


A ﬁ S T R A'C.T

Statlstlcal tensors of oartlcles whlch are produced in
reactlons of the a+€ —c+d or a-—»c+d  type
%in~the‘most general case when the incident beam and the target
particles are in certain spin states, have been obtained. The
work is based on using diagonality of the S-matrix of such react-
_ ions with respect to the total enegry, total angularh momentum
and’its projection and on applying,consistently Dirac's trans—
formation theory. New '"rules of selectlon" completlng the Simon
- and Welton general rules of selectlon [l 2] are derlved. The
r first may be cons1dered as generallzatlon of the rule which
‘reads: polarlzatlon vectonpartlcles which are produced in a
reactlon is perpendlcular to the reactlon plane if the in01dent
beam and the target are unpolarlzed. » |

The second reads that sta tlstlcal tensors Of a particle
uwhlch is produced 1n a reactlon determined. w1th respect to its
4momentum d;rectlonrare elther purely real or purely imaginary if
.the incident beam and the'target"are'unpolarized. As a}specific
case, the decay of an unstable particle into particles with
spins 1/2 or O has,been consideredrand it has»been demonstrated
thét*polarization and angular'distributi‘onv of these particles
‘sdepend only upon the spin and the spin state of the decaylng
e,partlcles.__ - . x ' x < —_— o
The general‘theory of nuclear reactions has already been
slargely extended in fl 2] This paper puts forward a new method
' for obtalnlng statlstlcal tensors (see for definition Appendlx I)
Aof partlcles produced 1n a reactlon. It has been presented in a
lshort and somewhat dlfferent manner in f3] (see a congenlal me-

: ,thod 1n [ﬁ}) Thls approach allows relativistic generallzatlon i
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sas well as direct generalization for nuclear reactions w1th mo—
Qf-re than two particles in final state._Slmilarly, dlagonality of

'Athe Samatrix w1th respect to other physical constants of motlon
'_:Qmay be used to obtain a’ number of general”properties of quantumr

_mechanical processes.; vf,~,'t ;;' i,,f :”:!;;r ‘:'
L The %fticle makes large use (eof Diracfskformalism [?](see
- shapters l-lV, esp. § 17) 'rb 7k v p

§ 1. Reactions of the a,+gr->(.’+d and . a:"’c”"d

"type are d1scussed. cm 3 ¢, d'« denote either "elementary" par— -
*ticles or nuclei W1th spins La,[g C , 41;' respectively. The
Y freated - '

1=sp1n is¥in the Pauli approx1mation and in this sense ‘the eons1de—
ratlon w111 be non—relati - vistic (1n particular, partlcles w1th
rest mass equal to zero are not’ discussed) ' : - l}'; S
| Know1ng the 1n1t1a1 (before the reaction) state of the sys—b;3‘
tem and presuming that the elements of the S-matrix in corresponde i
.1ng representatlon are known, we may obtain the wave function of
.b the final statel/:':‘ y e T l,‘fgf":'

yé _{? Lglg)éy[ %-.';

S e o ':‘ ' ;_Lt ’.. : (1 I)

//

| Integration on summation over 5 . is 1mp11ed. The 1n--f,

L .dicesfand 7 mean a complete set of quantities describing the

.gtate’ of the system (soecies of particle, their momenta, etc.,”

. /.
- gée a complete set for a two—partlcle system below) §
. o

“vrls the amplitude of the probability that in: final state quanti-{f-

ties 7 take values .fa;é7{jff o if the system was orlglnally

i

in.fo-mmm.[ ] 'ff‘fgg“fﬁlf*

However, the 1n1tal and flnal states of the reaction are .

: j/ “See Lhe fzexZ‘_c /D_Qv'c:gé.-_:’z/g;z Z’/ug {\éoo?‘hoz‘e B R
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generally statlstlcal mlxtures (statlstlcal ensembles or mlxed B
ensembles) of pure spln states and 80 should ‘be: described by a
density matrlx and not by wave functlons.-

= _ For example, an unpolarlzed beam of partlcles strlklng

| ,the target is descrlbed by an‘assembly with equal probabllltles
of all p0551ble orientatlons of the spln. We deflne the den- _

51ty ma.tr:Lx as fOllOWS' ‘

| (fflflfz) =§ R‘ S?ﬂ f%,,

-

o o | TN (1.2)
where _/‘?,L denoteﬁ! welghts of separate pure states. : ‘.
: With the help of (l 1)we W1ll flnd that the den51ty mat-

=(p 5)[7: Slfz) (s /)If;) (z /S/an/p)

.3) ’

l/ ’l‘he relatlonship (ll) is. usually wrltten as applled to
reactions of the a+8- C+d type. In’ this case % (o2 ~ )

where the operator % (t to for example, satisfies the

Scﬁhdlnger equatlon (1n~ the 1nteractlon representatlon) L/I ,gl‘ Z‘(”‘ )
= Hput 'U,@' Z2) [ ] - But if the particle ‘@ is long-lived enough to enable
S us to speak roughly about a deflnlte (quaz:.—statlonary) initial

