27)

For -the difference (2.26) we obtain from (2.27) after some simplifications and retaining only

terms of the desired order of smallness

H(%) ( iec.m”“ cm-iesm “‘cm

Lory: by (2.21)

Hy(N-Ha(3) _ 4 HOR | 50 r
v TS“ ct(“’*ﬂ“’{e“"[ W(T)%?} F(’[H'{?ﬁ?n}

(2.28)

~In order to determine the difference E;v" En' between the energies of the two states,

for the same number of electrons N = Ny, note thay

Hm EM-AN( | - ZTV(%”","‘"’\

-

We obtain, consequently
E.- E”= Es ['AQ(M}] Ex [MNJ] H [mm] H [xh(~)1+[>~,(~) DN
= He [ 23 - Ho DA (M + Ha D2 (N)] Hy [7« (~)J+ [u M-Mn(MIN =

= Hy[ s (M] - H, [ (V] + H,,D,(N)] H (M3~ [As (M-2n(N)] (au.m , ‘;n

y Ny
= H (he) = Ha(24) 4 J—ms(w A}’ az‘,f:_



o ) C ‘_'_[9".'

The second term of the last expression will be of second order of smallness as compared

with the first, so that, in the approximation ander oonsideration
Es—En=Hs(7~s)-Hn(7~.) 1 | L (2D

Thus the energy difference is determined by.the same Eq.(2.28) as Hy(}) -'Hn(')).

2.4+~ Supercondutivity.

‘ ﬁe now establish the’existence of spperconductivity, since‘we ae not'take into account

k the action of the magnetic field it is more correct to say that we. establish the existence of
superfluidity for the electron fluid in Frohlich's model, Thie is aohieved by showing that
_there exists a state with nonvanishing average total electron momentum, in which the energies
of the elementary excitations are a11 positive. In this way we establish the possibility of

'exitence of a eurrent-carrying state, which is etable with respect to weak perturbations.

In order to remain formally within the class of states with vanishing total momentum and
to be able to use thevforegoingresults, we Perform a translation of the origin in momentum
‘space ‘ _ ] ' " Lo

| B Dl e L (@0
Evidently, the state with vanishing total momentum in the new frame»of-reference will
have in the original frame.a total momentume Npe

On.the other hand, the translation (Z.JO)Vreplaces .E(k) in ‘the original Hamiltonian H .

-ohy

QE(K . Ll - . e,
E(-p =B = (5 ) e ol (2.31)
J%é— ) leads to the following additional term in H. -

| R
E (P )E(k)) Msauz__z (b n(x))(’&“o(“- A1)

The additional term ~-(p .

_ which to"be’included in H". Supposing that the'momentum'p‘is so'small'that'
(Paem) and  E(M)~E,

‘are ‘of the order C(k), the influenmce of the additional term on UK, Ve A, }L in H may be
neglected due to its smallness and the only .effeot will be a modification of the energy of the

elementary excitatione.
E(W > Emt 3E“b

. We intrcduce the notation A for the energy gap separating the non current—carrying

ground state from the‘elementary excitations, 1.e. A denotes‘thevvalue of C(k) on the Fermi

surface.
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g Since £(xk>A the elementary excitations remain positive for the current—carrying state if ‘

‘the average velocity of the electrons is 50° small that

\ 3E(k)\< A, E(K)'VEF
or, in the spherically symmetric case

\“-“F\‘<A

where u 1is the average velocity.

Consequently, for sufficiently small velocities the ourrent-carrying state remains stable
“with respect to small perturbations: o '

L of course, for 'A'="0 this is’ no longer. true, since in this case the energies of the elemen—
tary excitations could take on negative values. It must be. stressed that insofar as we’'do not
take .into account the action of a magnetic field “the current—carrying state must be considered
as metastable., Its energy differs from the énergy of the nrest" state by an amount proportional
to u2, This increase of the energy can be calculated formally by intoducing into (2 31) the

supplementary term ,, -LZ b PG 3 E(xh
Ag_‘““s X% X -
and taking into account its 4influence upon the energy of the current-carrying ground state. -

We want to stress again the analogies with the case of 2 Bose gas. In that case the Fermi-
sphere 1is replaced by a condensate in the.lowest energy state;iln the absence of‘interaction,

i.e. for an ideal Bose gas, there will be no superfluidity. It appears only‘in the presence of

an at least weak interaction. At the same.time there appears an essential interaction of particles
outside the condensate with opposite small momenta k, 'a fact which is responsible for the inappli-
cability of the usual perturbation ‘theory. ,

-In the case of an ideal electron gas, considered above thesituation is quite analogous. -
Without interaction there<iS‘no superconductivity‘(superfluidity) and only the electron—phonon )
coupling, responsible for tne interaction between pairs of electrons with momenta *k and spins
i 1/2 leads to the appearance“of superconductimity.,One canvreduceiapprokimately this interaction

“to an'equivalent coupling tetneen the Fermions, which pushes the analogy Wwith the Bose gas still
further. ‘ . “'

Until recently 1t was thought that only ﬁose;Einstein particles can exhlbilt superfluidity.
Due to the situation that arises now 1n the theory of - superconductivity this point of view must

' be revised. : . et . , 5

It 1s possible that nuclear- matter is the real case on which the superfluid*ty of Fermi -

systems should be investigated. ‘ 5
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S—— - —— - -~§3 THE SPECTRUN OF COLLECTIVE EXCITATIONS ~
‘ OF THE SUPERCONDUCTING STATEX)

Jelem Application of - the method of approximate second quantization to a system with

Coulomb interaction.

" Until now we studied only elementary excitations of the aimplest "individual® type-the
appearance of a fermion of energy E(K) or a phonon of energy W (k). Now let us proceed to the
,investigation of the more complicated branch of the spectrum corresponding to collective excit-
“ations of Fermions. A typical example of such excitations in Fermion systems are the plasma
oscillations of a dense electronfgas. .

A correct and sufficiently simple analysis of these may be carried out by means of the
method developed by Gell-Mann, Brueckner, Sawada, Brout and Fukuda 13/, In order to obtain the
fundamental approximation, one may restrict oneself to the summation of only those graphs which

do not lead to the destruction of ‘the elementary particle-hole complex (Fig.2).

K+q
K .
Fig. @

From the physical point of view the importance of this kind of graphs is due to the
existence of the Coulomb attraction between a particle and a hole. In order to obtain the se-
cular equation for the energy spectrum E(q) of the plasma oscillations one must sum over all

graphs of the type represented in Fig. 3
K%q

LT

-x' -K

Fig. 3
“For this summation one can use the method of approximate second quantization and thus
" construct a simplified Hamiltonian which allows of exact diagonalization so that only the desir-

ed diagrams are obtained, yielding however the same contribution as the exact Hamiltonian.

x) This Section is based on the 1nvestigations carried out by N.N. Bogolukov and in part
(subsection 3. 4) by V.V, Tolmachov.
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Under these. conditions the diagonalization of the simplified Hamiltonian naturally yields
the same results as the direct summation of diagrams.

In order to obtain such a simplified *equivalent™® Hamiltonian the following requirements
must be fulfilled: the complex of Fig 2 Ls to be connected, the vertex parts of the simplified
Hamiltonian must glve the same contribution as the vertex parts of the exact one, taken into
account in the graphs'we considered and, finally, the energy denominators are to be the same in
both cases. .

The first condition may be satlsfied by describing the creation and annihilation of the
particle—hole complex not by means of the products of Fermi-amplitudes, ‘ ’

auqe 1 eaHQ
as in the exact case, but by means of Bose—amplitudesx)
_ (sqm, Bq(x)
with two indices k,q. '

~The considered graps contain also vertex parts like those of Fié;i4

- : Figo 4
The corresponding terms in the exact Hamiltonian are
T+
Py (%, x)a“qﬂ a,qe
Pa‘ U‘ ) By Gy q 8y Qg
Q U ') Quqex eV Qq

x) Notice that in the graphs of Fig. 3 all the complexes are different:
By using Bose-amplitudes. there may arise alagrams containing several identical complexes, for
instance with k = k', which cannot be reduced to one. But such redundant elements will lead only
to infinitesimal contributions to the elementary excitation, since the integration i1s carried
‘out over all momenta k, k' k" and we have a linear chain of complexes.

An interesting situation may arise sometimes when calculating the ground state, when it 1is
necessary to forbid explicitly the repetition of identical complexes in graphs. In these cases
{f4] one should consider the amplitudes p,@ not to be of the Bose, but of the Pauli type. In .
other words we have to prescribe for all of them Bose type commutation relations, except for the

replacement of the relation
@@-@F“
by '

+ 4 .
se+pomt
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Therefore the interaction Hamiltonian in the simplified model is to be constructed of terms
'of the form ‘ :

P“ (') (3,1(1) fS q(n P; (%,¥) -4 (x) Bq(x) Qq(x¥') (gﬂ (%) B (%)

Finally,. in order to obtain correct energy denominators it is necessary to choose the'

expression ’ I k
{si(x+q)+ . (x)’, g,m 83tk

as Hg, the self energy of the particle-hole complexes. Here E+ £_ stand for the energies of a
particle and a hole respectively. V

Thus we obtain as the simplified total Hamiltonian a quadratic form. in Bose operators.
Writing down the corresponding secular equation we obtain an equation for determining the. energy
E(q) of collective excitations, for the plasma oscillations considered.

. For fixed q E(q) will be an isolated root of this equation corresponding so-to~say to, a
"bound state" of a particle—hole pair, where as the continuous spectrum is a spectrum of ordina-
ry one-~fermion excitations. .

We have just outlined the characteristic features of thekapproximate second quantization
method as applied to the well known case of plasma oscillations of a dense electronic gasI5,
since this method will be the basis of our investigation of collective excitations of the super-

conducting state.

3.2.— Collective excitations in Frohlich's model.

At first we‘notioe that in Frohlich's model, nhioh is being investigated, there exists an
attraction between electrons with opposite spins.and momenta * k ‘with Xk in neighbourhood of
the Permi-sphere. An attraction of this kind also exists between holes. It 1is. clear that such

'an attraction must exist also when the corresponding momenta of the particles of a pair are not
exactly opposite, but, say, equal to k + q, =k with sufficiently small q.
Let us -proceed,. -as usual, to fermions (k, 0) (k 1) characterized by the amplitudes

dlto, °L¥1,d” f» . ) ) E
Note, that the creation of the pair
.4 <+
dquv dki'
does not modify the spin but modifies the total momentum by the vector q. Thus, the existence
of an effective attraction between the fermions with (Kt4,0), (k,1) for sufficiently small q, is -
easily detected.. :

This gives us an important hint as to a programme of applying the method of approximate

second quantization.
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il
Correspondingly we introduce as an "‘indecomposable element®.-of the graphs the complex

which is charactrized in the exact treetment by the products of Fermi amplitudes:
A K440 D(m . O(Iff .0(",“10
In our‘approximate model we associate to this complex the Bose~amplitudes

+ . .

@q (k) - ‘(3‘1 ()
with two indices. Now we should obtain the Hamiltonian [ describing the interaction between
two different complexes in the form®) S C

P "'2 @r(l)flp(t)ﬂ (llt’ 5[5_ B (n)i@r(r')‘gr(l()-f Fr(g;(gr(g/ﬂ]

Koeyp ,
wi o "’“‘

Then adding the pa.ir self energy we obtain the simplified model Hamiltonian
[= 7_ { F(xp)+ i(x)"; (Z,, (")ﬁr(k)-l- r v o (3.2)
: ] A T .

" The diagonalization of a such quadratic. form may be reduced to solving a system of .linear

- homogeneous equations with respect to the c-number qua.ntities Yy ,'x_x- /I5/ - «

1% (kep)4 ¥ (»-E ’;?P(z) = i ‘Al' ('f ")‘{’rbﬂ’)’r I B,, (¥ %, (x,

. (3.3)
ACGHER/CE IYNCE 2 B, (xt ’)‘fy (K)+ 2 Ay (6K Ky (x) '
with the normalization condition -t ‘
k) - Xy () =1
?} L4 (- %003 ‘ oy

For a given fixed momentum p the e‘nerg,'y of collective excitations E Ec (p) is determined

by an isolated root of the secular equation corresponding to. (J 3) In. order to obtain explicit
i -expressions for A a.nd B we remark that in the simplified model

Ap (1) = <y g 1 5;“‘"2
By (}v) =< ﬁr(lﬁ’)(&,,(z)l" >

where the expecta.tion vatues are with respect to the B-vacuum". In the exact Fr8hlich model

.suqh vertex parts are brought into existence only through the exchange of phonons.

x) Without any ce.lculations one can see that the quantities Ap (“;") p(";“) must ‘be

real, because the Hamiltonian of Fribhlich's model is invariant with respect to time inversion
and contains ‘only real coefficients. :

Y
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Taking into account, in first approximation, only the exchange of one phonon we put
At X
- Ar ('I "')": <°(!| °(¥+pa HluoiHI NKQPO ol r'4>°

- B (w¥)= <oty o(l'yo oAyy °(lfro Hi W >
where H' is the electron—phonon interaction Hamiltonian (cf. the formulae of § 2), which may be

(3.5)

written in the form:

H. z (m(ﬂ) (u“\/“f‘full'l& (O(xa o(m + oy, o(,/,)(g +6- 1)+
‘SK,
"4
(4) ul-'V.,V/)(O( oyl + i 0()11)( +p-)
+ (a) w (u, M ® x Rkl 1 @q q
3, J )
k'-xe

Substituting these expressions into (3.5) we obta.in

" Ny () [ N L }+
\Ap (l,K] % (V- ') (um}: Ungp~ '\r,:,,,vup)(u.,u,(-v,‘v.:){ W F(Kepl+ E001 B (xer)

In (;} (Untep Vi + Wt Vierap) (Urep Vi + Uy Viep)
A (x+p)+ 4 (z’)+ s(u+p)+ T+ G(p)

+ %%P) 2%-/ (“t‘iva i‘ux"”'up)(uxq‘&iuﬂfuy) t .@L(Y) (3.6)

. v, )
L e 5 (el y-p) (Urapr + Uw V‘ur)(“LLy 1/‘,,_ +UxVaty
PJY (K,k‘) - - () (KLX-Y) __(,EV"P A (K‘)-} 3 (K(’P)-&W(I, -P)

Gy U (uup'\"ui' u.‘v’uy)(uu‘-y V.uu.nr,i)

5 (k-tap) (g Vot + % Virny) J(Mytp Ve + U Vip) q‘()

e T T4 £ (khp)+ T "*P) E(HyH T+ u(P}
+ 44 (:;_(ﬂ (Uney V. + Ux Py ) (Ut 'V'l:: Ugr Vity) o
g Y v R E(KLP)*‘ T+ G

To simplify these conplice.ted expressions, we suppose that for small values of p we can put '
: g (») = |

This assumption seems to be reasonable from the physical point of view.(II).

