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ABSTRACT 

Statistical tensors of particles which are produced in 

reactions of the a1- ;·~ c + d or a -=> c + d · type 

in·the most general nase when the incident beam and the target 

P'articles are in certain spin states, have been obtained. The 

work is based on using diagonali ty of the · S-matrix of such react­

ions with respect to the total enegry, total angulartt,.momentum 

and its p,roj ection and on applying consistently Dirac's trans­

formation theory. New "rules of selection" completing the Simon 

and Welton gen~ral rules of selection [
1

'
2

] are derived. The 

first may be considered aA generalization of the rule which .. . . ot . . .· 
reads: polarization vecto~articles which·are produced in a 

reacti-on is -perp.endicu1,ar to the .reaction plane if the incident 

beam and the target are unpolarized. 

Tl}e -.s~·cond ~eads that statistic:al tensors of a particle 

. which is produced in a reaction determined_with respect to its 

momentum direction are either purely real or purely imaginary if 

the incident beam and the target are unpolarized. As a specific 

case, the decay of an unstabl_e particle into particles with 
I 

spins 1/2 or O has been considered and it has been demonstrated 

that- polEi.rizS:t:i:on and angular d~stributi·on of these particles 

·depend only :upon the spin and the spin state of the decaying 

particles. 

The general 

largely extended 

- X X 
X - 0 

theory of nuclear reactions has already been 

in {1,2J. This paper puts forward a new method 

for_obtaini;i;_gstatistical tensors (see for definition Appendix I) 

of particles produced in a reaction. It has been presented. in a 

short and somewhat different manner in [3j (see a congenial me­

·thod in [4)}. This approach allows relativistic generalization 
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as well ~s direct generalization for nuclear-reactions with mo-
- - . . - -

re· than -two p-artioles in final state._ Similarly, diagonali ty of . 

th.e S-Inatrix -w:i. th ~espec:!i to other 'physicar. constants_ of m:otion - . . - . .. 

· _may be used to-_ obtain a number of g~neral' properties of quantum-

mechanical processes. _ · 

The article makes large use 
·_ -.0 

ehapt_ers 1-lV, esp. § 17). 

. 5 
. of Dirac's f~rmalism [ 1 (see 

§ 1. Reactions of the a.-1- & ➔ C-t-d and a ~.e+d 

'type are discuss·ed. - a,&, c, d denote either i1elementary" par-

· ticles or .nuclei .with· spins la; it , ,; 1 tj respecti veiy. The - · 
_ t fzeated . . . _ . 

,spin ·'::ls"in the Pauli approximation and in this sense ·the_ eonside"'.'." 

ration· will be non-relati·-. - vistic (in particular, particl'es .with 

rest mass ~ql!-al t~. --zero are not. discussed). 

Knowing the 111:itial (before the reaction) etate of the.sys­

iiem and -presuming .th~t the elements of the S-matrix in correspo:n~ ._ 

ing representation are lmown, we may obtain the wave function of V . -
the final state : 

t/ 
tW:.=-E?' ISIT)?/{ 

·---. 

c1.~r-
·..,,, ---

I~Jegration-on·summation_ over ~ is im~lied. The in_;, 

-- dic~sf ?~O: p. me~ ~ ~omplete set- ~f quantities ~escribi:ng_,the 

s'tate _of: the sy~tem (spec:i.~s of. part_icle; :their momenta, etc.; , 

Bee a compl8te set {Or a t~~-partiCJe sys;em, lJ 8low) • 'l'?ft ·. . · 
is .the .amplitude_ of the pro~·ability that in_::final-jt~te ·quan:ti-· .. , 

,,,-- . .· . - : - . . ~ - -· - . . . -

ties~ _ 11 take e:--va.iue~ -- - -1/ - :.- .,.. '.Jf the_ system ~as originally .· 

in - ~o --~~:tat~: C5l :- ~- _ 
Howev~r, the ~ini tal, ~d :final .states of.)ne' -teactfon are 

1 / -~-S~et tl-ie_ /lf:?)(l ?_:~ge _ 
_.,.,,,.,..- - -- - ,, -·-

(o2_ t_hL·s·~/oo·h1ote 
, - ~~---

'... 