’ state (W:Lth deflnlte,,. energy, etc.), (1 1) may also be wrltten

“for the reactlon a-»c+d, w1th 5 Zl(‘” o) The tlme counting be-

gins from the moment of unstable partlcle creat:.on,.'
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' ,‘7"]“ The dlagonal elements (7 / [3 ) prov1de the probab:l.-
B llty that after reactlon the system w1ll be in the ?'— state .
if the —1m.tlal state was characterlzed by the dens:l.ty matrlx
(.2). o | S : ,;
Further ue Ashall use 1nstead of the S -matrix the scat--
terlng matrJ.;c R = S*f“ 1 " y all ,elements of which coincide with ;
) those of':’the- . S.—matrlx excepting transltions Without change \oi’k
state. | o | - . A‘ ‘
‘ ,4 As is known, the total angular momentum ,7 oy 1ts proaect-‘
ion M ’ the total momentu.mpand the total energf'o
i'lsolated system are conserved Thls fact expresses 1tself in dia-
gonallty of the system S (or R -) matrlx w1th respect to
~these quantltles. Generarly speak:r.ng, ,7 M P andfcannot however,y
helong to ‘the_ same complete set. It is necessary therefore, in a
| general case, a:f.’ter express:.ng dlagonallty of the R -matr:Lx ‘
elements w1th respect to ] IVI E in the representata.on of a set
1nclud1ng 3 M E_ to express then through these’ elements the mat-
rix elements of the R—matrlx 1n the representation of another com-<
__plete set 1nchd1ng\P/a.nd to write out dlagonallty w1th respect to

-
P . Rather cumbersome unltary transformatlons would be requ:Lr-

- ed to carry out practlcallv these operatlons. Lo \
K But there is a coordlnate system in whlch we can utlllze
' R

dlagonallty of the matrlx w1th respect to 7 M, E and P ‘at a -

tlme., Na:mely, if we choose a Torentz frame of rei‘erence with P?= 0
. 4o descrlbe a. two-nar-tlcle system y the set includlng ]M and

B may also 1nclude o l:,, ~and gid_"-' splns of the two. partloles,ﬂ!ecz‘

V ‘é - summalzed orbltal momentum of the partlcles__wn_th respect to the U

2/, N
| ” centre-—ofgramty {L - orbltal momentun of the, whole system w1th

2/ In the rest system . ¢ - [('l “R,)- el +[(24-Rc)pd] [(Z-zP)f’c]+ —

o +[(Z“’ R )[—P‘)] [(Zt 24) P‘] ﬂ */’4 are momentum operators
of the partlclesvand in the rest system.




» respect to the origin of the coordinite svstem (see helow), total i~

orbital momentum % ( Q 1' +£} module oi‘ the total momentumP (equal
7

) .

“to zero) of the svstem . As the operator[.can be expressed as

'\,‘\" - : —

[Rc P] where f?c is a center-of—grav'ity operator, in states where P =02
- we have tﬂve conSider Just such states of the system in
4Whlch P[ 0 and, consequently, P o). S |
As& PZ is COnserved Lis always zero and-the. total orbi-.
~tal moment of the system is equal to Z » -
In the representation of this complete set for a reacticn.,.

d*‘-—w*d for example, we have

o NOVELY Eoz'll?lewsezzamgoc)i
, —(Lcl Sleloggz/[RO7ElL¢lorsgoep()(g(p 0/(5‘]] CS’M 5(5__5) (1.4)

The superscripts denote dependence of the diagonal elements
upon P .7 and EF s it may be shown that they do not de-
‘pend upon - M . Further we Will not write in corresponding places
the indices of the spins of ‘the particles le ; Lz/ ’ etc. as well
as those of the total momentum and quantities ) L and %
either in. the R —matrix elements or in the density matrix
(in other‘words, the motion of the svstem as a whole, i. e. the
fact that it is at rest in a chosen Lorentz system, will not be
described) R e |

In representation of the compete set S [ .7M Eo((lE) may be

written, if (1.4) is used, as follows.

' ) Q
a/Note that a complete set must also include, generally

speaking, particle masses. For short they are not Written in a
manifest way. Besides, the complete set may include a number oi’ '
variables, as internal parties of the two particles. |

A1l o;ff them are denoted-;with > SO



it is ‘COnven'ient to retain 'them'i'n order to carry out'the sumjnation
over thise 1ndlces. For th1s purpose let us use the follomng formula.

S i, CRA Ol gt L

Innma,j‘i,lﬂz Jlm'[/‘l,_ JL"LL z/“z j,m,ﬁ-m e/u e, /(‘2
=( 1) <Vl [(28,41)(25, +/)[2/+1)[2€+//]’/z

ZCM[ ‘2 C,,,g,,,)((ﬁj/z,sysz,éw)
] o ' (2.3)
(2.3) may be derlved w1th the help of relations (l), (18) and (19) in
[ 9] and also from fomula (3) 1n[ ] , the coefflolents X -ar‘ej'.“i’
defined . in" [IO] and [ ] . With the ‘help of (2 3) we may carry out in
(2 1) at once the sum over mc/ mc,m,{,md o-f the product of the flrst, ,
second th:x.rd and the last Clebsch—Gordan coefflclents (note that
-m/-m} =~m,_ ‘ ) After that‘ we may carry out in (2 1) the sum
over- m,,m,,/{‘ ’/uz (agaln a sum of the (2 3) type) and, flnally, »we :
obtain from (2. 1) , : i 7 , L
| f’(ﬁc,ﬂ,d ﬂ%yu&) W', @/ ;[(21';/)[24”/)]’/{.'-

1y e
SR S C Ly - C ik (/) o Gt

[[zs',;){zs +/}(2f,+/)(274+/)] X(egee; sigrsy, 147,,(,,),

[(ze +1)/ze u)(27 /)/27'+/)(2; +1)]/ X{g ;';' ’]’ 6'e'e / o

e (w, ’/’J.Eoz/ﬂl IM,E,O() e
The sumz is over s's,', e, [4,_‘2 ‘g1 1,’.7’ . .

and over' vhoml,m , M M',- -, -ZV"///i[R/V] /’l[/’c/ ) ,(see'
Appendlx II) ' ' o e

| Formulae 2. l) and (2 4) are wrltten in the rest system, the- di-— ‘.

fectlons of the axes - have been chosen arbltrarily 850 far. For- a beam |

d:st, cngucshed .
of part:.cles the most endent > dlrectlon in space is the direct—"
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-"_.'.1on of the beam. Let us 1ntroduce the s tensors/O [ﬂc, c,o(,fcbe 7.(64)

wrbh indlces L related to the ﬂc . as to a. q_uantlzation axig.