Let us now simplify these formulae, in order to get rid of terms of smaller’ order than that
taken Into account in the chosen a.pproximation. First we notice that 'in the process of colleotive
oscillations only large momentum transfers k - k' are essentie.l, as may be seen from the '
equations (3.3). Therefore in quantities of type W (x-*'-p), %(x-t'—-p) which depend smoothly on
the momentum, we may neglect the additional momentum p. Fu.rther, since the energy layer, which

in fact determines the effect, contains. only energies S(K) small compared with & , we replace
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(as was done invthe derivation of the equation for C(k) ) the gquantities
T, F04p ..
by
30l 17091
whe;e as before: . '
3(1)= |E(W)-Egl.
We thus obtain

‘AP (K ') = ?—g—,-l—) (ulfrl(uﬂ; - Ve yvl(r)(ul’ul’vl'vl)

' (3.8)
By (1= 10 (it 5 bl s pl)

. The. expression I(lﬁ?here is the same as in the equation for C(k)

“c(u~

S0 (x~1)

) ' ‘
T (xx) ) = Gl (3.9
Z (1 G :)+§z(w; 7 0] = e Y e G

We put for abbreviation
lk"uy.- 'U',,I'V,_ = L(KJK‘)
u\d 'Vl + 'Ull uk ‘= M (kl "I)

Then Eq. (3.8) may be represented in the form

ENCOE M L(x+p, 4D L (%)
Br (x1) = —'(%,LK-JM(HP/ *') M(“/",’)

3.3. The resolution of the secular eguations.vLongitudinal excitations
the sécular equations (3.3) and introducing the new variables

©y (1) 4+ Xp(x) = %P(n)
P ()= Xy ()= 6y (x)

. Considering

One obtains

, oyl M (ap n')M(x, Khp)+ M (K- u')M(x x4p)
) { £LK*L_£_(¥1) + E(M}B ()L)- _23'[1 ,/){L(H)’:l’-fy)ﬂ.(! P;" ’) L( ) ! ‘ 7 . }0 (Y=

:‘{E._E(mr>-f(t.-r7}’i’r(x J- Z T w){ L(Hy,up) L(e-pr" P’ L(xx)- M(HV’MM(HW M(l 1IN, Hr)

= 7 —— 1960
o o - (3.10)
Theip)s € » ! - X-p M K- ,k’)M(x,u’—) M(k-p, 8 M (K, Kp)
{ E(X*F);i(l'n“. 3(1?39},(1’-}--‘!/—z,]"(k,l"){L(Hr,l*rt L(l rvl )L(Y, ( “P P; ’ }$P(ﬁ)
’ | 4 . PR 3 .
i’" o ' - = IR M Y+ ,l')M(l‘,K.’- )_M R ;")M(l,l’{} .
= {E = i(lﬂ’);ia' )} er(kh"lvz J’(l}ll) { L(“P)kl‘fp)i L(k Plbl P) L(l,¥')+ ( P Pz . ( P 14 9’“,}
. E Yo ) o ’ . R ’

(3.11)
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Consider first the case p = 0. Then (3.I0), (3.II) will simplify and we obtain:

2N 0+ ) 0 (x) - 33603900 ()= ES,(x) o
h " | ‘
2{F00 ) Yo+ L3 SELFSE) 500009, 00) - B ey .13

Y \ig’(y)-f o) f(x’)-fc‘(u'}

k'Note that accérding to‘(3.9), this system adﬁits'the solution
C(x) ' '
Vo (¥)=0 Bo(1)= § q.-_—_———===?m+c‘m 9v= comrt E=0
We thus reach the important conclusion that the spectrum of collective excitations starts from
Zero.
| Let us turn now to the investigation of the collective excitations for small, but nonvanish-
ing p . To avoid comﬁlicated calculations we restrict ouréelves to the case of radial symmetryt
First of all we must expand the‘éoefficients which enter our equations in powers of p.
Since in the interesting energy domain E(k) * is extremely close to EBg , we admit that
z (kep)=s(p-0)+ 3(0)
where S is the abéolute value of the elect;on vélocity on the Fermi-sphere and € is the
unit-vector in the direction of K . It is more.convenient tp choose the direétion of p as a
reference axis for € . - i
Notice further, that in the expressions contaihing §!+ é?g) we may neglect the variations
of C(f) as compared with 7 , since C(g) is a slowly varying function. We obtain
u(k+p) u(iz)+ Speo 3 ——
E(kep) = E(3)4spe, 2 ‘;’

It is convenient to introduce the number % and the unit vector € - as new arguments in
. N ‘

place of the vector k. Thus we aré led to asymptotic formulae of the type.
L(up,np)-r L(x -p,ktp) f; ce!
SRt At o ANAL AN AT T

(k,x’)— speaQ ('f z )+ spe Q, (1. 1)

L(HP,Y' P - L(' PJ"_K)L

2 ' . | -
M(“"""M(”"”*’”‘(‘ PAOMO) | § SV e otR, (514 e Ry 4R 1 6
= - o Ko(3,7')4 60 Ry(5,3')+ 0 R, (5,3')+ Ry (7. 1
9 . | 7 zmm P { 1t 2 ) 5( )-&_ .,({I;}

M(k+y, ') M(l,l’-y), M (k’y,l’) M_('llu”
2

= Spee So(T,7) + spe S (5,1 )+

We now apply ordinary. perturbation theory to the secular equations (3 10), (3 II), considering
the quantities p and E as small of the first order. We put
B(0)= Bo(%) + Spe. 6 (5] 4

, N : e e - '
D (k)= EDy(3)+ spls B,(3)+ . e°(7]'sr—-“'§'zw S lmmt : L (.I4) -
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Substituting these expressions into (3.10),(3.II) and Separating terms of different orders,
we may express Oy (3 ),31(’;),-31(;) in terms of the @, (§) . Using the resulting expressions,

wenexpand the equation (3.I0) to the second order,of smallness. Thus we are led to the relation

‘ia(x)ﬁw LZJ(meM F(s %) ’ 3.15)

where F(E Sp,k) is a quadratic form with respect.to E ,8p « Ve multiply (3.15) b.y'C‘(lt)[th(n)J“I
and_take the sum over k. Taking into account Eq. (3.9) we obtain
| T'/-%F(E,sy,k)ki(;))
hence

E =dsp
where o is a -numerical coefficient..So, if we omit terms vanishing together with the parameter

tdn
p= % 1 s, We have .

_ E ~@.}ps

E(z)+ s W1
) P ) 28(3)

. 2
eo(f) ' X = %

Consequently, we obtain two roots for E. In order to determine the sign we turn to the norma-

‘lization condition (3.4), which we write in the form
2 9y (61 Bp () =

Hence

91
E Z 0’-(7) ___1
1£(3) :
and therefore :
E>o . o , " '
Also, in the chosen approximation

E, (p)= SE
Ecly= &

Let -us note now, that colleotive excitations will.exist,ﬁas long as

Eclp) < 2
‘where‘JA is the magnitude of the energy gap (i.e. the value of - C. _at = 0).,Indoed,»inuthe
opposite case E =.E¢(r) will overlap somewhat with the Fermion spectrum
- 00+ Foep)
and ceasos to be an isolated ioot of the secular equation- This intuiti?e consideration may be
confirmed by a direct calculation. For simplification we retain ‘only “the principal terms with

respect to the parameter P dnd replace the function: T(lk7 by a quantity J which is constant
within the energy layer E t"nu and "ero outside it. o
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In this approximation we obtain fiom.(J.II):
F(wep)~ E (xep) S
Q <

—_— — 6,(¥)
Y4 Z(xtp) + T(x-p) .
()4 - 7

-

%I’ (k) =

Substituting this expression into (3.10) and restricting ourselves as before, to the principal,l}
terms only, we obtain:

(E - Z(lty);f(l-p))l

' € (uply E(x-p) R
X -~ -3 ‘
%Z( It 2 T4 “i'(m)-fzﬂt-y) Br(k) Y % 8 (v

The corresponding secular equation 1s

- J 1 '
1 v % i’e‘(x)-e E(x4y)-E * E(x)+ 'e'(t-yh-E}

‘ On the other hand the equation‘for C 1in the considered approximation has the form

]
ﬁ
M

E’(l]

Therefore our secular equation may be written in the form

|
} - + — - a=1=0 o
v L E¥m+ Elep)-E E()+ TO-pitE € (v S - (3.17)

For fixed ©p -this equation has a continuous spectrum
E= £+ E(tp)+ o(4)
where o(J-)-;o , Vs oo
The continuous spectrum starts from E=9C=1A and is charactrized for a given p by the vector
index k. It corresponds to the excitation of two "individual® fermions. The discrete spectrum,

corresponding to collectiveaexcitgtions,~exists only for .those values .of D fbr which the

equation (3.I7) has an isolated root

E< 2A

It is convenient to u'wiite‘(3417) in an;integral form. We have
41 o g - ’ .
1 o W-& (tfsyt)”u‘ ‘ﬁ—‘?+m+£ A T

or »

4?( +¢(-— -E)_
- where
‘ W ow

‘b("s v)ﬁ dt \d { f - t }
’ -Sigc.i s (vt -3 2/t
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For sp<<c we obtain for E the value (3.16)-'But the ratio §F‘will be of the order of
unity up to E=2C . ' ‘ R
bgax 1s determined from the equation b _4[ : |

¥(2, )% o(2,8F)=0
Hence
: Y me = Yc
where Y 1s a numerical coefficient.

. By the way, we remark that these equations might have been obtained without simplifying the
structure of the function]’(\(,!’) Their applicability. is determined only by-the smallness of the
parameter e - Due to the fact that oollective oscillations exist only for momenta p< pm,

.the nonvanishing of E (p) in the absence of electron-phonon interaction is not paradoxal. Indeed
" in this case the formule. (3. 16) will have no domain of applicability, since 0=0 .
Till now we considered the collective excitations only for the superoonducting state. Let
us- now analyse the role they play -for a normal- state. For simplicity we consider the case P = 0.

-Then from Egs.(3.I2), (3. 13) we-obtain:

Y lz(nl\z(wl

7-‘\'5(“”9‘(“)‘”3%J’(k,x’)ep(l')v: Es(x); , | B » (3.18)
ih(i)l%(k)-"vi'w IRV LIGERLIOR R sy

Consider the radially—symmetric solutions and rewrite Egqs. (3.I8), (3 19) in integral

form.‘ We obtain

+% .
215005)- § o35 0(3)d5'= ES(5) .
400 T : o :
L319G) “S‘ T qp(‘f}’ )%(1')0(3 = EO(I) o L (3.21)
‘where ‘
v . iy :
R m(lpm) M
0(33 )= _S; ‘:ﬁ “?( (20-0) 114130+ w(“sﬁ(l——i))

We introduced the infinite 1imits of integration in the equations (3 .20),(3, 21), since
their exact values are unimportant the integrals being practically determined by the contribut—
ion of . the interval Bls& " ‘ ' E

We put - ovo caliE oo B *” JE TSI S B A 5 SR “1_5“““'»-,," ST

¢, (%)= Se(zz 16 )i

-0

| (3.52)

!
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+00

¢, x-§ %

2T ecss')%cwdz | |  Gen

Then from Zgs. (3.20), (3.21) we obtain
e(i)_ 21%1G(3) + mcz('i)s
Li-gl_ E! h

Substitute this expression into (3. 22) and note that C,(¥),¢ Cg) P(giq are even functions of
3, z . Consequently,v

| Ci(3)= Se(zz ) —— ¢, (345’

7 “ E

whence, for small f= F(mo) we obtain-an asymptotic formula of the type

. . . z

-AE quaz [4
}where We 1s an average w . So, the energy of collective excitations turns out to be a:purely
imaginary quantity, a fact that points to the instability of the normal state..

This kind of collective excitatlons is responsible for the instability, for positive energi—

es, of the fermion and phonon excitations of the normal state.

3+.4. The Resolution of the Secular Equations. Transversal'Excitations.

We have investigated only those solutioris of the secular equations (3.10), (3.I11), which
may be represented .in the form of the series (3.I4). More exactly, we have restricted our atten~

~

tion only to those eipressions for 97(” and 3rﬂq , for which
Bp (1) = 8 (tp1, 11, (ip) | .
By (4= D (91, I, (x9) o (3.2

These solutions correspond to longitudinal waves. But besides the 1ongitudinal waves there
‘exists a class of solutions of another kind corresponding to transversal waves. In other words,

for these equations.

9 (l!)- (p?, lul (ly))[k’PJ.\ o A
%P(x) ’B(npl hnl (zy))f_x p],‘ S (3.25)

where the index n denotes the component of the vector product in the direction of n.
. For the sake of simplicity we .consifer the case p = 0. In this case it "is sufficient to -
examine the equations (3 12) and (3. 13) But now we -shall look for solutions whioh are not :
spherically symmetrical, but have the form.

0.(1)- 8, au;e‘

%o fl) = 9 () ex
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Without loss of generality we may consider for convenience p as directed along the z—axis and

n —along the x-axis, ey 1s the x-component of the unit vector of k. For 6, (lKl) and @ (oKl) ve

. obtain the equations

2 E(x)0, (k)- —Z T (e, ') 0, (!‘) E%o(t)

(3‘.;2'5‘)
EEACE. 1S Fpy g CONCQT - z(m(w) -
2% o(l).‘f v %"I(lﬂ) — ()‘75("} ‘ 9 (yl)_ E 90(')
-
where ﬁf . -
T (% x)= H;’(“"“‘""m)t“ er

“E(k)— q'g([].(.c’-(g Gl f;' RIS

Further, 1t will be convenlent to restrict ourselves to the case:when J'(r, 7 1s localized in the
neighbourhood of the Fermisphere and may be replaced vinsidethe layer EFiw by a constant ¥ .
Ve. admit a similar approximation also for J'(k,v.') and replace it by a constant "J" inside the
layer Ert > and by zero outside. Under these ;@ssumptions. the secular equations (3 26) (3 27)
may be solved without difficulty, i1f we introduce new variables in plaoe of Bo(k) and Yo(v)

X = —'ze() 3-’1 o9 2=

where the summation is extended ovzr(')the domain EFi w in the neighbouhood of the Fermi sphere.

The equation i‘or E takes the form: . k o s )
5\72 C%‘)’S : izol((:) ! %Z zj'(l;i(%’)/ . =O 'T;‘v(b;zs)
'%25%‘;5 | “_ JZZ‘;(UC(U, 3 z_z__m_1

where

D(x)= E(r) [Y&(x)-E]

We perform an asymptotic expansion of the determinant (3.28) for small Cand restrict our~

selves to terms that do not vanish for C-’O In fact this expansion will be with respect to

¢

the parameter —C;, or E + The final expression is

TELT

{(b’ﬂm 1+z‘)(__€~_.. “__5»-,1'} 0 (3.9

Md%‘/::-“‘._:__; + ‘l) - E"‘}{?l\ng - {'—-,-ELMel'ﬁ

£ ¢t e
where;ﬁ‘ A L < : w
, o
¥= 2 X g= E
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In writing down Lq. (3.29) we ha.ve for simplicity omitted a term which leads to superfluous ‘
complications, This omission corrasponds to the neglect in the 1n1t1a1 equation (3 27) of the ‘
term\‘[(y.)](;') in comparison vith C(l)c(t'), since, for momenta k and k' near the Fermi surface‘-jj
the former vanishes, whereas the latter remaina finite. N

The examibation of the roots of Eq. (3 29) is not difficult and yields the following re-

sult, For small 'z% Eq. (3.28) has &, single root for § in the interval

-4<p<~.——-

For P near to -1 the root starts of from zero, Its value is

E.‘ !C } [M )]

For a increasing from =I to O the root increases and reaches the value 2¢ , where 1t goes

over into the continuous spectrum, For E olose to zero

E=gc(i- Fp' it ef) 2
For (3 1ncreau1ng further from 0 to (Ou‘g) the root runs through the 1nterva1 (v0,2¢) 1n@' :
the reverse direotion and for 3 olose to (lg\ 1.?) it beoomes

£ = 2¢ {0 a-,,mg)
The root we considered appears from the first factor of (3.29). The second factor may have a
root only in a quite narrow domain of values
,l . ‘ ) ' o -
-— < 0 &
Wi e (ALY

which for C - O aaymptoticany tenda a point. Therefore the consideration of this root ds of

. no interest. It shquld be npted that :_I_.f 5’ goes outside the limits (3.30) there appears a
purely imaginary root which 1ndio_ates the instability of the ground state in this case; Some

- remarks on behaviour of the root for nonvanishing p.are in place. ‘Without any cealculation one -

may oonolude, only by inspection of the secular equations (3.10); (3,II), that for small p

:E(r)-'(‘ﬁ"’«& alp‘s‘

where S 1s the velocﬂ:y on the Fermi sphera and o( is a numarical factor.

Y .
2 .