(" 

_.,, __ 
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generally statistical -mixtures •. (statisticai ensembles or mixed 

ensembles) of pure spin: states arid so should-be described by a 

density matrix and-not by wave functions. -

For example, an unpolarized beam of'- particles-- striking-

- the target is described by ror assembly· with equal probabilities 
- . 

- of· all possible orientations of' the spin. We defirie the den-

sity matr;x as f.ollows: 

. (1.2) 

;,,,,here Pa. denote.¢ weight A of separa_te pure st-ates. 

W'ith the help of (l.l)we will find that_ f;he density·-ID:a~­

rix of the final state is equal to:· 

( 7: lf17,'); 

= ('?,'I st fJ(1z' Is If,)* (ft If If.)==(?,' I S.f _st It;.') 

1/ The relationship, (~1) is.usually written as applied to 

reactions of th~ a1-8➔ e+d type~ In this case -S = u(oe.., -~) ...... 
where the operator U ( t, t:;,) for example, satisfi_es the 

~ ~ Sctl'i;dtger equation (in- the interaction 7.'eprEiaentation) ;/, t u{t; f.)~ 
= H1.'n.t. U (t, tq) [ ] • But if tl';le particle a is long:..li ved enough to· enable 

us to ~speak: roughiy about a d,efi_!li te (quaz:!--stationary) initial 

state ·(with gefinite.,. energy, etc.), (1.1) may also be written 
...... ... --

- for the r~action a. ➔ e +d, with 5;-U.(~oJ:The ti'me · counting be-

gins from the moment of unstable particle creation}. 
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The diagonal __ eleme~t_s · (?' _ / f-' J- _ f' ) 
: · -1i ty that after -reacti9n. the sy~tem will be 

provide the .probabt~ 

in the' ?',-. state -

if -the~ini tial~ state was characterized by the density matrix 

(1.2)~ 

Further we -shall use instead of the S -matrix the scat-
--- ·----·--. :o:·· ;\ - "' . - " . 

te'i-ing matrix ___ R = 5:- 1 , all elements of which coincide -with 

those of?the-. S-matrix excepting tran~itions without change _of 

s.tate. 

As is 

ion f.1 
known, the ·to-tal angular momentum J , its project-

. - ~ - f= 
, the total· momentum P and the . ~o.tal energ~f an . . ' 

isolated syste~-- are- conserved.· This fa.ct expre!:lses itself in dia­

gonali ty of the system - S -(or - /< -) matrix-with respect to 
. . . . . __, . 

thes.e quantit~es. G:ene'.!'arl--y_ speaking, J, M, p andfcannot, however,. 

belong to ·the, same compla'te,;~et·., It is necessary th~refore, in a 

general ca~_!3,' gfter express~ng -di_a;g;nali ty of the· R. -matrix 

eleme~~s with resp~ct to ~ ~, E i~ -the representation of ~ set 

including :J, M, E__ to express then through --these· elements the mat-
, \ \ ..... .._ -- .... 

-- -·-. ·- I 

rix elements of the I-matrix in the representation of another com-' 
' . .... ---. . . ' .. - - P, . . 

ple~e . set inclidingYana t~ write o:i,it diagonali ty with respect _to _,,_ 
~p • Rather. c'umbersome unitary transfo:rmation.s would be_ requir~ 

' ,• . 
ed to cai;ry out practically these operations. 