"'*_,_'Thelr relation to the former S. Tensors may “be wrltten as follows4/

ﬁ'(flc,f’c,o( ¢c cc;;/cd) Z _@% (—7- 7?0,7 5@)

@% [—719 7i- f,) ﬁ’[nc /oc,oz’ _' 11/4)

(2.5)

_ 4 , ,
-// are the Euler angles/of such a rotatlon gc of the Zgz\’ axes
v_that the axis x should coincide with the umt vecto\vﬁld the axis

g - should be perpendlcular to the former dlrection of the axis 2
“and to the nc e The rotat:.on 1nverse to gc £-7, 79 7 - ;4)?

) 1s Written as g,_ = § ﬁ., 29¢, 0} . Note that the spherlcal angles

are def:Lned w1th respect to the former axes zgx . as before, only'

a new quantlzatlon axis for the spin 1nd1ces has been introduced.

4/ The 1ndlces v (o’r T ) of the s.tensors are bra 1ndn.ces _
(see Append:.x I) . /3(%1// are therefore tra.nsformed u;nder three-dlmens-_ |
ional rotations as }/*” (6,¢) = [¢ V/B¢/ Formula (2. 5) is simp-
ly derived by means of compléx con;]ugatlon of the formula for spher:.c-

gl function transformatlon which We wr:.te as follows

A > Y, Ww 4.

; 1f the unlt vector transformation under a rotat:Lon j is wr:Ltten as‘

h g,n . lf the rotat:.on g i’sf} ‘ 1nterpreted as a rotatn.on of the- .
(rlght—hand) coordlnate system, —1t may be glven by the ‘Buler angles
tﬁ (rotat:.on about the axes Z . ) - (rotat:.on about the a,vlsé(’)
and }ﬂz (rotation about the axis ;_l, ). All rotat:.ons clockwise. Let -

us emphas:.ze that the Euler angle P is usually deflned as a rotat:.on

‘ about the axis X _but only w:Lth our defimt:l.on “the. above formula

)".,Wﬂl be true . j)mn (%,19 V) = e"P(’"—mj”)z”""P [m#}exp[—m;o)

the functn.onsP ,are oomputed in [ ] R Ibld. See’ for a deflnltion of
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Substltutlng in (2 5) for }0 [nc, /7c,ol ﬁ'c Ve 2o Vd) : 1ts express-
‘1on (2.4), we may carry out, first of all, the%umma.‘tlon over Ve ande
ST DI, 4'” - G A
= 0 1 Ch D G, 45
e, Vd

‘/.
Tet us in‘trdduce a notation ‘Z” Z.+74 . Using the»..‘Sa.me'- for-

- mula (2.6) [1] 3 we can carry. out the sum

> \ém,[”c) .@7 /7"‘9 T—jﬂ)*[%z, v'm }7%’,7’M')

v/, my,

It we use, the relatlon Ye (¥, //‘5’1) [26*!/4 ]/‘3_20,2 (ﬁ, ,/W}
The flnal result will be the following:

f) (nc,fac,o( ;f¢Zf4?4)=M’=M @7,/-"[[2(;,/)(2:;,,‘/}]% |
x 7 --/’ ‘c'/—;" * ‘V *L ’
Z -Zz-:m’ {‘7'1?', 7 Cf'c RY 227 [/}5' /// .;MJ’—M’
. [(275-.+1}(.'2;4+1)]/ X[tc 7::,, s/ ﬁ 6474 l:/)

"G [7/[3/ ]l ;,J’F:) (S/gI]/M E/o(/'f [ ’f ]/Mz 20/) (2.7)

- where the coefficient G, has been defined in [ 2] formula (3.3); the

sum is c;w'rér S, i 51)[','gl ? 7’, .Z', J'! and over M,,, './Mz/, M’
L The expressuons of the (g, €,7,M E, o, ’f)lﬁz _7 oJ) iihrough
P Tarpes gavegave) 0T P (R p g %Z})

are 31m11arly derived. We will: call them formulae (2.8) and (2. 9),
respectlvely. Leav:.ng out of accoun't the change of no‘ta‘tlon, let us -
no‘te 'tha't corresponding transi‘orma‘tlon functions are 51mply obtalned s
by means oi‘ complex congugatlon of the ‘transformatlon functions in |
7(2 4) and (2 7) (1 e. by means of’ complex conaugation of all coeffi-
.01en'ts precedlng (S’f .7/41 E d'lﬂ ¢’ ' M ’DZ) Cin (2.4)
and (2. 7))and substitution of ]__(21,,”)[-2“”/)] ' for |
[[z,,c,,)(zwj)] % o (see (1.3) and (T.4)).
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Comblning (2. 4), (1. 5) and (2 8), we obtaln a first flnal formula

(we w111 call it formula (2. 10). all spln indices and spherlcal angles

relate ,.tQ an abrltrarlly chosen system of axes. Since .7,-.7, ; .Z’:"‘.Z) :
M"’: M, Mmr= M, _ the sum over M, and M, is ea_slily‘ p-er'-'v
formed:, Z (3 ,'ZZ;M,;M,'/Z ym') (37, 4,- M|} TM) = é;;ly ‘