Finally, some words about the physioal meaning of the transversal solutions. Let us con—“

sider the physioal qua.ntity
Mut-_ V() s-i);. [,1;_ J(.'t,-t)-‘;?;j]? | (3.1

whioh represents the cuxl of the velooity field V('L) '. In the. second quantization representation ‘
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Eq. (3.3I) will be
. 1 + i (x-x'.2)
W‘“*"(”Lk 72 (a“ Ay + a,-._,,)e Lk

Ky i

Going over from the operators Q”tl'to d,d by means of the U,V‘—transformation we obtain

.. + + i(K'K,- ' t PR ]
.E_i Mk %) (g Ky = KoK ro ) @ Lx. “]'* EL(XX)(dHO(!'o O(l(o ) @ E"zi
v K% e tk' 32)

mietv(t) =
i ’ v +
e attempt to represent this operator in terms of the collective Bose amplitudes @1(11,ﬂ1(q

It is not difficult to observe that this procedure may by carried out by substituting for the
operator. (3.32) -the following "model" cperator: .

mwty(2) =Lv X L(“*q,l) @q (x) £ ‘a2 [Kql+ conj. S (3.3
| =

Transforming the operator (3.33) to the new Bose amplitudes which diagonalize the guadratic
form (3. 2), we obtain:

h/\u’cv('t)-——i'g {ZL u+q,u)(<a o ,«HGq(x',/d)EM.qJ} ¥ -‘\—,} {ZLuq,-Je(u (r,m)txq]} 92
. (3.34)

‘, . ) + X ) .
.We recall, that the new Bose amplitudes % »3 are connected with the old amplitudes.g’p
by the transformation:

h(lhirﬁz ?,CKmHz,. -q (&5 p13 .
According to (3.24) the longitudal waves considered before turn into zero the sums in the curly
brackets in (3.34). A guite different situation arises with the transversal waves. On account of
(3.25) the expressions in curly brackets no longer vanish. Thus, the transversal collective
oscillations represent curl—structures. It is quite probable that their properties will have
many features equivalent with those which were investigated for rotons in the microscopic theory
of superfluidity. But it has not been established that a special branch of the'spectrum charac—-
teriziné these excitations exists. , ' . ' .
' Thus we complete the investigation of the ground state of one~Fermion and collective
. excitations 1n Frohlich's model. It should be emphas ized that the method used for the computat—
ion.of the ground state and one-Fermion, excitations 1s a regular one. ‘On the contrary, the
method of‘conputation of the collective excitations is rather'to be'interpreted as an approxin—
ate summation of the most important diagrams. The- question of the excitation of various colléc-
tive oscillations in a system represents an interesting but very. complicated problem. Particu-

‘larly it would be desirable to consider collective excitations, based not on pairs but say on

quadruples of Fermi amplitudes.
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§4. THE COULOMB INTERACTION BETWEEN THE ELECTRONSx)

4.1, Qutline of the prdblema Up to this moment we considered explicitly only the elect~-

ron-phonon 1nteraction. The repulsive Coulomb interaction between the electrons has not been
included into the Immiltonian. ’ ’ ;
It is easy to see that all our préceding results way be trivially generalized to the case
‘when Hypn¢ contains a sgréened~Coulomh interaction term which we can consider as smdll, so that
the perturbation theory épproximation be valid for the whole Hynt-
'Such an épproaqh,gives us essentlally the same results as above with suitably modifiled
numerical factors, such as,‘for example; 9 .
However this procedure is not satisfactory from the physical point of view and does not .
give an essential improvement of the Frohlich model.
Firstly, the electrostatic Coulomb repulsion is more intensive that the feeble attraction
caused by the exchange of virtual phonons..Secondly, as we shali see later the screening of the .
'Coulomb interaction essentially modifies the stucture of the energy spectfum of the longitudinal
collective oscillations.- _ o ) :
- S0 we shall extend our previous considerations to the more realistic mbdel described by the

Hamiltonian

LX) ’

where . *

wi) 1 ] .
’,‘Il. = jc;},/-‘,—ﬁé— 4,2, !7 + Hetm.con,
( :71 ) _ . ) ) (4.2)

vand !{ is the Coulomb interaction between the electrons

* ) - .
; 4 Ky,
(kl,l‘:,l1, 7] ,t',,!z) .
with Ryrlegs teg's o s ; e‘

I(It ko, k), k)) = ——%
1, %2, %2, I} /k’_k',/z

We shall use the method developed 1n §2 and shall carry out" the compensation of both the.
two-boson and the two-fermion graphs. Therefore we can use the ratio ﬁ%? as a small parameter’

. qnd retain only the main terms in the resulting asymptotic formu}as. In our method it is not

x) This part of the paper is based on resglts:of D.V, Shirkov.
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neceséary to consider the Coulomb interaction as small, and therefore we have to takefinto
account graphs of all orders with respect to ‘{

In order to simplify the calculations, we suppose that the canonical transformation pa-
rameters U, v differ practically from their normal values only 1n a very narrow spherical layer
near the Fermi surface. On the basis of this assumption we can retain 1n our formulae only the
main terms with respect to the effeotive thickness of this energetic layer. Note here, that, ‘
according to the results of §2 this quantity is "expontially" small as a)exp (——') in the case
when the Coulomb interaotion is omitted. ‘

This assumption seems to be quite reasonable, as the Coulomb interaction can only reduce
‘. the effectiye value of the parameter.f. Besides, after obfaining erpliéitly fhe approxiﬁaté
equatiop for ¥ and V' we shall be able to evaluate post factum‘the effective dimeﬂsion of the
ehgrgetic layer in which &,V differ from' their normal values and at the same time confirm the:

correctness of the assumption.

4.2. The Compensation and Renormalization Conditions. Let us carry out in (4.1) our

“canonical transformation of the Fermi and4bdséroperators (2.4), (2.8). In the transformed

Hamiltonian we choose for‘the "free Hamiltonian" Ho the following expreséion

H = + Z scu)( + 0(,,) +Z wty)/d,/af

where Ecn), Bek) are the renormalized energies of electron and phonon. excitations and Zf
is the energy of the ground-state.--Then.-we _have _ 4
f{ = f{o + #ﬂ}t

where the "interaction Hamiltonian" Hint is
Ho, 2U'+H' ¢ H " +Hy +H (4.4)
int . ’ < ‘ _

where

U'= const = 22 [ Eces- ;\)u.: *Z@c;}/u" -
. P3 . 7

o 2902y, 7 ” ’ ~ U (o, » A, Q'
s H =Z{{E(g);. 1)([(‘._11"‘)"l(k)_}(d‘,dk"#d‘”d‘,)+ZZ(E(R)'A)"‘?/; (“’g,dm * % ieo )

"o PP A - ‘ . !
H "Z.{w(,) [)7+/u’}"f’f7{}/97/g’ ‘Zb{,))f/"ll/afﬂ-;ﬂ ,_/47/7}
In (4. 4) Hc and Hpp represent the expressions (4 3) and (4 2) respeotively, transformed
ta rhe new amplitudes. ‘ e : ) _
- In order to write down the combenéation and:rénormaiiéatish'conditions it 1s~conven1éﬁt

to 1ntroduce the more oompact “time-dependent" formulation of the basio,expressions, which is

quite analogous to the one used in quantum field theory. For this purpose note that 1n terms of



=737 -

the "S-matrix® S e j Hmt (é)dt‘:) ’

S 'T‘(e,
" the sum

’ .
R(E) = } R, (E) = H,,,t HAt,__-_'_H Hiae *...
T myr s °
can be represented as an elgenvalue

. RIE)C, = RC,
of the energy operator R‘ - )
R oS H () dE
. ~ob
R =H. 5‘ T(#ﬂké(a)e , /

lkt

-+

Here Hint (t) is the 1nteraction Hamiltonian in the interaction picture

-l'ﬂ,t fHE

in

Let us consider now the compensation and renormalization condit:\.ons. ’I‘he compensation
conditions imply ‘the vanishing of the sums of terms corresponding to graphs with two external

outgoing electron lines (fig 5) a.nd two external outgoing phonon lines (fig. 6)

.Fig. 5 4 — - Pig. b

The equations for determining U; €tk) and 5(7} represent the oonditions for the vanishing
of the contributions from electron self-energy graphs (fig. 7)), phonon self-energy graphs
fig. 8 ) and Gacuum‘graphs (f1g. 9).

Fig. 7 ' " Flg. 8 Fig. o9
In figs. 5=9 the circle designates strongly conner'ted graphs which cannot be represented

as two parts linked by one or two fermion lines or by one or two boson lines.

In terms of R the compensation and renormalization conditions can be written as

<oty %, ,RY. = O e o | ; (4:6)
<pepgRO. =0 e S en
<R, > =0 | | (4.8)
<k REy =0 .

Ry, =0 | | (4-10_)'_,
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" The subscript "¢" indicates that here" we deal only with terms corresponding to the above
mentionéd_ strongly gonnected graphs. Eqs. (4.6)=(4.10) may be written .in a clearer form in

terms of functional derivatives of R withrespect to Fermi and Bose operators in the interact-

ion picture

-rEwt - . [ Eaort
Ky (E) =, € L. Oy (8) = iy € . (v=0,1)
- -1 &egrt ~ - /'47(;)é /
,4 (\‘:)-ﬁ’ ’ /,(t’)=;aye

Performing in Eqs. (4.6)-(4.9) the.oommutations of do{ /a,/.t with R, we are led to express-
1ons containing second order functional derivatives of R. Taking into account the condition:of
strong connection, one can perform explicitly the functional-differentiation of the terms H'(o) :

'and (o) in the Hamiltonian H/,.t (a) Hye o Bas. (4.6)-(4.10) are thus replaced by:
SZRI / ~ -
Ecx) (42D
2 (Eaer-2) / : : "
(Ewr-X)wv, <8«,,mé‘~,,a')2 e déolt'= 0

(4.11)
w (g A ,/( e > | Syt /
7’ 44 ‘% A dédt’= 0 (4:12)
Ecer- u Foe) A ¢ Es (6~ . (4.133
( (ks 1)( T } Ck /<J'I3,(é}f/’/£’} ) e dédt =0
' 8’ [Gg) (£-27

’ 2 I ~ — e [¢ -
el ep) - g -/<‘$./;7[+)S/Jf le | =0 (4.20)
2%(5(&)-1)0’:4-12(»:7)/\#; —.UV+<1‘2')‘ = (4.15)

-0 S Hiy (01l

T[ (H (0)+H,,(0)) €

Here

8/5,( is the right functional derivative, 3/8,( - the left functional derivative, which
~anticommute with each other and with d,x .

4.3. The final form of the cnmpensation equation for electron graphs. Here we shall

simplify the basic compensation equation (4.I1), First of all let us make the transition from

the « "-r‘epresentation to the. a,-_representa_.tion in"the functional derivatives
8 " § R . P, . )
o s - - = —

,5"::.“,’ Sau,o“’- Sa, ) 8x (8 Ja ‘ Sa”
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’ . +
In the limiting case, when &, ¥ take their limiting values (2.24) the operators a(é) act)

introduced here may be written as in the form

I Etast

a,,la-(t") = d‘, .
- : FEcusrt for « >/<F
Que () = Qpr ©

o~ (4.16)

4 s fEest

ak’i_(f =fa_k}.; é )

i ECiust X
*- / : for K< kF
Gy, (4= ta.,;¢ ”

. . . : )
where 4 , 0.’ are the creatlion and annihilation operators for holes inside the Ferml sphere.

In fact we have introduced here another representation for the electron opérators which we Qall
the &’ representation.

We obtain

Faoteet) 8%’ 8%
R g (€+ .
2[60‘)- 2] U Ui * o U“/‘{é‘“ ¢ | {(Jak,* (¢ Jd‘k,r 'y 2- <Sat,k,~ (‘)\[gkr (¢ 2/8”

R R SN
_[dtate - S u R SOW RS,
“/, / K(S‘{k,f {‘U)J“tk,-ﬂ"’% “(Sak,+(*{59k,-(("4{1;)

Now we caﬁ use the assumption that the wi;ith of the energy layer in which u,v strongly
differ from thelr normal values -(2.24)“’13 very small and retain in (4.I7) only the main terms.

In the left hand side this procedure replaces the expectation \}alues of the second functio-
nal derivatives over Cv by expectatlion values over Cp , the Fermi sphere state. k

The applicatlon‘of such a procedure to the right hé.nd slde would turn it into zero. There-
fore it 1s necessary to make a preliminary'transformé.tion of the‘ coefi’icients of u.z, r¥iin
order to separate a small parameter of the order of magnitude of the product uv. This transfor-
mation can be performed by means of a procedure well known 1in quanfum field theory under the
name of the "generalized Wick theorem" (cf. /I7/," §J4.2), using the following formula for the
chronological contraction S ‘ k

—

' , -1y [e-zY © (4.18)
a’g"’ (r)a’k;‘ iy = <Tﬂ,‘;, (t}a.“c‘. (z")>‘= = - uk’” € ’

i’

Taking into account that uf‘ and Zf: differ from their limiting values (2.24) only in ;the

neighbourhood of the Fermi surface we can write down Eq.(4.I7) in the form

fl}'(k)unvu = (a“t_ Z&'}Z”k'”;'-oa"“’). ) ‘ ‘ (4.19)  .
K :



where .
~ ] e
1 , FEdo (ts4) 8’
T = Ecr- 2 jdu{ - (Sik,,(t') Ja,,,tu% g <J¢‘Zk_(f}
. . . . (4.20)
j< ) J"R : ¢ :m (€+é)s feay /z-t/ ‘{ 7{'
' é z/fa(f'a/r z or K>Kp
sa-t:* (T)J'd_k:_ lt'}J‘a‘k"(‘tl)Ja‘:k.(‘) 0> o v
Q'{K’ Da . . : . ‘ _
. Jyﬂ ' O Cees (s é-rEas [T-TY (4.21)
v , de'drdc’ :
______ j(S&_;*u;Saﬁ_‘;. [r')é'a.k'f t) Ja-,kl_ (¢D 2 € dédt’dra for k< L,

The subscripf "o" means that th_e expecvtati‘on values are taken in the state Coe We élso
recall that, according to the sence of the limiting process, the functionals R and R* depend

he.ife on the Hamiltonians in the a’ -representation. Ror example

/-/ ~Z ;ti) Qe Qs (/7 */7}/) i, ) | (4.22)
| (k-‘:’; / o
. Introducing a new undnown function , :

Ccu=27 U Yy @ ere’) o | (4.23)
with due account of Eq.(z.;I)‘, one can write (4.I9) in the form (2.22):

- QxR 7 ‘
(’w = Z Q(k,uz 3 o (4.24)
' . ye aw} x .

Before - studying carefully the effect of Coulomb interaction on Q and ¥ , let us establish

.the connection between the ground-state and one electron excitation energles with the solution .

cof (4.24) for the case under consideration.