. •·- ', -

But there is a coordinate system'in which we can.utilize 
~-- - -

diagonali ty of theYmatrix with respect to J, 1'1, E. and P -at a -

time. Na:m.e-ly, if we choose a Lorentz frame of reference with P
2 

= 0 · 

to des_cribe a· two-particie system , _the set including J, M and 

E may alscr~ iri~-lude: . 
. 
ie and . i 4 _::..:. spins 'of the two particles;t/te,:i 

sum ,. . -
Ys; f, - summaized-·or,bi tal. m?mentum of t~e particles-_wi th re~pect to_ the 

centre-=of'."gr~ri ty 2{ l - orbital momentum' of the<whole sy~em w-i th -

-----2/-I~-th;-;;;t-~;;:;;;;--[: {(~c- Re ) · Pe) ~ {( Z~- ~c) /JJj ;:. {(z:-Rc J ·f c] + 

,+[('la-Re )·{-p"c}}=T(ic-id}·Pt:}. ·i=-Pi are momentum ·operators - ' · · . 
of the -particles!'and~n _ th~ rest system. .... 

...ii 



respect to the origin of the coordinate s~rstem (see. be l.nw), total 1 • 

orbital momentum~ (i-=l +l). moduie of- the- total. momentum.F(equal 
3/ - I • "'_-

to zero) of the system · • As the ·operatorlcan be expressed as 

"" -where f.l, is a center-of-gravity operator, in states where P ~ O 
k=O . 

we have toor(we consider just such states of the system in 

which / P / = 0 _and, consequently, P== 0) _ 

As P2 
is conserved,lis. always zero and- the. total orbi-

tal moment of the system is· equal to t. 
In the representation of this complete set for a.reaction._ 

, a-ti ➔C·+d, for example_, we have , , , , 

( t~ i" s' e' i'iP' J'M 1 E' d.' -I I< / t~ ~, ·s el~ o J ME ol.) = 

= {t~ t"as'e' Ot'c/.' IR OJE /t~ ltf s e oect) s ( i! '-0} S;;'J sftl'M .8 ( l: 1-£)-c:. (1.4) 

The superscripts·denote dependence o:f the diagonal elements. 

upon P,_ J and- E ; it may be shown that they do not de-
-

pend upon-· M _. Further we wili not write in corre_sponding places 
- ::" . ·- ' . 

the indices of the spins of the pa~ticles le , l d , etc. as .well 
, --

as those of the· total-momentum and quantities l and ~ 
. 

either in.the · R.. -matrix elements or in the density matrix 

(in other-words, the motion of the system as a whole, i.e. the 

fact that it is at rest in a chosen Lorentz system, will not be 

described). , . 
In reprasentation of the compete set S

1 
f, :r_ M, ~ o{_ (l:3) may be 

written, if (1.4) is·used, as follows: 

0 
!/Note that·a complete set must also include, generally 

speaking, particle masses. For short, they are not written in a 

manifest way. Besides, the complete.set-~y.include a number of 

variables,' as internal pa_rties of the two particles. 

All ofi them are denoted· with ex.. 
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it is convenient to _retain them in order to carry out the.summation 

over thise indices. For this purpose let us use the following formula: 

> . ' C s 6. c-s .J • . -l = - . . I I • • z _<>z C ! m✓-;, . • C e me = 
IH,,mfl,f1,J/''z. ·.1irn,e,f', _Jz..1tl.1.ez.f'z. . . J,m,fl-Jnz. €,f', t "J4.1. 

= (-t)s~-;;-ez. [(2_s✓ -1-1 ){2.rL +i}(2j;,_1) [2e+/}] 1/2. 
0 

2 Cs.: m: _5 • C,(~: m · X ( J~JJ~ ; st 9 5~ ; e, i~ J 
llm 11 ~ z. J'I -e . 
g1 ! .. (2.3) 

(2.3) may be derived with the help of'··rel~tions (lJ, (18) and 
. .- . 10 - -·- . 

[ 9] and also from formula (3) in [ ] , the coefficients 

(19) in 

x· -are· 

[ 101 - 11· -- . . . - . 
defined in·· _ and f . With the .help·-· of (2. 3) we may carry out in . . . 