and. that”i'.':"why -7""] M'=M too(.PcBesldes, (P /E,)(E },04} =

"[f [E)[E /;P") (Pc,/?a) where the symbol expresses the law of energy
conservatlon in the momentum representatlon. Wlth thls we exhaust all
,,transfoma‘blon a1_1d formula (2.10) may easily be wrltten in its final
- form; it is very bulky (see page 26 ) .
Combining (2.7), (1.5) and (2.9) results in a second final ‘formu- .
la - (2,11). If we substltute in formula (8) inl ] the normalizatlon N
- '.t‘actor M/@ﬁ)z (see Appendix II) :f.’or ﬁ /4 and
DR D)= D (5557 for 97 (5, 9
;:(thls is necessary because of chang:.ng the de:finitlon of s.tensors' cf.
kfomulae (5) 1n[ ] and (II. 3)) then the grouplng of formulae (1), (8)
and (9) in [ ] will give exactly the formula (2 J11). =4
It will follow from (2.12), as may be shown, that the s. tensors
~ of the final state depend, in fact, upon the parameters of the rotatiqn
| g 34‘,1 of the system of ZYa¥e axes which are ’dveifined' by the initial; t
sta‘be (the axls 2, ]l 7z 5 the direction of the Y, axis may be defined
'k by the spin state; for example, it may be dlrected along that polarl-ik
| ‘ zation vector component which is perpendlcular to the /Za ) towards. and
up to the system of axes 2 e Xe (the axis 2, [ r, » the &xis 4. //[/z n] )
) Thus,- all qua.ntlties in (2. 11) may be defined w1th respect to -
. several physmal directions o:f the reaction so that for (2 11) we

need not introduoe any a.uxlliary coordlnate system. In the coordinate

- - =/ There is a misprint in (8) [ ] : the square bracket R
| '[(25:””)[25;*/)(‘23'*/) [‘?jz*‘“f)] must be ra:Lsed to the —_— 1/2 power,

not in the + Z one.



‘, | / r')
= system currently adopted whlch c01nc1des with the system of axes

Eafa¥a gcg;"g rﬂry}

.‘where fl9, f ‘are sphern.cal angles of the um.t vector n_ in such a

-

coordlnate system. |
If the spin state of uhe incn.dent beam a and the target partlcles

g is completely unpolarlzed or has the axigl symmetry '
f(zﬂiiﬂ? ﬂ(gaﬂgzﬂ/ SW _

}"then after performlng the sum over 7 . in '(2 11) 'th'ere will remain 'only
Z" [7‘ 752 // y} P‘? [CD-\"'?) and so statlstlcal tensors of the flnal a
: state (including the angular d1stribut10n /_)’ ( /e, /:vc o( , 0,.9,0 0 ) |
| | L )w111 not depend upon }ﬂ Thls is natu-
ral as in this case the ch01ce of the axis (74 is quite arbltrary amd
- no physical qua;ntity can depend upon such a’ ch01ce. ’
- By means’ of a- procedure analogous with that used for formula (2.11)
we may get a general Fformula for the : -

reactlon of the d >C~1-d type’

f) (ﬂe,fc,ol 2 % 7454) /% ﬁf} 1[(?%*/)(2:4*/// KZS 1)‘
Z( f) e C W [ (24. +//(2f~’ )] %X (le,ﬂ @;5/9's, z;/;w)z
| ._,’@,[SZ 9 ¢ 56 )[s’f”oz’ RSE/o(,) (¢ 'lesg/d) o
.9,,% ‘(' %, 7 54) ﬂ( .,z(% v) (2'-.13)‘”
-‘The‘gm is‘vovery «zfg';c'_ e";,g, : - M-
i -er[lz/l‘,]’/l P;!.‘[/;, ['E} /J(g, V) are s.tensors of the partlcle a,

Y is 1ts spin,. E its total energy.
The symbol ([)clE) equals a unity if /D is the root of the equat-,

ion: Vpc e+ dfict "‘//’ c +/¢{(:9 —E HC?
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a.nd is zero if f does not satisfy this ‘equation (see Appendix II)
i:e‘t ﬁs examine ‘a case when the particles q and g (ox/and ¢
J a.nd d ) are.identical. Let the momenta /5;' and /5: -.o:f.‘-'the particles and
their spin projections m and m, be variasbles »:f S of the

- COmplete set f’ [van:! f’ ) in the definition. (17.'2) of' the density matr-

: ’1}{0 It is necessary then that ;

- (5 pl f"(f’%)?" ) (f)z‘(g, z,ft,‘”’z,"”z')

_i.e. the denmsity matrix elements with a fixed §, should either change

(2.14)

their sign, if the identical particles «ha've"a»half-fin"tegral spin, or
should not change at all for Bose-particles, depending on the fact
| whether we ascribe to the "first" particléc‘l/ .monientum'l‘(%nd a spin pi'o—
‘ ‘jection ml" and to the "second" par’t:l.cle\q/a momentum/q and projection
| m, . or we ascribe to the "Pirgt" particle /92 : 'a'nd m, . and
“to the "second" /31 ) m, . Independen‘tly, the same must hold for j:’he _
indices fl if g ‘are :E:Lxed. Substltuting ~l:he total ‘mimentum v
, and the remt system momentum /:) for P, and ﬁ,, (2.14) may be I‘e-ertteI
- as follows: (;’l UDIP P, m,,m¢> (j 2‘(§‘lf)l p /,, ., My)

Taking into accouht that (g [/3 F', 4, m, ml) (lef’ |l u usm)
w(Lpup|T-P, y, f’) (“-‘”’I“mz”’:) (s, }f)/f/(p tLSm)[]}e[{}u/J/ﬂf/?)
(-1)3 2‘(uunlum ;)
| . (the index P is omitted), we obtain that ‘bhe density matrlx element
- symmetrized with respec’t to the rlghthand 1ndlcea(1.e. satlsi’ylng

o)
(2. 14))may be written in this ways

(foJ!P m'/ mZ)S.‘/'"m = /F [(ﬁl/D /J m”m‘ .+(/}2[/€‘ P}—/-;) m‘/m')]:
g 5lp1 Gupsm) LD (ol p) ciamliimm)
‘ - 5). .