4.4, The Ground State Energy .and the Energy of One-Fermibn Excitations. The ground

state energy must be determined from the vacuum renormalization equation (4.15). Using twice

the "generalized Wick theorem”, taking into account (4.I8) and
: — 2 -I'Elulté-t_') EFSYIE

+ ) " Y. € .
Qup (), (H) = i o t€)

-ute , I PTT - . (4.25)
. _ - Tews|e-4] - ' :
Ay s (l-)a._,_ (#)= Wy e - . 1 (4,26)
and golng over tc the a -representation, we obtain g
R - Ituu(é-t
Us 2Z(Em- A) vk *Z“"?’f‘y Z”AJ __._E____. e J,[f . |
, RO gau‘“s“ (& — (4.27)
{< e.ifw(e'.u 0.5 o ,uulé-u--tm)nt- t SR - > :
§a. («)Sa e dt: t-"Z‘“ U Uit |dtdtdede'e
K'; o a,, pEA Z ‘n Au wly ) | <55.,.‘”5‘§,,_(t')Sau;r"’ga-,;.‘f'lo
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For w and v differing from their normal vé.lues thisformulé represents the energy of v
the superconducting ground state U For u,- gc«;, 9 Cie) Eq. (4.27) describes the energy
of the normal ground state q ’

Taking into account the identity

_ Eew __Jo o 5

o [+ e
C‘cu»}‘tu SO A Btd

2 H
’Uk- QF(R) - [ZL“- eacul

which follows from (2.2I), and Eqs. (4.20),(4.23), in the limit of small &, £cu’)(correspond-
ing to the neighbourhood of the Fermi surface), the difference Ug - U, turns out to be

) 2 Fc . ‘
U U, =- _Z\/C“‘)"I ")[9 “)(i I/Cck»}' uu) +QF“)[1 +m) 2_} . (4.28)

‘Now we shall analyze the energy spectrum of one-Fermion excitatlons &¢<, for the super-
’ conducting state. The renormalized energy £ 1is determined by Eq. (4.13). Carrying out the
transformation from the tx '-representation to the a./ ~representation in the- functional
derivatives in the last term of BEq. (4.13) and using the " generalized Wick theorem", one can

express f . as the sum of three terms
f'(k): Ll; £, Ce) + U': I,Ck) + u, v, £3 () (4.29)

. In the neighbourhood of the Fermi surface, where £ 1s small, we have:
& (k) =~ £ (k) = FC)
and by Eqs.(4.,21),(4.23) and (2.21)
' C'ie)
Uy, £, = 2uu1r,‘Z'Q e, k) U, = ‘/T”'T“
Y 7 Cotie)+ Jew

Note that on the Fermi surface itself, where u; 2 UF‘g 1/, and F(ks) is equal to zero,

We obtain from(4.29)
Ekgre Ccig)

- Thus the one Fermion excitation energy 1s separated from the ground state energy by the

gap Cee)= 4,

. 4,5, Transformation of the Kernel Q(k,k*). We sha.ll now take into account the fact

that, as a consequemce of the compensation of graphs in fig 9the functional R depends on 3_
only through the small parameter gw/l:,: . Hence the r.h.s. of Eqs. (4.20), (4.21) can be
expanded 1n powers of 9_ a.nd only the first two terms retained. It 1s more convenient to ex-

pand R. The first term of its expansion, independent of ; s will be denoted by R,. It has
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the form
RC= T(H¢(°)S<) .
. R (4.30)
where - e o
‘ PSR )
="T(e ,
S.=T(
\ (4.31)
The second term 2',,, y proportional to gz,_ can be represented as
Rrh = P L o R A . E (4032) .

- where :

© -]
. . ; .2 . Kl Yy
=~ (Hylor [dH o 008,) R, =0T (Hto [ dt Hutt) [t Ho 80 S, )
1 P o P4 ¢ ’ e 3 —ab . .
Taking the expectation value in the phonon vacuum we obtain

w A+ uc.u)f
ﬂ""Z. (1) l:f)(zlu')f 7T(a

ell'PIP'" ) -0
( Ceeplpeg

:(ﬂla (a)a{ (t)G,, (t-)S )

\\.

-] .
~ jl“)""‘?' %) ’/“1)2 ’ Qs {tht) g -
R,=~ g didt'e T (o d 00,0084 (£1a,, ) S, )

? v « " b=

- ob

We can carry.out another step in the simplification of the kernel Qph. Nof:e -that the
maicima.l energy of phonons is small witﬁ respect to the Ferml energy. On the other hand, accord-
ing to (4.I9) only momenta k,k' in the neighbourhood of the Fermi surface, where &(«, , &'
‘are also small, is essential. So the sum a';'cx-u'ﬁfz“}* €ee)  1s small, and the contributions to
‘0 containing this sum in a deniminator are large. It is evident that such c’ontributioné corres—~
p.ond to gréphs (fig.IO) which can be split into two parts by a vertical line, intersecting
o ‘oxbxly two fermion lines (k), (k') and one phonon line (k-k').

L

1
)
'
1

_ fig. 10

The circles f; and [; in fig.I0 stand for generalizéd vertices 1n{¢1u»ding Coulomb cor~

rections to all orders. From the p'oint‘of view of the :"time-dependent representation" all ver-
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.tices in r; must be later in time than each of the vertices in I; .
. Thus 4in the approximation under consideraﬂon, the kernel Q(k,k') 6f Eq.(4.I9) can be

reprexented é.s a sum of ﬁwo terms ‘
Q ki) = Q, ey + @, () o (4.33)

The first term Q. corresponds to pure Coulomb interaction (4.30), while the main part of
the,«.secbn_d term, described by the graphs of fig. 10 may be represented as follows'
3’(1):»(7){.\74/4,)2 . A (9' o, k')
G(,uv?cu) +Ecut) -V ! 9

OI’A (kok') =

= % Gemil) (4.24)

A is a product of factors arlsing from the generallzed vertlces c and l; . In the limit
of switching off the Coulomb interaction we have A ="I. In general '

A (7:“,"')' . ' )
, = D (Mg +Ny )P , (4.35)
V{uc,u- Taor s Swn) } L ] ’
The quantity P corresponds to I’; « It equals
L0 0~ ' n*l‘. ' 2
1Bwg it L e it Eal S*R.,(8)
- Jaueue e (e ) S \
4 $dsus @ 8apy,r (¢ 4 (4.26) |

where

. .
R,01=T(ws,) H(e)-ﬁ,—fZ‘ G pre Gpatt)

The functions M and N corfespond to the vertex f; for RI and R2 « It can be shown that they

have the form

3z, .
[JtJ1:< > S
sa:“ ¢ (:, sa‘tu”t [t'} [y . ) <4 037)
R SR L NOTN Ty | S
. ~’(4.3e)
A/ T~ fJB Jtdc <5°"k t () s“.‘tu'f‘t'l >O .

4.,6. The determination 0f Aepm and & |, We shall now determine the sum )4/» from the

condition of compensation (4.I2) for the phonon- graphs represented in fig. 6. Performing the
functional differentiation and neglecting all terms’ except those of the order g2 we. get

2«#7) 1,/«1 j‘t?)wttp N,f/uy} 217) =0 . , . ' (4~.39)
n o i Sigy (ért) | . |
rhere | Zl'f)"' W{d#dt' ¢t Z{T{H‘Ia);"m.am @) 3',}2‘ €a, (4 S:_)>° +
- ~ob
o . : o ' '
. i St — ' * . (4"40)
- Jalf e ! Z KT (G, w0, 04 1a4,0) S, )>° |

S e
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© Solving Eq. (4.39) with respect to ( )+/u)2, we find

[).1+/,1)2 =(1- 23%7)21‘7)}- /2 | (4.41)

Consider now EQ.(4.I4) for the renormalized phonon energy & Carrying out a similiar

transformation, we get

wtq)();q«;) - Gg,)- &'upj‘c?) ('\7’/“7 )’Y(zi) =0 (4.42)
where ‘ ' g
Ve i &g (t- t)
Y(q, fdhl Z<T(H 08, (10,4 4y, (¢) @ gy (6 S, )Y+
¢ uui)f -u.-q: . . S

i_v-_folf( Z<T(a (0) 4, (o/a(,(ﬁqd,(ysc )>o (4.43)

Solving Eqe. (4.42) with respect to & with due account of (4.41), v.ve £ind

2, :

‘3(1) R 4 j"‘i)ZY“N 42(7?} ‘;'(7’ . . (4.44)

\/i - 252471 Z@)

4.7+ The connectio.n with a model problem. Now we shall show that Z(y), )’(1},(.44-/«)2, [
as well as A 1in Eq. (4.34) .can be approximately exﬁressed in .ferms of the solution of a model.
problem. T B
Consider the model system, described by the Ha.miltonian"

H= H,+H"“+ , 'H°=Z t(u}Q”au 4-2_ i(u)a‘“ s : i o
u>l(,,: k<kp,s : (4.45)

e = He Wﬁ: Z Burg, e *a, s Qurg,s)

Here H, 1s the Hamiltonian of the Coulomb 1nteraction in the form (4. 3), and S’ a small

H,

parameter. The ground state energy U of this system can be exparided in powers of &
29r9 ’ L

U - U, 8 Uz oo : (4.46)

. Uq A

and the coefficlent has the. form

: |
Ui = [l T KT, ste0 4, “’“e , a0 S, )>° -

: NAY ;
+ : +
"L,(A{',,;ﬁ T(%q ,fom (2 a LraguS, )> C(4.47)
)8 : -

Comparing Eqs. (4.40), (4.43) and (4 47) 1t follows that 1n the limit of small @ , one
has the identity
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Zqr =X, =-U:

as a consequence of which Eqs. (4.41),(4.44) become
¥

h )< . , : :
{ 14./«? 1+ 20200, U7 2(51(7)1/3, o _ (449
Beq)= V4 *25161)1);7 weg) A o . (4.50)

Now we want to construct the quantities which from the point of view of the considered

(4.48)

model, correspond to M,N and P in Eq. (4.35).

Conslder the matrix elements

V; '<d:u,z R azu',t->° _ : | © (4.51)
W, =<Qus S52,.,5 _ (4.52)
; s Lo

~od 2 K2

which correapond to the graph of fig.II

K CK"

‘Fig. II
These matrix elements can be expanded in powers of S
.V.O' < SU’. +... . » .‘VVG. - Sw‘ *,... (4.53)

The coefficients U, W, have the form
.7 + ’
U, =< a‘n,r T( [Hq (0 + H_,(o)]S‘) ﬂu’,az, -

o : . : ,
'-¢'<a-a-g,trj H“O,T{[H‘(g);-H_q(e)]s.)ctg,‘;achG = 2'{M5+.4/o') ‘
-od s

| W,. = - lf (aam,T({H,IB)"H.‘,(O)fS:) aa’n,c!)o =

Tore Ten') + & (k-kY
4 2 Pa—

£ocre Eewc

Substituting these coeffiolents into (4.34), (4.35) one
obtains

gt wig) (Agr pugs® ;z.gz?i, '

Gegs * Ecurr Ecu 4

Qf’“‘ (k') =
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The expression 1;;. introduced here
Wes (e + Tews )w ‘ o :
“is in fact independent of s+ ey,

By Eqs. (4.49) and- (4.50) Qpn can be rewritten in the form

Q.. tiwr = 3 9/ ; YW, |
[ 13:7) +FaseTaey g ' ‘ (4.55)

‘where 5 - 1s the renormalized value of g
~ )
39) = ———‘.‘7 ! (4.56)
v % 2 219 T , ’
1+ 22 eg )] . A
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§ 5. QUALITATIVE DESCRIPTION OF THE EFFECTS COULOMB INTERACTIONX)

. o ' : o
5.1. Approximate determination of the renormalized ¢ ‘and i. In subsection 4.7

we have reduced the problem of the determination of Zﬁ/n sy Q h to the solution of a model
problem with the Hamiltonian containing only the "kinetic energy", the energy of the COulomb
1nteract10n and a term describing the interaction with g weak external fielad. .

Here we shall estimate the quantities )f/"tq-.in the'approximatiop of a "strongly compresééd"
electron gas, where the Coulomb energy ;an be considered as small\as compared with the kinetic:
energy. ' '

It 1s well known, that in problems with Coulomd 1nteraction one cannot use direct by
expansions in powers of e2, as these contain divergences in the region of small momenta and
leads to a situation similar to the "infrared catastrophe®" in quanfum field theorj.

. The procedure for correcting such expansions became completely clear due to the results of
B Gell-Mann, Brueckner and Sawaﬁa/IB/. It follows from their paper, that in ordei to improve the
lowest order afproximation (with respect to e2) one has to sum over the graphs composed §f ’
complexes particle .~ hole mentioned in § 3. Now we follow this procedure, giving it, for

convenience, the form of an approximate second quantization.v .

First of all we introduce by means of the canonical transformation (2.4) the Fermi ampll-.

tudes for the particles and holes with trivial values of the paramete:s u;U

u'“' GG “‘) F U‘,‘a GF U‘} . (5'1)

The representation (2.4), (5.I) is in faot the a' - representation (4.I6), in which all
previous results were obtained.

Consider now the Fourier components of the* space density of electrons

- ‘ ‘ ¢ a
4= kZ: keg,s U, s (9#0) -
Transform them into the a'~ representation and retain in the resulting expression only these
terms whioh do not vanish after their operating either from the left or from the right on the

"yacuum staten C or C respectively

C

Then we obtain approximately.

o, S0 «,C, =0 (v=01)

* o ’ ‘
J“?) .—.%'(,u (k, Ar,*f)dg.q,, 4’,,,, - (1(4 k-g) q/k,f a(k_f’a)

where

Hteg - 4ty s

x) This Section 1s based on the investigations carried out by NN Bogolubov (§§ 5. I, 5. 2)
and V.V. Tolmaohov (§§ 5.3, 5.4).
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According to the rules of the approximate second quantization method, we replace the
“products of Fermi amplitudes by Bose amplitudes A

* + - - _ ’
Hierg,0 e, = o Ge) - Nigr Fe-g,0 = fg (e

and obtain

L =.2;_' .Al(“,koq}ﬂ;[k)

The substitution of ‘this expression in the Coulomb interaotion energy

‘hu’Z f«p fch

- (9.9%0)

yields
ch‘ ‘
Hc H,%

k’ t’
340

{.M (u,«.,;a (u,n-q)/.!? (k’)/17 (k) + M Cicyie-g ) M (i ic 41)/5 g (kiffy (') +

‘ 4 . ; T ¥ [ ’
4 Mk, ey Marsueg) o GOy () + M (e egy M cklicg) f (kg _fk/j

In the same way, in this approximation, the interaction term with a "classical field” in

(4.45) becomes

2§f' {Jl(u,w,:)(lp )+ M (k,k-p)/lf ) + M (k,k-,uﬁ.r k) + M Ce, w-,a)ﬂ,, (73] 3

As shown in Sec.3, in order to obtain the correct energy denominators we must take for the

self energy the following expression‘

Z { imn- &[w?)} P,(lu/-‘?(u)

Thus the complete Hamiltonian of the problem under consideration, 1s in the method of

approximate second quantization,

= £oey ¢ e : ]
H :‘Z' [ Ecey + Lk 1)}/!’0:)/&’(“) +

2”‘2‘ ‘ ,| {"u[k'“'?)"a(zlz'7jp1“‘)/17(",) + ﬂ[k‘gpi)ﬂ[k “-1}/3,{“)” {R/“ 2-”(&“"7).‘ (K ”*’}ﬂ,(k}/,(“'}f -

(re,} q;o)
(5 2)

2'V' { .M[k,lu-)o)(f!, (k)‘/!,m) ¥ .ou(k,l(-,} (/I, cuf-/(f au)_}
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We see that this Hamiltonian consists of a quadratic form of Bose amplitudes and a linear
form proportional to § . ’ '

In order to evaluate the effect of this linear form on the shift of the ground state
enérgy level ‘and to calculate U;, one can use the well known method of, translation of the
Bose amplitudes

£ £ a ,
fpoi=fy (24 Cotnr k)= o ern Cplas , §EEP

where C and C* - are ¢ —numbers to be determined from the condition of the vanishing of

the linear forms

4 C PLAN '
97l =~ 0 , = =0 7= zp
% C %, ’
Explicitly these conditions are
{Etu) + Etuqﬂcfm) + _%’_’-":,—er M (K, mq)X(iJ o-/z—s—L—FM (i, i+ 7) = O
55 ¢ 2ne? Py
foers Ty C k)+-——2M(uu-JX()+ M(k,ic-q)= O
t L 1 Vigqi? ! A ‘ 7

where

X(?) = ; {M (k,e49) C7 (x)y+ M (k‘,k-7)C_7 (“)}
_These condition yield for x the expression

7 th)

ll"

where

Mo, eqd M2k, k-q)
Fiq) ~—-Z{ +

£cuu £tu¢7) £Cic )+ £c4¢ T”

Note here, that 1n the first approximation with respect to 3 the energy shift equals
J"‘"Z{M(“ lu,p)(C (k)+ CP Ge)) + M (k,k-p) ( 3‘ (k}f- C (k))}
(XCFN'X(-,O))

By (5.3) this expressions can be written in the form
52 F(F)

5 Ynez
2 44+ T For

The quantity F(q) may be reduced to the form

AU = -

M ac.nng - _é_Z- 85 C1 G ey

L = (5.4)
,‘ 2m)+ f.ﬁgu,) Tk'-u:q Eci)- E(x')

F ap



- 50 - ..

here - E(k) is the energy of the electron. elementary exitation with respect to the Fermi surface,

so‘ tbat ~
' E(lt)‘BlE(""EF'
- Comparing Eqs.(4.46) and (5.4) we obtain ’
‘ Fep) : : )
UP -t — : ’ : ‘ (5.5)
2 2 4 4 ine? )

Substituting (5.5) into Eqs. (4.50) and (4.56) we obtain

. P F 7,
weg)= mti){i— M g/z

5.6
l’,’;‘,’; Feg) (-6

. c)i —————-—5““”""’ e ,
g 9 (:,,?1 Feg) , - (5.7

Comparing (5.6) and (5.7) with the corresponding expressions from 2.3 it follows that

for small q the Coulomb forces practically destroy the renormalization.