(2.1) at once the sum over ftlt
1
fr1c',md,IY1} of the product of the- first, 

second, third and the l.ast Clebsch-Gordan coefficients (note that 
I I . I -me -ma =,.. mz. )~_ After tha~ we may carry out in (2.1) the sum 

qver m,',mz.',J<,',)'L_ (again a sum o_f the. (2.3) type) and, finally, we. 

obtain from· (2 .1) :· 

. f' tii.,f, ,o1\ f, v, f"11,,,) == Al.'-~' {47; r¼-[(K,1 )(2,:,,-,1 )j½.. 
~ ( - IL' ')··C''ftl'. ··c '/,'v' c· ·1/0 - 1.'-M' .,, I 

t .L... ne mi 7'v'l'111J,' .. fil/ef,1'1f • e,'oe/o ·fi),. z.. C,,,/11.~'-M,' )< 

. ✓, /'J. :t 

. "[{2S,'-, J)(2~'+J)f2ft-, I ){2f~_+f)j1/4 ~)( ( ~: fc ,; j s; 1 i' S_/; t't1 f,t t4}> 

., [{2e/-,l)/2e/,1){27,'-11)t21/+1)f21'+1}}~ •X (s,_',i' ~- :t'Y'l/; t/1/e/)Jt 
l'.' o I . . 

"L- 1
-~~ ·( s,'e,~✓,'JU, 1 E,'°''/p 1 / ~'l'l'M/E/ot'} 

(2 .4) 

The sum.£' is ove-r S's I, e.' e I, ..,,, :/. 1 
-,, l' ...,, . 

IJ-lJ/J~J·V/1·.?/ I·, ✓ ·, . l 
, , - , M' , A/1 ,I'::' h·[R~l1~r.J.-1(0./£') and over V, 1111. i M, , z.. 1 M -~ . iv,,2 =21/2 Ji · /Y, _ ·1 -e · 1 c _ '1,2 (see 

App,en4ix · II) • 

· Fo:rmulae (2 .1) and (2. 4) are written in the rest system, _ the di­

rections of the axes-Jiave been chosen arbitrarily so -far. For a beam 
· · . - t(i:Stinpuisl, ed -· · . ._ . 

of particles the m_ost evident - direction in space is the ·direct-
- '' . 

---
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. ion of the beam. Let us iritrod~ce ·th_~ _:.s.tensors f '(itc,fc1 ol./ft.Z'c f✓_-C-,:1?, 
. with indices 'l related·_ to t_he-· nt.. as· to -a. qu:antizatfon·, axis. 

Their relation to the ;ormer · s ~ Te~so.rs_· ~/be'..¢ tten:- a~ _follows,41: 

<l . 4/ ·r-~ I Vc,-'ffare the Euler angles o:f such a rotation 9c of the r-JJX_ axes 

l 
l ·• L 

I . 
-l 
t 
' 

_ that the axis ~ should coincide with the unit v:ecto~d the axis 

y- · should be perpendicular to the former direction of the ~is y. 
_, 

and to the n, • The rotation inverse to 

is written as • Note tha~· the spherical ·angles 

are defined with respect to ·the_ former ~e_s .E 9 x as before, only · 

a new quantization axis for the spin indices-has been introduced. 

-----~-----------------
4/ The indices \/ (or 'l ) -of the s~tensors are bra indices 

. . 

(see Appendix I) •f {tf,11} are therefore transformed under thre_e~im~s•-

ional rotations as Y;v ( B, tf>) = {tJ, vi 81/J). Formula (2.5} is simp­

ly derived by means of complex conjugation of the formula for spheric­

al function transformation which we write as ·follows 

. ½z ( n') = ~ 'f,v { n) 2) :T _ _({l-1). -
if the unit vector transformation u.nd_er ·a :rotation j- is written as 
~ A- . _ . . Q 
n = !f n ~ -If the rotation 5 is interpre·ted as a rotation of the · 