That :Ls why, if the partlcles a a.nd f are 1dent1ca1, in for-'-’
mulae (2.107, (2.11), bes:.des equallzlng approprla’te 1ndn.ces ( “

2=t=C  etc), it is necessary to- 1n_sert in the sum the factor

gL+ CL)OS 1 14 L) 0T
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‘ 'An'a.nalogous factor (with Z and 8 prin'a,) 'shOuld be inserted in-

Cto (2.4), (2.7)y (. 11), ete., if ¢ and d are identical.

~§ 3. In general the final staté of a a+ i-’ ctad - ~-reaction is de-
.scrn.'bed by [2%"/)* (2¢4+1) s.tensors (the total number of their compo-
nents is (24« NE ) + (2at+ 4 )) In turns out, however, that an ap-
prop'riate choicecof the quantization axis in case o:f:‘ a completely un—-
polarized initial state oonsn.derably reduces the number o:f:’ final state
s.tensor components requ:.rlng knowledge o:ﬁ‘ the matrn.x elements (l 4)

for their computatn.on.

'As usual, the axis Z - of the coordinate system in which a for-

R i . . —> )
mula of the (2.10) type is written is directed along the /2= - .

Let us direct it perpendicularly to the reaction plane, i.e. along the

vector [ Ng * h—e] . { In other words, for each particular case of Te

~action an axis Z of its own is chosen, the axis X being directed

along the A 80 that the direct:i‘.on‘ of the incident beam will always

" be described in the same way 9,=72 , Pa=0 5/, 1n this case the

angle % is one between therdirection of’ the momentum - /-‘7.:' and the in-

: c:.dent beam dlrection.

C:m "v'C]M ' ‘Cw' | eLaoé Y"' ’Iw) Y

For what will ensue we shall need the :f.’ollowing factors in the sum-

mand oid the sum - of Formula (2.10) in the chosen coordinate system.

L ]

Vyvism Yguim, TG00

(3.1).

5/ S tensors of the spin state of the beam and the target howe-
ver, will generally be dependent upon the cho:Lce of Z a.xes. They may be
expressed through s.tensors rels.ted, for 1nsta.nce, to the Iz,, , as to a

qua.nti'za_ti‘on. aiis, ‘aocording to the formulae of § 2 (of the (2.5) type).
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It follows from the propertles of the coei‘flcients
CgL/,feo ~ and 05052 ~ and from the law of conser-
- vation of total space parity that f’f 4+ é’ YA/ and 4+’
,.+€+Zz_ -~ should be even numbers, Consequently, Z.'*Z» . 'vis-

even too. (This fact is a certain rule of selection 1ndependent
. of the choice of coordinate system).
: Owing to the properties of the assoclated Legendre poly‘no- 7
mials of the first kind, the functions Yej‘ (%, f} do not-va-
nish only when - £+ 4 is even. In (2.10) therefore only tho-
se terms do not _vanish in’ which";-;{,_ﬁ m', Avfh?(l "and, con-
seqnently,. L'+ L+my+m | are ‘even. So /M, +m4f . must be
_even'too.' Owing to the properties of the first two Clebsch—GOr—
dan coei’ficients we have v’}m,_' =Y+ My, nence l/"'l/ =My, - m)
As V' ‘/ m.,' and mz - are 1ntegers, the rule of selection‘
we ‘have found out may be formulated as :t’ollows' l/ﬂ/ must be an
even number, if the quantization axis is chosen perpend_icular '

to the reaction plane" In an important barticular ce.se when the .

'. coordinate systemes all f(na, Fa 741/ Qé Ve ) ‘are zero,‘ excepting
P(n« [Jn; 0 9,9, 0) ) ‘this rule. reads that only f)'//z‘,f f 7d 4)
with even VetVd do. not vanish. -

| In particular, - the fact that jo’[/;c, 4,1 loo) and /o[n‘,/)c, Mf_/)
are equal to zero means. that the polsrization vector Oof each of
the particles C . and d is perpendicular to. the reaction pla—
ne if the incident beam and the target are wnpolarized. [1]

, If the 1ni1":ia1 state in fo:mmla (2 ,11) is considered to be
unpolarized 'de the usnal coordinate 'sys'tem- (axis 2/l Mz ) is
. chosen, ‘we may derive ‘one more rule o:t’ selection. in this case -

f;’(n{; 7¢‘E 00) (or /3 (”:/“: 00?,122{)/ dependence upon. Z Z is determ:.ned
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A
by the following factors in the summand of the sum (see (8). in
_ s
3] with 27 (—r«9 u-—iﬂ) vsubstitutedtfor ﬂ&fz{ﬁ,ﬁ"OZsee§ 2):.

) 6 (7 e's's ] gei J’) 250(_/,79/,-/4

Taking into account the expression (3:3) in [2] for '&z- o

and the formula $éa(‘[’z, ﬁ) ['9”/2.7,/] [/}Z_Yy,.[’ﬂ 5-8)

we get that this dependence upon . is finally due
o L ,
to the factors (gc ]L, -Zélﬁc‘n 0)‘ YZG (%, 0)
, Similarly,;f'(ﬁ'c,‘/)c; %—Z, 0,0) depends upon -z

as dov the factors [¢ ]—’Ecz‘c[ 9e _7[’0). Yy z & 0}

The law of conservation of space parity of a system and
presence of the coefficients (€’€ 00[?7'1'0) /F fﬂﬂ/fféa)
which are contained in Gp  and &, entail that the
/.f(-rf-«—@_ f’+6+4’ L4+ 7 |