5.2. Discussion of tbe properties of O, and Qpnh_- Now let us turn to the quantities
Qc (Eqs. (4.21), (4.33) ) and ¥, W 1in O (Eq. (4.55) ). One could carry out an

~approximate analysis of these quantities in order to obtain their properties in the r°gion of
;the "infrared Coulonb catastrophe", where the Coulomb interaction is not small. However,
']inasmach as such an investigation may give only a qualitative picture and as the correct’ analysis
1s much more complicated (such a correct analysis 1s now being corried out), we shall not under—~
~take here such an investigation, and 1limit ourselves to a qualitative discussion of the ‘pro-
iperties of Qc and - Qpy .
Note, for this, that the main result of the preceding subsection 5.I consists of the fact,:

‘that the Coulomb radiative corrections are summed as a geometric progreSsioniyielding a formula
“of the type (5.9). This result is not an accidental oonsequencerof the approximative .second
iquantization method used, but follows from the general struoture of the Coulomb interaction.
Ancther well known consequence of this general structure is the property of Coulomb screening.
'So we can state that, taking into account all Coulomb. corrections to a given vertex of the

;graph descrilbing the eleotron~scattering with momentum transfer q, leads to a factor of the

form

‘"’; ?[7} , ‘ }“:(5’.‘8).": N

nith Pig1>0. o A | SRR TATI A EE '
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Just - the same factor occurs in the Eq. (5.5). It 1s also clear that inserting (5.8) into the

usual Coulomb vertex 4n¢'/@ﬂ7/‘, one obtains the screening

 4ner . B - | ‘Wey‘V' (5.8)
T/i/l 1 * ‘Z;'f':¢ff/ ~ 17/24_ 9”el¢(7j

At the same time the appearance of the factor (5. 8) 1h‘a non-Coulomb vertex (forlinstance

in a phonon vertex) yields d cut-off effect for small /7/2 (ct. (5. 6), (5.7) s

Now turn to the Qg, Qph. In the lowest order with respect to e the function Q; reduces

to the usual Coulomd vertex. Thus the complete expression for Qg is finite for small /q/2

as a consequence of the screening effect. The main part of ‘Qpnto the first order, corresponds:

to the usual phonon vertices. So the complete expression for Qph must vanish for gq = 0.

5.3. General Properties of the Fundamental Compensation Equation. Consider, in con-

clusion, the compensation equation in the form (4.24) 4in the simple case of radial symmetry.
‘In this case one can reduce this equation to the one-dimentional form, taking as the new

~independent variable

Ccry )
Cep) =+ | Q11T = 4 dr’
I 2 1.3 7 ‘/7—;_.—:‘* , » (5.10)

with . 1 de/
””’ = 2nt d/;'/)

and v |
: Q ( T = T j@(/k/,/K'/ejdé’

. 2 . .
Por the analysis of this equation»near the Fermi surface-we replage CC??under the square
. . ) N )
root in the dencminator by the constant Az=.c /). such a simplificatiqn is correct from-an

asymphtotical point of view, as for very small ¥ “thé—approximatidn

‘/}Iﬁ‘ Cz(}') - /‘T,!."_‘“A z
is quite good.4 k

Thus we obtain thé "quasilinear"'équation

- L e ‘ o 4
- ,_, 4 ’
”’C(}) -\2/0(}’..])17(])'/—,,——42 S (5.11)
Cored | ‘ (2u32)

As was shown in subsectionk4.5, the kernel Q consists of the pure Coulomb part Qc and

the phonon part Qpﬁ

Q =Q, * @
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”It follows from subsection 5.2 that Q "'may be approiimateli represented in the form
(5 9, oorresponding to a screened Coulomb interaction. Aocording to (4 55) the term Qph is
essential only in the neighbourhood of the Fermi surface for I}/‘,a: .
' Consider now the following auxiliary integral equation with the kernel.proportional to Qg -
'

. u(7 . )
Uy - %,JQJI. LTS B I/J-"—"—AF dr'= f(z) ' ) (5.13)

and introduce the corresponding resolvent G,

““J’=f<I-J--2’-fG4 (5,5 f (345" S (5.14)

Due to the singularity of the kernel of Eq. (5.13) for A - 0, the resolvent G, has

. also the same singularity and can be represented as follows

» ze " (1) v ; '

Z(J) 1s the solution of the equation

_ 1t : ~
2()~ %jO‘ (;,}')»c}')m dy =~ Q. (3 0in¢0) ' (5.16)

Now note that Eq. (5.1I) may be reduced to the form (5.1I3) with the aid of the substitut-
ucy) = Ccy)

: . e CCXD
F(p ‘%j@,,,,'(};;’)a(_wm dz/
So, taking into aocount Eqs. (5. 14), (5.15) one has
€3se /{ » (3, 7‘“szJ(JJUQ,aL (r250dy"-

1 f_% o de { nere '/d
z/—u:;; (Ji37ar U//-:r;..f

'4As was noticed, the function Qph is important onlxkin a small neighbourhood.of the Fermi sur-

‘face wheres both its arguments are very small.nHence the integral term
. 1

./G“ (3, :)o (;,;'/Jz

'-1s small and may be omitted. For the same reasons one must replace h(}ﬁ)and E(}) by their values

on the Fermi surface hh) and 2(41 « SO0 we obtain'

e c:;') :
C(}).. zw @ (7237 dyt o
/[4}1- @3- —L"_"_—A_:—J f”‘”,f—“ i ‘ (. 17)

The analysis of (5 I7) can be carried through by means of the asymptotio method from seo.z.

However, for -the sake of simplicity, we use here a more crude;verslon,_replacing Qph ( }‘, } )
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by the constant value Qph (0,0) inside some rggion l}')<¢3' and by zero outsf_l.de this reglon.
With due account of & /4 >> I, it yields

r s, CC3Y
CC}):%J{&-Z(O)&%‘:_}W
e e :

dy’ for [y/<& ~(5.18)

where -
P= O/,;, (0,001 (0)

It follows from (5.18)
Ccp=4 " for  ~B<F<d

A 1s to be determined from the equation
' 28 ) g 22
Lep(t-zm b )& (5.19)

So one can see that the Coulomb interaction changes the effective parameter N

) 25
S2r {4-1‘(0)44 A—')

where Z(o) 1is determined from (5.I16)

For the crude estimation of the value Z (0) replace the function - OCCJ',]"JIN]Q in (5.16)
by its average value ‘ ’ ‘

. _ . bres

/oc=_/—("2"7 ;ke“"(r‘ '
inside the region IJ’/< E ~E, and by zZero outside.

Under this condition the equation (5.19) has the following simple solution (for £, >>4 )

A .
1epba (%54

Substitution of this value into Eq. (5. 19) yields

Zlo) =

28 :
Se Sy a ' 2;': : : (5.20)
—/0[1-1+/!..2€)4—.— . ;

5«4, A Criterion for Supercondiotivity. As was shown, the Coulomb interaction.effecti-~

vely reduces the parameter P ‘and thus 'obunteracts the appearance of the superconducting
state. The superconducting state can not exist. for arbitrarily small _P « The criterion for the

existence of supercondictivity has the form

S :
f > . .
+f¢ e., (E, : SRR (6 21)
Note here tha.t in the theory “of BCS /5/, in pla.ce of Eqs (5 20), (5 21) one obta.ins the

' formula

=(P-f¢)€ﬁ’,§' o | } | 8CS
£>Pe ‘
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» In.our theory the effect of the Coulomb 1nterqctiop, couﬂteracting the appearance of
superconductivity, is essentially reduced by the "iﬁrge logarithm“ ﬂ,(?}/%{).
"Note also that in the case when o '
. | -
fe >p > 1. fLeﬂ (E;/“;) »

‘the kernel Q = Q‘olQPh'>‘ may be negative everywhere but the superbonducting sfate exist.
Thus the negative sign of Q is not sufficient for the absence of'superconductivity in
contxadiction to the basi§~statement of theAtheory of BCS.
The above gqualitative considerations ﬁay certainly be surely refined on the basis of
 Egs (5.16) and (5.17). However completely éonvincing quantitive resuits may be'expeotéd only
cn the basis of explicitly taking’into account the crystalline strﬁcture qf the metal (this .

is now under investigation).
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6. FERMI-SYSTEMS WITH WEAK INTERACTION®)

6.1 The Formulation of the Bardeen-Cooper-Schrieffer Theory

In the.preceding sections we consideredithe electron-phonon interaction only by means ofr
Frohlich's Hamiltonian. However, the princibal results of the treatment with Frohlioh's Ha-
miltonian might have been cbtained. by operating with a ﬁodel Hamiltbni#n from which the
phonons are eliminated.

So, Bardeen, Cooper, Schrieffer5, in agreement with the earlier results of Bardeen and
Pinesls, start directly from a Hamiltonian 1in which the 1nteraction between electrons and
phonons 1s replaqed by a direct electronZelectron interaction. In terms of our notations their

original Hamiltonian is

H = 2 E(l)a,saxs Ty
¥,$

where

! -~ ’- wt (1~ 1) & +

He- ‘%V ‘ze,a o ?<fi:;, (é(m Y At L L S G )
" Bardden, Cooper and Schrieffer carried out a further simplification of this Hamidtonlan. As
a fundamental approximation they omitted in Eq. (6.I) all the terms, which lead to the des—
truction of a pair of particles with opposite momenta +k and spins i% +» The Hamiltonian thus

obtained is.

v ‘ % _ +
H. = L5 _AG-x)wlk-x) G, Q _ZL

6.
A v ,m‘(k x)-(E(x)-£0Y)" o

Kt &y

The tréatment of the Hamiltonian (5.2) by means of a variational principle forms the essentialr
part of the quoted paper. ' ) A

The consistency of the cholce of the original Hamiltonian (6.2) as weil as the correctness
of the approximation (6.2) 13\1nsufficient1y investigated in the mentioned paper. In the
present seotion we shall show that, as long as one deals with the energy of the ground state
~or the Fermi branch of the elementéry excitétion spectrum, such a rgduction of Frohlich'é
Hamiltonian to a model of the type (6.2) 1s in fact valid. According to ouf calculations, hew-" .
ever,(the model Hamiltonian is to.be chosen in a slightly ditferentlway,\namely k

!

Hog =- & g (KX)o (') ' +

ad. a + :
V K“ N(U-K’H']E(l’) EFH‘,E“,’EFI —k:- —Kl-aAK;.' axﬂ, : (6.3)

x) This section 1s based on investigations carried out by V.V. Tolmachov.



- 56 =

Matters are much more involved, when,the_special Boson branch of the elementary excitations
spectrum of Frohlich‘s Hamiltonian, connected with~the collective effects. of the electron—phonon
1nteraction 1s investigated. For it the mentioned reduction'no longerioccurs. More eXactly, in
this case we can still use a Hamiltonian of the type (6.I), but the Bardeen-Cooper -Schrieffer
approximation, which leads us to Hamiltonians of types (6.2) or((6.3) is no longer‘applicahle.f-

_The fact that the phonon operators may be excluded from the Frohlich Hamiltonian is not
astonishing. Indeed, by means of Feynman’s procedure, well known in Quantum Field Theory, we:
ncan always carry out a functional integration over the virtual. phonons and arrive at a fourth-
order form in the Ferml amplitudes of electron states. Such a fourth—order form, however, would
be non—local, since it would contain another time integration. Physically this means that the
fourth-order form would automatically inolude retardation effects of the electron—phonon in-
teraction. ’

A Hamiltdnian with electron-electron interaction of the-type (6.1)is only -an approximat— ‘..

ifon to the mentioned fourth-order form including the retardation effects, when the latter are
neglected. From the point of view of energetical relations this meansfthat one may use the
local Hamiltonian only for the calculation of excitation energies, small .compared with the
average energy of the interaction-transmitting agent. ‘

Exactly such a situation arises in the ‘caleculation of the‘energy of ‘the superconducting
ground state, As established in the preceding sections, in this case the difference between
the energies of the normal and the superconducting states is small compared ‘with the average
energy of a phonon x), When calculating the Fermi branch of elementary~excitations,onevalso
may neglect the effects of retardation. Indeed, in the preceding sections we found that the
influence of the interaction on this branch‘is limited to’energies much smaller,than the
average energy of a phonon. At higher energies the Fermi branch turns into the usual Fermi
excitations of an ideal gas. Thus, for the evaluation of the influence of interaction on the
Fermi branch of the spectrum it may be admitted that phonons possess infinite energies and

- therefore the effects -of retardation may be neglected. .
| The retardation effects ‘also have no influence on the special Boson branch. of Frohlich's
'Hamiltonian, since all the Boson excitations possess sufficiently small energies, much less
than the average phonon energies.

So for the calculation of the energy of the ground state of the Fermi branch and the"
special Bose branchrof the spectrum of elementary excitations we may replace FrEhlich!s Ha= "~

miltonian by one of the type (6.I) with a direct_electron—electron interaction.gWe emphasiae

x) We are entitled to speak about the average energy of a phonon, since (as may be seen
from a detailed consideration of Frohlich's Hamiltoniang phonons ‘of.all posiible
frequencies ‘have the same - importance in the effeots of the electron—phonon interaction.



once more that. here we speak about the general form of a local fouzjéfield interaction and not
about a simpified one as (6.2) or (6.3). As for the latter simplified form, 1t does not in-
clude collective interaction effedts,and does not exhibit the spec:Lal Bdse branch of elemen-

tary - excitations. .