(right-hand) coordinate system, -it may be given by the ·Euler angles 

'{'i { rotation about the ax1;s l ) , _ .fl- (rotation· about the a,is !f 1) 

and ft (rotation about the axis 2, 1 
) • ,A~l rotations' clockwise. Let 

·us emphasize that the Euler angle t{} is usually defin~d as a rotation 

· about the axis X' ;_ but only with our defin:i. tion the_ ab_ove ·fo~ula -

will be 1rue • ··j) e (tPi,{), '(i)-::::. e;cp{-imrz)i_n-ni_p__e (~./J)e1'i>{-infi} 
m,n z • _ 11 - mn I_ 

the functions /;,,:are computed in f J . . Ibid. see· for a definition .of 
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Substituting in (2.5) for p'[~JfeJol.'; t'pcYe'Je!Vd) its express-

ion (2. 4) , we may carry out, first of all, the,:ummatio·n ·over Ve ·and v'.i_ 
' ' 

"'"""' 2) IJt! { }-2)_ 'J,1 ( ·C tJ'V' =· 2) j' {J). Ci' Z"c,rCq' 
~ ~Ve 9- ?:;JV;{ iJ t/eVc1dz/,1 "l:c+'i:d,V_' fc~ ie1'C4 
~~-- ' ' ' 

e., Let us introduce a notation 'r':::. z;;-,. Ttf • Using the same for-

(2.6} 

mula '(2. 6) [ 1J , we can carry out the sum · 

~. 'l1,, , {n;).2)1',{-7i,-i9c,_7i·-fc)- 1~.'1/v'mf J t1/ 1l/J1M'} 
, ..... , . . M1, -z:1 v ( 'v I' 

v, "'J, , • - . [ J ~ · e 
if we use. the relation Yen {"'1 /J-f'L) = 2.€-1-l/~li :Z._2)t> n (ff%;~ fi} 

I 

The final result will be the following: 

f' ( ncJ fe 1o1.'; fe. z;f4f:t1) = Al,1'. /1/4.' Jn)•-1 [(2 t; ~1)(2 td7'/ )} ¼ ~ 

KL 2):'M' {-_liJ~JJi-rc)·CtJ;r:-' ,' (-1)f/-tZ:'f-1J~'-11;_c· ;J'/i,f' y 

'/c e.l),d ?:'.{. J.'M I J.,,' M' 

. , [(21,,1}{2t,1+1)] ½ · X { 1~ 'J,t;; s,' 'J's;; t',1 'I" td), • • • - • 

' G.* [1.' e.'s.' ·. ,.,, q_l, J.'e.'s'l •(s I e I :J.' AA IE' cl.' lf, Is If/ .J. 'M' E..' -'') 1 
7:1 I I I I. ,I j' I '..l L :Z / I I I 1 "I/ I. , :Z ~ .z 2. :z 0C: 

. . (2. 7) 

where' the' coeffi_cient Gz-, has been defined in [
21 :formula (3. 3); the 

. ' ' ' s' I "I I .., I .., I J' d A.A I AJ I M' sum is over , , S.t l, e, q, ✓, .h an • over r,, .1 1v12 • 
J I I .1. J r J I "' J · ·. -' 

The expressions of the ( ~, e, 7, /VI, £,_cl.., Ip I S.z f.z .z M-2, '=z·~) through 

fo<,,o1.,. {na, f11j_ f/11V111J1V1} or . .fo1.,✓ ;~ { ii,., faj l),ct z; '/I r~J 
are similarly derived. We will call them formulae (2.8) and (2.9), 

respectively. Leaving out of account the change of notation/ let us 
' ' 

note ~hat corresponding transformation functions are simp~y obtained 

. by means of complex conjugaition of the transformation functions in 
• ✓ 

.(2.4). and (2.7) (i.e. by means of complex conjugation ·of all coeffi-

cients preceding (S/f,' J,',Af,'E/ol'/f' /s; f/ la' M.2' '=i'd') in (2.4) 

and (2 •. 7))and substitution of [{2.l~+J){~,-l-1/}]-½. for 

[[2i.~-11){2lJ+1))1/.i·· (see (I.3) and (X.4)). 