, : a.re even numbers. Hence _7+.(, (and, of course, -7‘.4 ) must
be even t00. Consequently, (7, 7‘ Te Lc/ e 74_0/ -/-j/fc +.7~Z’.
(.75~ IV0) =) P (g I Tz [0 IL0) |
Considering that Y ($0)=LN)". ch (¥ 9)

we obtain /0 (n,/?, e, T, 0,0) = [/} 7‘*“‘/)’(/7 P; Gee, b 50)
Taking into account also the Hermitiar property of s.tensorss/
we finally 1n:fer that :Lf the initial state is completely unpola—
rized, f’ ‘(i np; 74:,72, ) 0) are real when ¢, is even and purely ima- |
ginary when % is odd.7/ This fact simplifies the problem of find-

6/ It is easy to make out that the Hermitian property of. the
deneity matrix (In,/ Imz)'y’_—_k*[mzlf)lm;);v'corresponds to the fo.ll‘ow:i.ng_
property of s.tensors: /J*(g, v) =(—{)ﬁ(¢,—v) . (see /I.Z)}

7/ This selection rule may be generalized to a certain extent:
contrlbutlon toﬂYP,4c,00) from each s.tensor lD(ﬂq,/’, ¢a0 7{, 0)

is real, if q,-r % %’ is even, a.nd purely imaginary if

4+ q,ai-t;g ~ is odd. '
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, ing out the spin state of the systmn almost the same degree -
~as the. preceding selectlon rule doés. ‘ |
In‘partlcular, if the partlcle C is unstabie, the above ru—
les of selection enable us to s:.mpllfy to a certaln extent the
descrlptlon of the initial state of its decay reaction w1thout
_hypothesizing the mechanism of 1ts~creation. v , _
Analogous rules of selection may be obtained for the react-
ions directing the a.xi'szperpendicularly to theb /-Z; " and along
the ﬁ',_.‘, respectively, and considering the particles 'a’ ‘} as
’comp]_.‘etely unpolarized. | |
§ 4. Let us obtain some consequences foliowing f_ro'm' fox_'nru- ,
la (2.13) for a a—c+d reaction in a particular case when
L=y, d4=0 , of 'which A° ~decay is an important exanpleiA‘f-v/offiT_
First, when iy=0  X{ Lefele; S, g 0%{0)':(,Zt};d/-{[_zz,»j)—z.
54,0 Sgcz; Sgt Sg 0 Second if [ = 1/ ~, then from the triads
of the G, (56%;9 4:5¢%) in (2.13) we get 4=3:4, l”-s+’/2
~i.e. the difference between f, and fz can not be more than a
. unity. As the K -matrix elements in (2. 13) do not vanish only
for transitions with conservation of space parity, ¢’ and
) @l’ must have the same parity. We find that t.”’ f’ Z’ =S+%
orf F =f'=s- 1/ dependlng upon the unknown parity of the particle
2 and the parltles of ¢~ and d . It 1s assumed hereafter that
the state of an assembly of partlcles with~ respect to the variab-
1esa?/ is pure one ,(1.e.ﬂz,’dl(7,l/)-f’(°‘/i‘/) Sd,ol, g_ol,c(; Yo
| Thenﬁ only one element of the- R -matrix in (2. 13)‘ does not
| 'vanish a.nd if there 1sm dther alternative way for decay, :from the ._
E S ~matrix un:.tarity follows that
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- If there are other schemes of decay, ( a—? e’ +d’ ) +total
probability W~ (0_<'ur<1 ) of the decay by the scheme a-» ced
'shoﬁld be puf in place of the unity on the right side of equat-
ion (4. 1) | | | - |

Now we' 1ntegra,te j) (nc, c,el ,fc, «,40) with the weight

factor V/{.‘Znh) (see Appendi:‘; IT) over the momentum region
| (pc, [)c"' 4[’) o It is implied that this region contains
momenta /9., ~ for which [ /Dcl E)=1 . Denot:.ng the inter-

'garated quantities dinded by the solid angle of this region :
by <Té‘["9:§")' (:Lndex Y
from  (2.13):

Tf‘(w)é ”;{f,f;” Z(//?“‘

A,g (se" 9 gﬁ,se”f/z) -zju(-ﬁ,ﬁ,ﬁ-f)-/l(d;;u}_

.is omitted) we get -

(4.2)

[N

The 1nterchange of the upper and the lower rows of the
>“_arguments ofthe - coefflcient G (Sfljé,Q Je ; se’ %) multiplles
thescoefflclent by the factor [/)23'1*¢"7¢ (see [ ]p.,

. 1060) But s:mce
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these rows are 1dentical, this does not affect Gé— 1n any way and ,
| 25‘1*7*’% must be even. As the spin of the particle a, ia hali’-integral, ;
.25*1 ~ 1is even and g ic 'mmst therefore be even. So the decay t?
products angular distributlon 5" (3922) is determined only by even e
s.tensors of the initial state of the partlcleeand the decay proton .
.-polarization(i.e.s.tensors 7! 7@1 ) only by cdd ones. ‘ ’
| By meaeureing the angular distrlbution and polarization of the o
. partlcle C we obtain 1nfomation about f)( % V) °a5mt the epin and pari-
ty of the particle a and, vice versa, if the 1atter ‘are known, we
can predict a.ll s.tensors, 7"’%[.,9 t{’) : L
By 1ntegrating the angular diatributicn ﬁ@9ﬁ9with reapect'to
s or ?0 y e may dbtain general formulae for distributions w1ch
. are measured in experiment (e.g. by integrating with reepect to i9 we
get a distribution in an angle between the plene of /1 —creation and
the plane of it decay) [151 | |
It conclusion, the author believes it his duty to emphasmze that
a_coneiderable part of the subaectamatter has heen worked_qut in col-
laboration with A.M. Baldin (see [3]) to whom the author owesideep .
gratitudc for the discussion of some other questions treated 'in this -
paper &as well The author takes pleasure in thanking profeseor M.A Mar—
kov for his sustained 1nterest and L.G. Zastavenko for discussion. of ‘a’

number of problems relative to the rotatlon group representation theo-'

ry.