6.2, The compensation equation. 'In order to take into acoount this collective interact -

ion we shall i’rom the start consider the He.mil{:onian

H= i (E(K) ?‘ axsaxs'l' H
o (6.4)
H = - -L 5 z I(xi’xz Kl, kl) a“kl.,s’,.aK,,’f;al‘,'s'a A ‘

o v 5"’]. Koy ke, by ki K= e X Kidy :
where, as in the preceding sections, the parameter l» s introduced into the Hamiltonian plays e

the role.of a chemical potential, Considering the‘potential of 1nteraction‘,of two pa,rticles
as invariant with respect to a transposition of .both particles _and;also invarikant"undgr space

reflections .we obtain that I(K:,K";Y,,!,) is a real function and has the properties:
J(Vi,": H )‘1,’(1. = (K“k,) K, k)
J (1’1',1(,.’ 3 h,kt):J(.Kv“—l’l; "kl)
EICESEAREE IR

Now as in the case of Frohlich's Hamiltonian we go over to new Fermi amplitudes by means. of
“the same canonical transformation. In]the present section it will be, however, convenient to

write it in'a somewhat different form:

S o +
iy Uit 4 (o

u;-}'lr,-:q o Uy, vy el

(For comparison with the preceding sections we remark that X -1.~ Olgo ,0(,( i‘—d") The

transformed Hamiltonian will be' '

He= U+t Ho+ 'y H
where o
U=23%(Ew- AV
E(E(“) ?)(“n"‘rk)dksdl,
H‘_z Z 2 J(u‘k"“‘ 2 zs‘k"zs k,)(u,&, d'& -, +ZSLVx/dx,,s,)(uszh-,z+2s,'\r,&o(m,)x

ZV s"s’- "U"n“ult o v : :
TR YT Y x(u," dk"-s‘ + 251\;‘,’ 0(,“ g’)(u,"ol,“.,1 + 2:,'\!‘,‘10( kyy51)

= 7 (Em- z)zsun& (dg, du i+ oy %,s)

K,$
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Applying ‘to this Hamiltonia.n the principle of compensation of "dangerous" dlagrams in orgier to
forbid the creation of a pair of fermions ,( 4 o( K % out of vacuum, we obtain the follo-

wing equation for L{x,‘\ft :

.Q(E(ﬂ-))llﬂ& - Cy dk,%dk,-iz-_H’Cv>"~'0' e T (6Ws)

where C.,,- 1s the vacuum amplitude with zero occupation numbers K xg o ys -« There will be no

change in Eq. (6.5) if we transpose'-tlie spin indices. + -and = , since the original Hamilto~

‘nian is invariant under this transformation. From (6.5) we. obtain

25w = 4 %J',,(*,.-k KK Wevie (U= %) (6.8)
where : ‘ o ' .
= - sk, k) (UL -
R{CEECR T R CATL AV CHa ©.7)
. Introducing the new function |
C(w=L 2 T (k- 5 K- k')uu:v'k;«
Eq. (6.6) may be transformed into that for C(k) - B
C k)= L e i~k C(x") v . ,. ; .8
; (x) V?’J'(k, K; ¥, )2&,) N ) | (6.8)
- where _ \
£€)=\CW+I'W
Besides we obtain : A
(“) : 'u-iz TR I(n) S ‘ ) )
{“ E70%) R B “g‘[;;} (6.9) -
Uyt = C(u)'
(x)
The equation always admits the trivial solution ck) = 0 and correspondingly
o EMmen VB (W< |
Up = { - V= Q. e .
1 EQ@)>» 0 EWx)»n

This solution desoribes not the supgrfiuid state but .ay normal one'v.' Apart from this trivial
golution Bg. (6.8) can have angther n§iii:rivia1 ‘soluf;iqn, which le‘ads'to‘, the superfluid state.
For simplicity we restrict ourseivgs to the‘conéider'ation' oi the éase_ of‘"s‘ph'erioallj

symmetrical solutions of the equation (6.8). Then, replacing in the latier the sum by-‘an/

‘integral, we obtain

C(k’)k"dk' SR .
C(K) S e o o ee®

) \] Cie) + 3°(x)
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where et )
S oo #l R L
R (k)= Ao §5 (kx5 ¥y bk = o, 30 TR (20
As ha.s been mentioned above, the equation (6.9) has nontrivial solutions for certain K¢k, k’}
In order to write down the conditicn on’ R(k ¥'; for the existence of-such a solution, we
proceed as follows. Let the kernel K(k,k,, vary continuously from the form for which the non-
“trivial solution'of the equation (6.9) 1s absent to that for which it is present. Because of
the continuous dependence of the nontrivial solutlon on the form' of the kernel, during the
_change of the form of K(xv") , the nontrivial solution must smoothly depart from the trivial
- solution. Therefore it is sufficient to restriot our attention to the following equation,
instead of the old one (6.9): '

oo

C ==t S g S0 S%,[K(n,w)wcw" b 0o 20kt x,
]

) E's) T50)] (6.11)

’

‘The right hand side of this equation colncides aSymptotioally, for small C with that of Eq.(6.9).

Introduce no'w a new function

w=- 2

c(k ) ln C{x)
The inverse relation is

k)
C(K) 'F(k) ‘g(h) e‘ng‘)'

(%)
The solution ’c(k) will be olose to zero if g(k,,) goes to zero through positive values.
The equation for .F(K) is

oo
L pin < mm-g Trepe) 58 0o s oy
[o]

4

It should be noted that the equation (6.I2) -1s a linear integral equation.
. For a oertain form of the kernel k(k k') the solution ‘of Eq. (6.1I2) 'will be suoh that
.F([F)>o « At the same time the nonlinear equation (6. 9) will have a nontrivial soitution.
For another form of the kernel K{k,X/) the’ solution £ (x) w111 be suoh that @(k )<o a.nd
Eq. (6.9) will have no nontrivial solution. Thus, the condition for the excistence of a non—

trivia.l solution will be

l l(x;,k(n))ﬂ) | | - (6.1
where the second argument denotes a functional dependence of on the kernel K(k, ')

Notice that the oriterion for superocnduct’ivity in presence of the Coulomb interaction,
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obtained in subsection 4.3, may pe,derived,without difficulties from the condition (6.I3). Let
us discuss'qualitativeiz, wnat‘is:the.formwof\interaction,K(k,tU. favouring the .appearance of
- & nontrivial solution of the equation (6. 9) ‘First, for positive and sufficiently small K(kg, )
(corresponding to an attraction between electrons in the neighbourhood of the Fermi sphere)ﬁ(&F)'
will be also small and of the order of k(kp,Kp) » and consequently, the second ‘term in (6.12) -
~will be of higher order of smallness as compared with the first The system will be in the -
superfluid state. o e

Another ‘case when ‘a nontrivial solution exists, is the case of an interaction which 1is
localized on the Fermi sphere. In this case the second term of the right hand side of (6.i2)f
will contain a small parameter which represents the ratio between the length of ‘localization of-
interaction and the radius of the Fermi sphere. The‘system turns out again to be superfluid.

Notice that the superfluidity may beaproper to Fermi;systems'with negativerkernels J((kcx)
corresponding to repulsive forces. It 1s only necessary that there exists a domain in k-space
where “the kernel varies rapidly. Then in this domain the derivatire.which enters the integral
term of. the right hand side of (6.12) will be large, and the positive second- integral term may’
exceed the negative first term.

Without considering in detail such nonregular interactions it should be noted that the
superfluidity is chiefly proper to Fermil systems with predominancd of attractive forces. In
the microscopic -theory. of the superfluidity of Bose 'systems?) it-has been shown that for the~‘
appearance of superfluildity in such systems the opposite situation, namely the,predominance of
repulsive forces, 1s necessary. :

i Thus, the criteria for superfluidity of Bose- and Ferml systems exclude each other. This

‘circumstance 1s in a good agreement with the faot that a system like He, is not superfluid.
Indeed, it is hard to belleve that the intermolécular forces in Heb are essentially different
from those in HQ, « The latter belng a Bose system is superfluid. :

Let us return now to the equation (6.11)., For small C 1t has the following approximate

solution
| o Kloke) - AR
. k)= e A
-« ' L= K(xF,lp) e ' (6.14)
where
' 21 K(kg Xe)
E'(x¢)
o0 T
-4 R(u.k'))i K (ke 1B () Caldd . ©T
-4 { 5 (Gom) @ E6- Ewl]e"m”” "“'_ o
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These formulae describe the solution of the noalinear integral equation (6.II) the better, the
closer we are to the point of appearanoe of the nontrivial solutied;‘ffom the direct considerat-
ion of Eqs.(6.14), (6.1I5) we see, that for the asymptotic form of the superconductive solution
only a comparatively small part v)'(k -x ;&' =x') o2 the total form J (KK ,;k,.’,‘x,’) “1a essential.

Thus, we _should obtain exactly the- same formulae, if in the equation (6. 8) we put from the

outset

~ 1 : 2 '
E(k) \JC(“H (E(x)-Eg) _(6,16) .

‘or, what 18 absolutely equivalent, if we started not from.the Hamiltonian (6+4), but from “the
‘simplified one:

'=- Z:’(;-x-‘w-w)& a,. ty. Ay |
'uzal k,‘, R Rl -k~ oy e Duge DL - (6.17)
x4 k! ‘
In addition, Eqs«(6:8), (6.16) completely coincide with the corresponding equations for Fr&h- -

licht's Hamiltonian, if‘we put

| ey B 0 R
IRV ) ‘ ——r (6.18) .
J (", K3k, ‘ ) Ix (!-l’)'+\’E(|f)’:ﬁ‘F)l>+ [E(¥')-E ("f)l .

Thus the reduction of Fréhlich's Hamiltonlan to the simplified model Hamiltonian (6.17),(6.18)
is Justified with respect to the function C and tﬁe'quantities conneoted with 1t. -
The above mentioned reduction may be carried out also for Frohlich's Hamiltonian with

Coulomb interaction. Indeed, according to §4.3 for‘that pdrpose it 1s only necessary to put
‘ '- -‘ '_  ” = xl ' . ’ N
VJ(¥7 X :,K,, k). Q(X; ) . g : _(6.19) )

A calculation of the ground state energy gives

9.2'(5(1) z)v, + <c, H Cp> =

-22(5(1) )N - % z O SIRORIAITE: '—Z T (4,705 15X )y ¥y Uy vy

Hx’
xdl'

For the case of the Hamiltonian (6.1I7) this formula acquires a very simple form. It may be

transformed into

Z{Em- JORLT

wheré (k) is given by Eq. (6. 16) For the difference between the energies of the normal and

the superoonducting states we obtain the followlng expression

' E:’- E:’ s Iu JEm)- E0g 4 E(Kp)}
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"which coincide with the analogous expression for Frohlich's Hamiltonian, given in § 2 3.
There only remains to calculate the _energy of the elementary excitation. of. the Fermi branch
_-of the spectrum. This may be carried out by means of-the,following formula: -

Ee (k): (E(IL)-))(“;'V:) t <C'\I ng,;_ .H’ dk,lf Cv> (6.20)

For the calculation of the vacuum expectation value in this formula, one should keep in mind
that du & i1s not to be paired with o(hi . Notice, further, that if we - replaced in Eq (6 20)
the spin index % by ~l we would, certainly, obtain the same result because of the invariance

of the Hamiltonian (6 4) under such transformations. After some manipulations on (6 20) we f£ind:'

Ee (=30 (u-w)+ 5373 (“"‘f‘ e ‘*-'.V,-';

and by the use of (6.9) this formula maj be ‘transformed into
(V)= § 1 4 i L
. Thus, the quantity £'(K) we have introduced is, in fact, the energy of'an elementary excitat-
ion, For the case of the Hamiltonian (6.17) Eq. (6,21),may:be:written in the form: . .
s Ny 1‘ =i o '
E. (0 = {(E2 o)« (i) : - (6.22)
which is entirely anelogous to the relation for Frohlich's Hamiltonian in § 2. 2 We have
investigated (6.4) by means of the principle. of compensation of "dangerous" graphs, restricting
ourselves to the first order of perturbation ‘theory and using this principle in the form
(6.5). It may be shown, however, that the taking into aocount of higher orders of perturbations
theory adds nothing new in principle to the equation for C(k). This situation was demonstrated
in detail in a paper by Se V. Tyablikov and one of athors/IB/.

Indeed, to the seoond order the principle of compensation of "dangerous" graphs acquires

the form.

* -
(BNt = Ly oy iy (-G CD (s

The suffix "comp" denotes that besides the graphs of first order drawn in Fig.‘IZ, it 1is

necessary to take care onlytof the second order graphs, Eig.IJ,.

>

Flg. 12 . - -0 P 13
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These describe the creation of four particles from the vacuum ~and’ the subsequent turning
of three partioles into one. The second or graphs, of fig. I4, do not need” any special compen-'
sation, since,-because. of the stated compensation rule, they will dbe automatically compensated

by the third order graphs of the same figure.

?.

Fig. 14

The equations (6.23) yield, restrictinv ourselves for simplicity, to the case of a kernel
) T(thz;kq;kz) localized and constant . in. the neibourghood of Fermi-shell:

3y Y16, Yy = (e (M %)} (M3, -3 )
2 'l 3(v) (v) u?,-i,x, |‘§(u)l+|'§(h)l+|?(’<z)!+ l'i("t’l }u K

Kz-k1+l,-x

= (k-3 Tty Wy, + (V) y Lot s - "ﬂ.}
: Vi, . koke,ty 1T+ 1E00I+ [T (0] 1300

2R T ] 4

M »‘where i (Y)“:‘E‘(iﬂ)‘- E(ks)

" Hence the corrective‘terms with Tz are in fact somewhat smaller since they contain the pro-
ducts WV  with the same index. The latter lead to an exponentially small contribution and,

as may be seen, do not change the asymbtotic quantities obtained above.

6.3, Collective excitations. The influence of Couloﬁb interactioﬁ.

Let us proceed now to the investigation of the collective branch of the Hamiltonian
(6.4). Considerations analogous to those of subsection 3.2 for the collective branch of Froh-
+lich's Hamiltonian point to the necessity of diagonalizing the qusdratic form

= ZP{ Tept EU‘”I Fr(“’ﬂr(““ r (6.24)

" where

M= ) (z,(l)(i,(t’)ﬂ (l; ’)+“-Z ﬁp(xif?-p(t')ﬂ(k,t’“ Z é-,(w Bp(r) By (x, 1

' !
ny vedy . ! \ (6.25)



In turn the coefficients Ap(nlo and Br(llﬂ are connected with the matrix elements of the

original Hamiltonian by means of the relations:.

A (! l) < CV dh duro H 0(*/*_?0 dtl1 CV> -

- (6.26
By ()= <C¢ oy "["-r" Ay d’“rﬂ W' C...7 . :

- for which, explicit expressions may be obtained in the same way as in subsection 3 2. .

5 In the case of a Fermi gas; with weak attraction we have in fact the same situation as in
sec. 3. Repeating almost literally the considerations‘ot that section‘we,may_prove the ‘
existence of oollective excitations of different kinds, longitudinal ‘as well as transversal.

In the present section we shall discuss the influence of the Coulomb interaction between
#.'electrons on the oollective excitations, investigated in the subseotions 3.3, 3.4 for Frohlich's
Hamiltonian. In order to get at least a rough idea about the situation, we restrict ourselves

to the consideration of the Hamiltonian.

H=3 (Em- 70 als Ay + H'

X,$

g |
H'= .2‘- S Y 4 J(k«,*’)w(u. x.n)}a 15 &
Syy¥1 Ky tnln,tl.
¥ty X‘u, )
. 23 %
the interaction T(l 10 represents a direct attraction between electrons, which appears

L7 K. [A a K5y

"'(6;27) '

from the electron—phonon interaction and is localized in the neighbouhood of the Fermi surface.
The interaction V(- 41) describes the Coulomb repulsion between the eleotrons.

Computing the matrix elements (6.26) for the Hamiltonian (6.27) we obtain

A (klll) {“J_‘(ll‘t)’; V-tr)-t V(lk’-ll)} L(k,l’)kL(Hp,h’-&}:)k_‘.
| + -—% u‘ﬂ*p) + ‘v(\rl)'ﬁ Mk, +y)M (k,ny)

B, (W') { T (- p)+y(lpl)} M-k, “P)M("’ tp) -

{ T (%% P)“’(ll l’l)’; M(K' HP)M(k 1hp)

. These expressions are quite complicated We can, however,’consider the case of small P.
In the terms which contain Vﬂpnone may retain this quantity only, since for small .p the
Coulomb VOPU has- . a strong singularity. On the contrary ‘the other terms‘Vﬂk-wU may be
‘l’included into the phonon interaction, since 1n the collective excitations, which are being
' considered, only large momentum transfers K-l' are essential and in addition to this, ‘as

shown in subsection 5 3, in expressions, where the Coulomb repulsion 1s Joined to the phonon

attraction it is always soreened.
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Thus e .
Ay 03') == TE 1 ()L ixapxap)e X MGenMii). Gou8)
VB‘ (w) = 7..(&'_') M(k’i&y)M(u "")"}““ ‘i‘i’ M(x, u#y)M(i'é’,x’-'y)"”
The secular equations which correspond to (6. 28) are of the form

(E( 14 E(x+[)+ i(! B’)% ()~ J—Z J'(k,k’){ L (k,x) L(“P: ’*«P)* L(“'P, -P?

2

MK, 14p)M (1, Kp) = MO kp) MK K'p) 7
- — - }ﬁ(xh

"_4.’_ 2 {M(n,up)M(n l’+y}+ M(x) k’-r)M(u,x-pH M(":“PJM(" -r)+ M(!, ‘f’M(“ “P’N (k'}-‘

(E T (xxy)- s(t-y))e 1)+ [ 25(": ,){L(“,} L( N k-r)lL(h-r,x'-,,)

+ N(!’KfP)M(HU’P); M(k,! y'l” M(K,l’ﬂi} } eP (kl)

=YD T M e p MU, )~ M6 IM1op - MO MRS X+ MO x-p) M, ) By ()
Bl SR :

L R - (6.29)
- o)+ 500\ . .. e N laer Wi o . :
‘(i(“H ——(-1"—)}‘-('—2-’)9,;(1) - -\'7 PRICTORINCSY) L(xsp, x'4p) ;L(k-r.x'-w
. ['U ’
+ MY, x*r)M(l'lfk’ér).'; M(r',n‘inn(x;g'mv } By (v +
Vip) ) . S :
+ %%{M(guplmamm M(n,n'-,,)M(k,lf-rJ- N‘[lyka)M(kﬁle)f W*ﬁ‘*rm(k',uﬂp}}er(u') -

- (- Tl EOg )4 LS 30,0 {Luy LEMED Ll miy
. W ‘ ' z B

_"_2(_5. %{M(k,u "’M("""‘f*l”fM(FW”‘““»?"”’* M(ﬁ,lfp?M(!‘k’-},)fM(I,bp)M(k',uQP)}‘?’(kﬂ(s.jo) .

These secular equations differ from Eqs. (3.I0), (J.ii)‘by additional terms with the
Coulomb 1nteraotion., 4 7 : o . o
. .From the structure of these terms 1t may be observed directly that the so called,
transversal waves ot subsection 4 4 turn these terms 1nto zero Thus, we reach the 1mportant
conclusion, that the 1nf1uenoe of tae Coulomb 1nte;action is :educed only to the modification
of the. effective 1nteraction. ) ‘ N o o | R o

The situation with the longitudal oolleotive excitations is somewhat more complioated.
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Taking into account the Coulombd interaction explicitly, these excitations are modified in such
a manner that there appears an ordinary plasma branch of the collective excitations, One may
easily prove that this is true, by retaining in the secular equations (6 29), (6. 30) only those

terms, which are essential at sufficiently large ©p, when Mgvamay be replaced by their normal

values: . o ’ : S , -
U= Be(e) v;= BF(Q o | »i - -

Besides it is suffiolent to consider in (6.29), (6.30) only the terms with the Coulomb interact-
ion. For this sake it is convenient to proceed from the functions- %‘ 0 to the original ¢, X

They will satisfy the equations.

~

{00+ T0etn)-£35, 00 = X MOsxep) L MO0 ) ¢ WP MG tp) T MO k) Ky (09 (6.31)
~ ,- e ' ) : ' Cpet v - ; ¥ | !
{ 4 0 E) (o) 21'%_ M (kx4 p)%M(l',i(-)d)xr(l) + —\{;-M(,k,k P)%M(u K+ p) Gy (v)

(6.32).

which may be easily solved, and lead us to the following equation for the definition of E:

vy | ’ | ’
A ¥ E-~E(xpHEW® x ~E~E(xtp)+E(y) .
i<y . Com< .
[LETh 7S Ietpld>¥p
whioh corresponds to the Sawada = Brout's plasma secular equation I3 .

For momenta p , smaller than those, corresponding“to the energy gap A , we can no
longer replace Uy, Vx by their normal values and the nontrivial behaviour of Ux, Vi, beoomes
essential. Here, physically; we encounter a very interesting dispersion of the plasma frequency
at small p‘. ThisAdispersion turns out to be a peculiar»property of a superconductor. and
may be used as a basis for the experimental definition of the quantity C which enters ‘the
theory. ' R R
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§7 CONCLUSION

7‘1.' The Thermodynamics of the'Superconducting State.

Up to this point we considered-only.the,ground state and elementary excitatlions. Now we
want to analyse the thermodynamical aspects of our model. Let us first note that collective
excitatlons are not important in this case. Due to the smallness of the maximal momentum of
collective excitations its contribution to the thermodynamioal functions (in the absence of
. current and magnetic field) may be neglected. ’

Indeed, the effective volume of fermion'excitations in momentum space iIs proportional to

%,CA

(c -is the sound velocity on the Fermi surface) The corresponding volume for collective

excitations is Qf .the smaller order s
4‘/C

So, for thermodynamical purposes, one may use a Hamiltonian in which only pair interactions
have been retained. ouch a Hamiltonian, as- shown above, gives a- correct description of the
ground state ‘and the elementary excitations of one-fermion type. An interesting feature of this'f
Hamlltonian 1s that the free energy may be evaluated exactly. Thie calculation was performed
by Zubarev, Tserkoﬁnikovoand one of us (20). From their result one can get Bardeen, Cooper,
and Schrieffer's formulae, originally obtained by means of a varlational principle in the
approximation when J is constant near the Fermi surface. .
We reproduce briefly the mentioned_;calculus. Let us consider the Hamiltonian
o + N
HeHytHue , Hy=Z (Eww-1)dy,a,,
: ’ (7.1)
{ o *+ ¢ ‘
Hl’ht = f-y-L a:"- a', . a‘,* a, . Tk,
"Here J is a real bounded function which prectically vanishes outside a certain finite range of
. the momenta k,k'.

As will be shown, one can.construct the thermodynamic potential

peFA/=-Btrspe (7.2)

which is asymptotlically exact for Vmeo.

Performing our canonical transformation.(2.4) we obtain

HzH®eH' , H®s V*Z//

H' = -_-;,.LZ T, k) 8, B, . | (7.2)
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where

4 i ’ ¢
V e const = ZZ (Es-A)up - VZ JCkiie') g Uy e Yo s
K &, K

o ” |
=-{{Ecu-1)(“£"v:)"2”x Z 7—;—1‘) e k."}( *;/aq’zu) +

Kl

. - - ’ A
+ {2(Ew-2)u, - (uZ- U0 ) TEE2 e § (T ar * s Yoo )
i« .

*- + : 2% 7. '
v, (d“ Ceo * Aler s ) = e Aug o + Uk Xeo %es (7.3)

+ : C
The new operators H,, Bc, 8, all commute for different k.

Applying statistical perturbation thebry to (7.2) we obtain after some transformations

g Y fpy -
énsf.e -&Spe 6 fn{i g;fdt,jde j dt, ll,j (1)
- where ' 4 . _
e ?é' 4,)8.,(¢)... B, (t1)B, ¢ (¢, )
A, = -’—th,,:c,’;...y:k,,k;) { A A Xn Ky f 7
L Tl - P 4
- Hlﬂt /{"’t‘ . _ ”"t ﬁkt

B ti=e 8. € =e & e

k .
- “HE .
Br-e Het
&

Now we use the supplementary statement that if

. - A,
S (e " /=0 o - (7.6)
for all k, then each of the dl, tends to a finite limit as V-sed, .
To- prove this statement, note that if (7.6) holds, all the terms in the sum (7.5) for

which there is at least one momentuﬁi K, or /c,‘ ’ which does not equal any of the rest of the

Kj, A:‘-’ , drop out. and really the sum (7. 5) contains only the terms for which there are no more
then n different among the l(,,/(,, /(,,’A" momenta, and hence are proportional to V&, yielding a
finite value for u . As both terms in the 1l.h.s of (8. 6) are proportional to V (for V> o)

we obtain

- %
bpe =bdpe?

.50 we are led to the following expression for the thermyodynamical potential of the mentioned
type ’ I i

-4 o X . i
= v- 9)——5* ,e,_,,, . | @D

So we have only to determine 4, Y, from the condition (7.6) and -then use .7,
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Carrying this programme, we obtain

= T8
Ceey 4 - € { T \
u, = ; 'c(l‘}‘:—' (K;K'/k Vo)
20w 4, - B v 2 “

=4

k)= (Eces-2)%+ C3cky )
~ and hence Camust be determined from the equation

: ¢ Ceey L 4 o
Ceky = ~— Z.T(n w) th / U} Z’::}',}‘ ‘ (7.8)

which always admits the trivial solution Cc¢kx)=0 .
In explicit form (7.7), becomes

- .ﬂ(y
Con) ¢k ~"e
Y= Z{Eau 24-———‘-“)2‘:/» 28 . _rzm-ze e (4 + e )}

~

' Considering this expression as a function of Cz(k.} we have

v _ Clpey S 2-Lw Ly .ﬂtx)j _ Clw /_297
‘aC x) 3¢%uw a_ﬂ(k) Zﬁ‘“/ 26 48

where

Shx-x
/[X)— 2x3 c/v" >'0

2 ~ - .
- Thus for C # (s} }6 always has a lower value then for the trivial solution.
Hence the phase trensition will take place at the same tempereture, at which eq.(7.8)

will have a nontrivial solution.

7:2. The Electrodynamics of the Sﬁperconducting State.

' The question of obtaining the electrodynamical equations is more complicated. One must
take into consideration that a systematic motion of electrons is always connected with a
magnetic field and superconductors exhibit specific magnetic properties, e.g. the Melssner
effect., ‘ ' v .

Restricting ourselves to the case of weak,magnetic fieids, we naturally lodk for a linear
dependence of the current on the vector potential.
Two types of such dependences are-known from phenomenological considerations, London's

equations and Pippard's equations. London's equations are local, i.e. j(x) is determined by

A(x) in the same point. In the more general Pippard equations the relation between j(x) and



A(x) is given by an integral formula. . - .
It is easy to see without any calculation that in the linear approximation of our theory
‘as a consequence of the spatial correlation between electrons, we. shall obtain equations of the
kPippard type. 7 ]
The corresponding integral kernels must’be smeared ‘over a‘spatial region'with”linear‘ ]
dimensions characterized‘by the‘specifio.cOrrelation length,offparticles with opposite spins.
Here an essential difficulty appears because, in>order to obtain the equations of electro-
dynamics one must take into account collective oscillations, especially transversal ones. On
the other hand, and this 1is of the utmost importance, we must take into: consideration the
existence of boundaries since the spatial correlation between e1ectrons amounts to I0 4 IO ? cm,
and the penetration depth of the magnetic field is of ‘the order of IO 5cm., : '
In order to clarify the statement about the range of spatial correlation, 1et us calculate
the pair correlation function F(x,x 3 /3, ’/}for electrons with opposite spins at absolute zero.

With the usua.l definition of the correlation Ffunction we have

, vt Lt o » , o
fhtnx tate) = <,”/x“’5"-?x XD Y. gy (Vg x>
Here

kX

/
f—‘é

, -5

-

Lf‘ 1 Z fKx i »
X) =— 8 .

are the second quantized wave functions. ‘l‘he average 1is taken with respect to the vacuum of the

occupation numbers a’ o Ko 2 d“ Ay . Expressing ° ko;A in terms: of- dko' and ‘ﬂf(’ -we obtain

Foexts i) =2k (Zu2)* e —'/Za -‘“‘ﬁ'ﬂ’/ -

o o -l (XX
4 S Ccue /
= — h. By
4 -V Vc‘aufj‘clc/
where )) = ZV'ZU" - is the eleotron density. L » ,
-~ This expression shows that in the normal state where CCkp= O (Ue Ve =0/there 1s no
correlation between electrons with opposite spins. . o o ‘ '
In the superconducting state Dk Vk essentially differs from zero only in a sma11 neigh—_ ‘
'bourhood AK of the Fermi surface, with Ak defined by
- CCheg ) kg Ly
..__:__' 0

‘/E[K*AI‘),-'EIVHV/Z C(/(F) .,the‘n e . 4k ~, ~ [ C)n-l
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and the’ nncerta.inty rela.tion gives for the correlation l'ength an amount o
! ’ A R
AX ~ — -~ [0
a4«

. Note that the correlation function‘for electrons with,parallel"spins:
‘ -~ (k,—lc.z.J (x-xy
F'(x-x /z:/z} Z k, %, [/"‘- ' j
,k‘ . : B . . ”
' is determined mainly by’ exchange effects a.nd, pra\ztically, is the same for the normal and the
superconducting states.‘ o - » ‘ s ‘ ‘ .
Neglecting boundary and collective oscillations effects, the Hamiltonian should have the
form ‘ : o o k
'_/'Z'““e’ 2 3
H-Zlnr. (k C‘ﬂ/ */“”"A‘hf
T k8 _ .
with constant Aand H . In this vay one should be able to. get equations of thc London type with
a non-linea.r dependence of the penetration depth on the magnetic field.
In order to improve the theory and to obtain not only qua.litative information about the
Pippard functlons, a detailed investigation of the full Hamiltonian including interactions
between o.ny two pa.rticles, not only with antiparallel momenta and Spins, is required, as well

as the taking into aocount of the enistence of the boundaries.

7.3. A Qualitative Picture of Superconductivity. .

In conclusion let us say some words about the physical na.ture of the superfl_uid or super-

conducting state C « A3 X, ‘are the amplitudes. for superpositi‘ons of particles and holes

-(*#2,%%) the Ferm: sphere expands in genmeral. There appears a characteristic correlation
between partioles (*x, til'} and holes {*k; ..‘.'i’-) .- One can pr:esrent ‘the plcture in the following
intuitnve manner. . : S 2 | o , |

There 1is an attractive interaction both between particles /4-/:, t’} and holes [-f/:,
Then it is profita.ble i‘rom the: point of view of interaction energy *to dilute' the. Fermi seaf'
with holes" {.tz +4 } On the other hand the expansion is not profitable for the kinetic energy.
The balancing of these two faotors leads to the lowest energy state. :
, In the normal state, using a sufficiently high approximation, one can always obtain the
correlation between particles with momenta k + q, <-k+tq but the value q=0 presents no -

pa.rtioularities. In the sta.te C on the contraryk we have a gap. In connection with this it is

clear, that for example an interaction term of the form

¥

.‘T,-‘Z.T(k,k’) d,’* a.k'_ 2., &

-k~ g:+
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which for V= @ gives an infinitely small contribution in the normal state, plays an 1mport$nt
role in the case of (g -« ’

' 0f oourse we are not allowed to simplify the picturé too much and 1ntrbduée the concept
of bound pairs of particles. Indeed, taking this concept seriously and calculafihg the binding
energy of this pair one obtains a quantity of the same order as the enefgy of interaction
between different pairs. | ‘ o

In fabt'the'system forms a bound ensemble of the same type as for Bose systems. If it 1is
possible to make use of the terminology of quantum field-theory which is not quite clear, but
Es nowadays in some sense "quasi~intuitive", then it is possible speak about virtual pairs and
to consider Cg as a bound Bose condensate formed of such virtual ﬁairs.

fhe analogy with Bése—systems may be contihﬁgd. iqdeed, besides excitations of one fermion
type, whichbcorresponds to the dropping out of the ensemble of single partibles, there arw

~also exaitations of the ensemble as a whole. A
The existence of correlations between the particles in momentum space‘naturally gives
rise to a'c?rrelation cloudt ih ordinary’coordinate space. . ) ’
\ﬁhis Ycloud' has an interesting structure in the case of the superconducting state. A
electron.with definite spin is surrounded'by‘holés which'effeétively screen 1ts charge in a
- range of the order of IO'F cﬁ. At‘much larger distances, of the order 10™4 cm, 10'5‘cm, there
is a weak predominance of electrons with opposite Qpins as a resulf\of éﬂ attractive dinteract-
ion.
' The authors are ﬁuch indebted to S.V. Tiablikov, Y.A. Tserkovnikov and D.N. Zubarev for
clarifying discussions and helpful advice. '
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_APPENDIX I. ON A CRITERION FOR SUPERFLUIDITY IN THE THEORY
' OF NUCLEAR MATTER X)

It was noted in Sec.6 that a system of Fermi-particles can possess superfididity under
certain conditions, which, roughly speaking, reduce to the predominance of éttractive forces.
So it is natural to consider the question- fo superfluidity for nuclear matter.

This problem is complicated, due to the fact, that_nublear interactions are strong, so
that perturbation theory eipansions in powers-of the interaction are not applicable. The most
~consistent hethod would be obtained by a generalization of the graph summatioﬁ-method of Sec.d -
A rigorous realizatlon of this program is sufficiently complicated and so we think 1t useful
to consider a simplified model which allows exact integration.