0
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A qua.ntum-mechanlcal state may be described not only hy
- wave functions or density matrices but by giving mean values o:E
a . Tset of Some g operators[ ] . In .particular, we
-will use this procedure to describe the spin state of a part:Lc—“
le (or of a system of paticles). Note ' that in experiment as well
. it is the mean value of the spin vector operator (the sof_called |
polarization of particle), :for instance, that is measured and
not the probabilities of some values of spin projection.»"

Tet. f? , be the operator acting on the spin variables of
| a particle W:Lth spin [ ; the state of the particle is descri‘:
ed by the density matrix. ( m, §', | f)l m,, §;) y where 7, and m,
are magnetic quantum numbers gthe other variables o:f a represen—
tation. It is poss:.ble to f£ind the mean value of _ﬂ- in this
state, if the matrix elements Of .74 j _,,in the same m,f -.repre-" N

sentat:Lon are known

74 Z :(mzﬁfﬂ{mzﬁ)(mff,lﬁlmzfz) S/a(ﬂp) (11)

’”U”Lz,fufz ‘
\kt Y s :/

. Let us form w1th sp:Ln vector operator projectlons a tensor
of the rank 9 which tra:nsformg under three-dimens:.onal rota-. |
tions by the 1rreduo:|.ble representation of weight 7 and de-— o
- note its components byﬂ‘; Note that by its structure this '
operator has. the same covariance as {;‘_" - y in the sense that

under rotations it transforms like Y ,,[ﬂ} and not 1like Y u/n} o

For example, Jq are ‘ simply ‘cyclical (or canomcal

=Y

})projections of -6"* - ‘and . transform like the vect,or‘/z,‘ '
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' Dependence of the natrix elements 0] J4¢ upon | mzl '
and m, accordlng, to the Wigner- Eckart theorem[ ] coresponding—-

1y modlfled (v is a contrave.rlant index in the above sensef )

may be wrltten as follows

(m.z& {m f‘) V.Zt-f[ (‘ﬁ”rf}ﬁ f,)(f’zlﬁ (/) [LH’YI-mz “%V}

(x.2)
(if the spin varlables and varlablesfseparate,(lf; /‘74 //‘fx does

not depend upon §, ). Inserting (X.2) inte (X.1l), we see that

to know./ﬂ we need to know dlrectly not the density matrix but
_ rather the quant:.ty '

?ﬂm(% WZH) /zem~mzluw)(me,tfolm§;)

mll mz '3) i
12
L

~which is proportional to Jqq' (see a.lso ]) It follows from
(I.3) that the quantities ,P(%V) 9=0, 1. i 26, Y=- %-%j +g
o may chs.raoterlze +the spin state of the partlcle with the: same
| success as the denslty matrlx. The inverse transformatlon from

7,, —representatlon to m, m, -represenation is the :Eol-

low1ng

(m, s,lplm,sz (2641) ZZ(./) “""( cem-m, w;V)/J;,,;z(%v}

v (1 4)
Note “that f)& ;_.l( 9, V) is the same density matrix yith res-
pect to g as (m £ P’m‘t&) ‘
o By origln Pf 5(7 V) may be called mean values or statistl-
_cal mea.n values of the 1rreduolble tensor spin operators.’ ']_‘here-
’:Eore ‘we will call them statlstical tensors (abbr.s. tensors) in
accordance w1th[ J (. 735).

: Suppose we are 1nterested only 1n distrlbution of probabl-



‘ Presence of the "fa‘ctor i_e in (II 2) assuresfinvariance of the ‘t‘i-/-

me-reversal operator action on wave functlons with defimte { and /4

N‘under addition of angular momenta [ 15] (1.e. the application of this

VOPerator to 'IIV/, nay be written in the same way as . %o 'I//gl o and f}bez /az

if 0= +Z) Note that

(¢nElSpP) = ("9?,”,5’/4 E) o (FeplemE) (11'3.) "
It may be -established in a similar way that //;/ / takes the

form of (17) in [14](i.e.(/ol/1) ]/ when /) /0 and [p/f;) 0
~ when P # )

If (F” P)(/)//)) is- required to be equal to [/D”lp) A accord-
ing to the Dirac formalism [ 5] ’ it turns out that normalization
(1T. l) requlres that the integratiron with respect to /9 ~implied -in

* the notation (p f)” p)( F /) p') - should be performed withthe weight
factor V/(grh) (which is equivalent to a certain summaticn) According -
$o Dirac (see. [5],§ 24), this factor must be 1ntroduced into every
formula -in which integraticu with _respect to momenta is being perfor—
,m.edn. - v ) | | “

~In ccmdecti‘om with nonnalizeticn (I1.1), there arises a prob-
‘lem of obtaining with the help of ﬁ(nc,fc, Qe Ve @ Vd)

~ quantities which can be directly compared With results of the experi-

mental study of a+6’-»c+d reaction. ‘What doesP [P‘ 7614%,11/,() mean?
There is a phys1cal system which origlnally con51sts (at the instant
of time -T whereT= R/U.a.md v is _“the module of “the relative velo-
city of the particles o end b U= lmhh{,l )  of partiaeﬁ’ana ¢
enclosed in volume V/, its state is described by the quantities/
P(Fn z;an/az;u/e)(pa p)(p, lpa) ‘Then P,(Pc, 0,0,0,0)

T .
is a probability that by the 1nstant of" time particles ¢ and A with

momentum P will appear in the volume V . The otherjo w:.th %, ﬂd, [/c .

) are quantities proporticnal to the mean values of cowresponding spin

operators (see Appendix, I) 1n,the as_sembly of particles with such

a momentum .

l - For comparison w1th the experlment 1t is necessary, first of all,
|

to k:now how many particles C and d w:.th momenta in the interval
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f.