In this theoiy of nuclear matter nucleons in the nuclear matter are considered épproximate—
ly as free particles. The effect o; the interaction reduces essentlally to an effective élterat-
ion of dependence of the energy on the momentum oﬁ the nucleop..In nuclear matter the energy of
the nucleon is not equal to P=Z244 s but is a function E}P) which may be approximated in the

usual way by an expression of the form

Pt |
5)&-———- +V V<O
a/is4 oM. . . ’
“Mepp
In this framework the ground state of nuclear matter 1is described by the wave function Cp
which oorresponds to the usual Fermi sphere, where all states with Eya{<'f;vare ocaupied, and
all others are free.

In view of this fact, we consider a model dynamical system with the Hamiltonian

I3

+ V 1 o : )
H akZ- [E(k)-EFja'krdgr *'Z-V-z : T(k}""/,d;l %, a;/; 0;1}4" a:‘ a_ p 4" {A.J’.:f}
50 :

(% k.00

Here 0 1is a discrete index of spip and isotopio spin of fhe nucleon, £§r a parameter, which
plays the role of a cliemical potentialj the subscript F 1s to remind us of the fact that
in tﬁe normal state it is equal to the Fermi-energy, V - 1s the volume of the system.

The model 6haracter-of this‘Hamiltonian is due to the fact, that only interactions of

particles with opposite momenta are taken into account here.

x) This Appendix is based on a papgr 1)
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. It 1s easy to-see:that the interaction Hamiltonian H* :1is not effective in the state Cp.»
" Indeed, calculating ‘ - o ' '

= e,
we found it to be finite when V—-P ad ,‘ and the energy should be proportional to V in this 1i-
miting processX) '

The model considers ejcpiicitlyb,nonl‘y‘ the specific-interactions which are. effective in the
special case of the "superfluid" state Cg . The "regular" part of the interaction is implicitly
taken into account in the: efi‘ective energy of the nucleon E(k) : A

Let us show that the state'Cg can be found asymptotically exactly in the case V=@, The
. conditions for its existense can also be obtained. It As convenient to introduce the abbreviat-
ion q for the pair. (k -k) 3 ‘¢ and -q describe the same pair, the sum-over ¢ Tuns over diffe-
rent pairs. Now we need the new index o= £4 1in order to express Xk as (q,P ). As a discrete
index f and 0 will be designated as §s (";f’) » In the new notations the Hamiltonian under consi-

- deration, (A.I.I), takes the form

H =72:{E(7)-f;}5-7,a7.,‘+

1
42"—":2 'I (?’7,/6.1::2: "I /)a Qf‘ a’ 47&, : :
. s
(7;?:"";"") i N . i ’ (AtIoz)
Using a modification of the technique proposed by D.N. Zubarev and Iu.A. Tserkovnikov(zo)
(see also § 7.I), we introduce C - number functions .4’ (ff', Sy /) and rewrite the Hamiltonian

(A.I.2) in the form

Hh=‘Uo'+ Ho+H

where , : : . : o . v
) ’ Fl , o ¥ . .
Ue CO’_'-’t = -E_V_ZI(fJf//-fl; s?) -rz’{s’)ﬂ, ['%J'G)’% [‘r[/,-rz/)
I/'I = » . = __ )
a, ; Hf Ce H' Z'I(f) /.S‘,_,.S',,J‘h ‘f }B (J”J "z K’, {J":.":/)
cand Lo '
(e 99- )% 4 “9-* ps sz[I fm’/fnfn&m/# (555°) dpg dps, +
“I(’ f/‘rh:ll ar )./4 f.f,,.fzjﬂ’_,; 47""}

By tsus:) = am ‘Z;s —4 (-r,,.vz) R B &)

x) It can be shown, that applying perturbation theory to (’fJI) with Cp- as a solution of the
unperturbed equation one finds tha.t the corrections of any. order are 1nfinite1y small {n
the limit of V— =
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As H7 is quadratic in the Fermi-~operators its diagonalization is'achleved elementarily

'by the linear canonical transformation
a-’-‘ b Z {a‘%‘l‘?dfﬂ + Uig, 5,57 “,"j : ’ (A.I.4)
e T '
The functions W,¥ must satisfy orthonormality conditions of the form

: ¥ , w . £ N ’
T = /3 :,:” uc ,s,’.:”)+ V(9,55 v(g, S 8%)§ = Osss
Z'{ [7, e . : ? , ,y"» ’ j - (A.I.5)

futgs ')ery,.r, "} + zfry, ,4"’/24/7,4' -"/f o
ye2 Ju

After determining U,V  Zfrom the secular equations corresponding to (A.I.3) the express~ "

ion for Hy takes the form
+Z (7) 5 g
Ka

From the latter it is obvious that the ground state C, of the Hamiltonian Hy is a vacuum

'state for the new Fermi-amplitudes
«KS co -
We choose the c-number functlions A in such tha.t .
#
<C 8 (5,5/0,>=0

and notice also that H,, 37, 3’; with different g commute one with another. Using an argu- A
ment of(zo) 1t can be shown that the contribution to the»‘ground state energy of Hy is negligibly' )
small as compared to the contribution of vo #Ho in the limiting case V> oo Roughly
speaking this fact. is due to.the finite character of H% inb'the limit ;V-D 0 whereasb the
energy 1is- proportional to V. ‘ o »

So with a corresponding choice of the functions U,V the expectation value H= <C H#E D
gives an asymptotically exact expression for the ground state energy of the Ha.miltonian under -
consideration. ) ‘

. This consideration provides a recipe for thc practical definition of the functions U, Vv .‘
Substituting Egs.. (A.I. 4) into the expression for 1 ve »ha.vo

H Z(Erp }erfy,s; v(;,.rs}+

2.? . (7,7/5,,.:,,.9,, ’)[Z'v(f,.r,,.rz)u@, S2, S, )j[Zazy, 2,:):1@, cs)f = £ V)
’/ l"
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'Then u, v would be obtained by minimizing the form t(u,v) with the supplementary conditions
(A.I.5). For these values of L and Vv, E gives the energy of the ground sta.te.

The corresponding ‘stationary condition has the form

JE= 3{8 tD (A (g5815(9,5.50 +m (9,6,599 4,45 4_-/:(;,4',:')7*/9,40-”)] =0 ‘
58’ (A.T7)

where l,JM are Lagrange _multilplilers.
Obviously this equation always admits a trivial solution

Uy = (7):{' %= G igrdpy

, : (4.1.8)
M= 0 C ’ 2 6, (9) (5 5(7)} st

In the corz_‘esponding state Cc("’ the interactlion 1s not effective and only the first term of
the Hamiltonian (A.I.I) contributes to the energy. ‘

In order to determine when the energy of f‘“ is not minimal and consequently the ground
state Cou) is characterized by a nontrivial solution of (a.1. 7) one must use a standard
procedure of the caloulus of variations. Constructing the second variation S & for the -

trivial solution one obtains

85 = 5 |Eq-E )Y g5 '/WMU +

2% :’

+2—;r2' Iig9 /.r,,.r,,.rz,.r )y(y,.r,,.rz}yff, ,,.r )
(91’1--.‘—)

w'ith - o
weg ss'o = QF (’/J‘a(f,.s‘,.l") * 96 (7)J.zr(7,.r,.r')

the functions ¢  are subjeot only to the antisymmetry conditions resnlting‘ from the variation
of the orthonormality oonditions: ¥ (9,847 =~ (g &/ .r}-
After returning to the original system of 1ndices (ef. (A I I) ) the second variation takes
the form ' ' i
[ % -Z /E(kI-E I;(k,a;r');b(k,ﬂ"/ +
&80

v,

4—-2.7(‘:.&’/0',.0';, F¥ )‘f (kl ’; )W(‘(‘o;jo'zv_g
(k,“'-laﬂ) ‘ R

~
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and. the antisymmetry condition takes the form

S”(—k, ~, 6 =- yf(k, ,,o"}

Obviously the second variation S £ is negative if and only if the equation, :

2 Ewr-Eg vy tie, u;, )+

: *“E:J(*“loz. 0 04, 67) ¥ (57, )-Ewk. LY (4.1.9)
(“""u"'z) N -
-admits an eigenfunction with the negative eigenvalue E. ; )
In this case the energy of the state (“) is not minimal and a new ground state va
arises. This state is characterised by the nontrivial solution of Eqg. (4.I.7). It .is interesting

to notice that Eq. (A.1.9) written in configuration space (with a velocity independent interact-
ion) » ’

2]5(«;-&1?(%‘,0‘,,5)4-

+Z @(2 )W(z 6-1; )‘EV’(z/u z)

T , ,_ ' T (AI10)
is very351milar té the Schrédingei\eqﬁétion for fhe tﬁo body'prohlem in fhé Qeﬂter of mass
system. The difference lies only in the special form of the kinetic ehergy operator. This
difference naturally disappears in the case of vanishing .density when f? =0
 Then equation (I.I0) can be used for the investigation of the problem of superfluidity of:
nuclear matter as a criterion of the instability‘pf the normal state.
For these purposes 1t 1s convenient té make use of a vériational‘prinéiple and to minimize

the expression

.2Z ﬁE(z/ Ecllde,a))?d2 +
(A.I.II)

) ¥ -‘ ’
j D &l0,5,0,,6 0P, 60903 6,000 I

with the supplementary condition

T S wrnse jidee1
7.5 |
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If the special choice of the trial function y leads to a: negative sign of this express ion,‘ :
then in Eq.(A.I1.I0) g<0 and our criterion is satisfied. -
‘ Let us note 1n conclusion that in the model under consideration it 1is possible to construct
an asymptotically exact form for the free energy. ) o )

‘ The equations here are. nonlinear and sufficiently complicated but the equations which

determines the oritical temperature of the phase transition into the normal state 1s linear.
As shown by I. Kvasnikov and one of the authors(za)these linear equations differ from Eq. (A, 1. Io)
‘only by. the fact that EA 0 and by the replacement of

2lEw-5

Ec l:l
o RIECu-EFIcI'A IEcci-te
26

where @ 1s the critical temperature.



~APPENDIX II. ON A VARIATIONAL PRINCIPLE

IN THE MANY BODY PROBLEM®)

We studied here only.the spatially homogeneous problem. But in a number of cases it is
very interesting to consider spatially inhomogenous problems. So in’ order to- obtain exact ,
electrodynamical equations in the theory of superconductivity ‘we must take into account the
boundary of the superconductor. It 1s also very important for the further development of the
theory to take into account explicitly the crystal lattice of the metals.‘, k'

Especially in nuclear theory the consideration of the maﬁter as unbounded 1s a very rough
'simplification. For all these Physically very different purposes we propose here a new approxim-
ate method, which is a natural generalization of the well known Fock method(24)

Consider a dynamical system of Fermi-partioles nith a Hamiltonian of the form

H=Z {Tih4) - Nﬂ.}a,af. s

(A.ij.l)
+‘- Z J(‘fn{z» 1c2 );f )a"f a‘, a‘f’ af’ |

here A 1s the chemical potential, G, a. are the Fermi amplitudes and f is a set of indices

characterising one. particle states.,

Let us perform a linear transformation of the Fermi amplitudes
- ' # : : S
4{ = Z (u,,, o, + U,‘” du) ’7 : _ (4.I1.2)
v : ’
. :

In order to preserve'the conmutation properties of the Fermi amplitudes the transformation must

“be canonical and the c-numher functions u, ¥ must obey the following orthonormality conditions

5 -‘Zz‘”;v ot G} < I
: 4.11.3)

?ﬁ/"s %?.z.ayV?%;Q ¢ é?b Q?ﬁﬂj = 57

Substituting (A.iI.2) into the expression (A.IJ.I) and taking the expectation value in the vacuum
state Cg ¢ _ ,

' oy, (= 0

corresponding to the new Fermi-amplituaes we obtain

AsS{Tthsy -25, 106 G4

¢ TG LK) PG s ) BHLE D 5 E (1, 406 (ks 1= b B e mw( AT

'x) This Appendix is based on a paper(23)
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where o .
' . (jc// ) = Z !u /
The functions i, ¥V are determined by minimizing the form t(u, V) ' with the subsidiary con-

ditions (A. II .

The corresponding stationa.ry“'equation ha.s'v‘the form:‘ -

Sc(u,w =0

Ewwr = € v D {2 CFifY srf,f) '/" rf,fzy £FY .s/u (/,;97 (f, ;')J’
ft;' S

where 2,_/" are Lagrange multipliers. The varia.tion Ju Jv  and su*, §& are considered .
here as independent. '

Now we come to the formula.tion of the new a.pproxima.te method in the many body problem., In-
‘this metbod we take the functions oL and 'S _satisfying the stationary equations, which minimize
the form f(uﬁ{) . F‘or‘these functions'jthe 'corre,sp‘onding co 1s: treated as the wave function .
of the ground state and £(a,v) .a\s the ground state energy;'.’

The kq’,uestion of the fundamentati_on and 1limitations of the method 1is complicated. We shall
restrict ourselves only'to several'remarks. We assert on the basis of ‘the -resilts ‘of Appendix I,
that the method provides the exact solution of the problem in -the case when in- the Hamiltonian
only interactions between pairs with: opposite momenta ‘18 taken into account. ’

On’ the other band, we maintain, that among the solutions of the stationary equation there

is always present the one exactly oorresponding to the well—known Fock method(24)

Indeed let ‘us take the set of. functions },6' orthonormalized in the usual sense

Sipis)= Zf;,,y;, -{,}_ o
e : (A' I11.6)

and divide all Vv into two parts F and "Ge A finite number of the indices N (8 -1s the

number- of particles) belongs to F - the Fermi. sphere. The others belong to the complementary

set G. Let us choose™

Uy =0 U _y' Y € F

y 4 1’4 ’
_ ‘;( 7 v - .II.7)
Yo, Y- 0 , ¥V €E

Obviously all orthogonality conditions V(A;I:i.B) are satisfied. If we substitute these W and
T into the form € then é vanishes and it depends on Fy only and thus only on ? with
| '- o
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V€ G . 1et us denote by > the indices y belonging to F and define 2% from the minimum of
the form ELuﬁ-u)with the subsidiary conditions (A II 6). S , . '

The correspondlng stationary equation bhas the form

-(A.IT.8) -

{E =0 EF = € (e Yy ) +2__ )(f‘f')»} fif’)
. : . hf' ‘
It 1s easy to see that we formulated here just the usual Fock method. The wave funotion ‘of the
. system C, corresponds to the state where individual partioles toocupy all the states y/u
the other states (,p{‘, are free. R
’ On the other hand 1t 1s clear that. Eq.. (A. II 5) always has a. solution of ‘the type (A II 7
" with ‘ﬂfw chosen with the help of the Fock method as the solution of Eq. (A. 'I_I 8). Consequently
our method may be consldered as a generallzation of the Fock method and in any case 1ts domaln
. of applicability 1s not narrower. . ‘ v )

Caloulating as in Appendix I, the second varlation S C(U,U) of the "normal solution" _
(A.II.7) we can obtain the 'instability condltion. This condition is_formulated as ‘the eigen—
value problem for the corresponding system- of nonlinear equations.; . -

Practically this condition may be used e.g. for. obtaining a superfluidity criterion in the
model where the oristal lattioce is explicitly taken into acoount. ]

- In conclusion let us note that.'the method summarized here may be developed further by

means  of ‘an investigation of the chain of equations for the "distribution functions"'

qeas : A
a{h' f; e df: -—':-‘F.;n(*’{f”f-”?(z {1)

For example in the stationary oase, retaining only the functions ({” f,) and F (/n /:)

in the equations we shall obtain again the original equations of our method.

In the case of: explioit time dependenoe of F"z , Fé‘o' ‘ in “the approximation lénear in
-the deviations '
‘t‘ st
043~ ‘F‘”z , 'F24-o = FZOO

we shall obtain the equations determining the speotrumof oollective oscillations.
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