B (P"F°+A'D) w111 appear per 1 seo., if glven are the constant flux of
’ 1ncldent partlcles and target partlcles den91ty (and not the number,
v of partlcles a, and 8 in some volume) For this ‘JO’[/Jc )
' must be first divided by 27T and 1ntegrated (w:.th weight V/(g,;/;/g )
over the interval (/94 , /9 +AF) If the result 1s multiplled then by
V/,v— (renormallzatlon to the i’lux), we shall get the differentlal ,

cross section AG for the reaction:
AG(T)- /;2/4/) 47)4, /3[/7:,/9 oo) AR

| | T (I1.4)

N= (274)&(/%, /74} (2&’)2 [Vz f’ /%] j e Ibc is those module of
the momentum /3 » which follows from the law of energy conservatlon.
The 1nterva1 ( /oc, fc*AF) is assumed to contain momenta with the moduleﬁ.,

AJZ is the golid angle of this interval. :

~ We could obtain quantltles ﬂ” (ﬂc,fc Qe Ve 74 ‘/4)
] normallzed to the :flu.x which would be related with /-) [”r,/%, Qe Ve dVJ/
in just the same way as Aé’(nc) is related with /)’(nc,/J 00}

_ They would be mea.n values of certan spin opera-
tors in an assembly of partlcles with momentum in ‘the 1nterva1 |
((J.: ] Fc *0f ) The mean values thus obtained would depend however,
not only upon the nature of. the spin state but upon the number oi’
'partlcle in such an assembly as well. ‘ |

"It is therefore the mean value of the operator ‘579 144 (for
the partlcle c, for 1nstance) computed per one partlcle that is

characterlstlc of the spln state'

A"’(,oc) (¢ /W//z)/b,,(nu/%, % M/ Ao,(nc)
(tc”ﬂgl ‘C) /3 (ﬂc,)oc) % 00)

ﬁ(”c;/’c, ’ I l ) L
(11..5) |
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Formula (2.10) -

’(nc,/oc,o:’ ac Ve gu V,,).._.

 .. /V/4 e[ézcui)@w/)] [[Qw//(zt/*/)]

- Wz 4, (2/#)(2/@_4)/’/ |
» XZ ZIZ%VJ )2 ‘m (n) o e/ofo[ »

[(2$’+1)(2$ +;/)(275+I)(2%‘f1)(.?¢ +./)(-2.7 +j)(_27 +/)J1/2
 Rligi 955 aga50) X (7007 ,e,z-é).c,jl, g
(s"“ <1 R? ) ) (s»fm//z’ g o)k,

I;Vl,m (5.95 ]Z,é[,é} X[‘aza d;si.g;c[i'{(/)

[(zw)(?s ‘*1)[2%*/)(2%+[)(2$*1)[.27,+1)(27+1)]1/2

B [(2€+/)(2€f1)]’/2 eofo' | YL Lma, ? " 7414

/301 d, (”a P“’ % ’f V’i)

2: | “-/’1"/‘11  . o
denal‘e a Summal‘wn ove'z S"l', -, 6',6, g,l-i Z,,])..Z’ ’

’ L %) ’1 2 '/g ga % and "7’67 ‘/’7/"1. M mL ‘)vll/"”uﬁ;’-
N = (25h)* (2R)‘ '(/oc,/o,,‘)z[v*z /ac /a,,]f

' The symb01 (loc f’a ) (E/ﬁc)IE(/"*/) equals un:Lty, if /Oc take such
" a value that the 1aw of energy conservat:.on is assu.red, and vanlshes

o‘bherw:.se



“ [1] ASlmon Ao and Welton T, A. PhJs. Rev.,v. 90, p. 1036 (1953)
# f{2]  ’S1mon A. ", PhJs.Rev.,v. 92, p. 1050 (1953) and. Phys Rev.,
ve 93, p. 1435 (1954) (errata) e
- [3] Baldin A Ma and Shlrokov M. Zhur. Eksptllfl Teoret Phiz.
| (JETP), V. 30, Pe 784 (1956) (1n Ru331an)

(4] Moller c. Det Kgl. ])anske V.o. M., 1945 v. 23, N1, §3.

[5] V~D1rac P.AM. "The pr1n01p1es of the quantum mechanlcs"

| 'second edltlon.' ' o ,

‘[6] Tippman B.A. and Schw1nger J. ths.Rev., V. 79, p. 473 (1950)
’4}7J\A Blokhlntsev D.I. ?Ospovy kvantov01y mehanlkl".,Moskva 1949, ’
T s . e |
‘1>'[8]'. Racah G. Phys. Rev., v.62, D. 438 (1942)

9] ‘Bledenharn L.C., Blatt J.M., Rose M.E. Rev.Mod. Phys. V.24,
N 4,p. 249 (1952). _ | |
f{;[lbj- Arlma A., Horie H., Tanabe Y. Progr.Theor. Phys. v. 11, p. 143,
o - (1954). - | ,

k"[lI][f Gelfand J. and Shaplro 7. USpehl Mat Nauk - (N.S. ) v.VII
-J! | >(1952) no. 1(47), p. 3. (in Russian).

ifilzlf ‘Fano _U. Phys.Rev. V.. 90, p. 577 (1953)

;_[13] ‘ Bledenharn T.C. and Rose M.E. Rev. Mod -Phys. v 25, p. 735
o (953).- - | o o

| 14]; Hamilton J. Proc. Camb. Phil. Soc.; V.52, P. 197 (1956).
*Jf[15]Huby R. Proc Phys. Soc. 4. 'v. 67y D 1103 (1954) .

;“‘[16] Shlrokov M. JETP, V. 31, P 734 (1956) (in Ru351an)