.... 
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Combining (2.4), (1.5) and (2.8), we obtain a first final formula -

~ve will call ·1t formula (2.10): all spin indices and spherical angles 

relate .to an abri trarily chosen system of axes. Since :Ii'= J, , ,%' = ~, 

M,1 = M, 1 Mf == M.2, the s~ over M, and M2. is easily per-

formed: ,L ( 7, Z. ftl, -Mz / 7, lz. J'M' }(~ J,. Al, -M.z / 7, J JM) = S:,17 dftf'M 
and. that,(li:Lwhy J'=J, M'= M too. Besides, ( q)E;)(E, J ftt)= 

(PciP11) · r· 
. ={f~l~){E2)fa)={pc; p4} where the symb~resses the law o:f energy 

.conservation in the momentum . representation. With this we exhaust all 

transformation and formula (2.10) may easily be written in its final 

form; it is very bulky (see page 2. 6 ) 

Combining (2.7), (1.5) and (2.9) results in a second :final -formu­

la - (2 .11) • I:f we substitute i~ :formula (8) · in [ 
3 J the normalizatio,n 

factor Al/(4 r,f· (see Appendix II) fo~ ~! / 4 and 
1 L 2J;,M(-1i/Jc,1i-rc)·2)J: (--P,-8-., ",-rc}== 2),z;',,z:{Jc ;/0.-1) faz 2J,/ '(' (r11, ~,, 0) 

1\1\ . . J • 

(this is necessary because qf changing the definition of. s~tensors: cf. 

formulae. (5) in [ 
3

] and. (II.3)) then the 'grouping of formulae. (7), (8)
1

. 

and (9) in [ 
3 J will give exactly the formula (2 .11) • ~ · · 

' It will follow from (2.12), as may be shown, that the s. tensors 

of·the final state depend, in fact, upon the parameters of the rotation 

J,J4-l of the system of .laffq~ axes y,hich are defined by the initial j 

state (the axis z4 I/ ntt , -the direction of the j/a .axis may be defined 

by the sp•in state; for example, it may be directed, along that polari--zation vector component which is perpendicular to the n.a. ) toward~ _and 

up to· the system of axesrcfj,Xc (the axis 2c II n; , the axis./jcf/[~zt~J) 

) • Thus, all quantities in (2 .11) may be defined with respect to 

several physical directions of the reaction so that for (2 .11) we · 

need not .introduce any auxiliary coordinate system. In the coordinate 

--------~-~--------------- 3 . 
Jr/ There .is a misprint in (8) [ J : the square bracket. 

· [(2s,'+1}{2.S}·f/)(:Zs, +I) [:2-t+J)] . must be raised to th~ ~ ·½ power,-

not in the + ½ one. 
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t: ... 

system currently adopted which coincides with the system of axes 

Za 1"- >'a fej;L_ ~~f-7i·, $,· 71-f'] _ 

. Wh~re: ~ r· . . -are spherical angles of the unit vector- nc in· such a 

coordinate system. 

If the spin state of the incident beam a and the target particles· 

.i. is completely_unpolarized or has _the axial symmetry 

pc ia·Gtt 'ft 4) ~_fi{1e1 rJ 1110 )-~ 0 . s'C/0 

then after performing the sum over ,Z:. in (2 .11) there will remain only 

.2):,
0
(-r,,fJ,Tt-f(}= p,:,

0
{cosD) and so statistical· tensors of the final 

. . .. · -
state (including the · angtilar distribution .f·•' { n~, IJe ot.' • tJ. ~ tJ. a} 

. ' . . ' . . . . I ' I . J ., / .J . 

_ )will not depend upon f . This· is natu-

ral as in this case the choice of the axis _ //-a.. is quite arbitrary and. 

no physical quantity· can depend upon ~uch a· choice. 

, By means· of·.a procedure analogous with that used for formula (2.11) 

we may get a general :formula for the 

reaction of the t:l -➔ (; + d type: 

f_'(ii,, fc, ol'J If,- 7:, f',i r;d) ~ .Alc/ (:l:,;rl [{lt,+ t){2,:.t~,t)Jf'z.. ?.zs +J)-½., 

x £ t" J)IJ'~-c'. C~1:_' · r- ~[{2 1c +1}{2 flf' 1-f)j¼.x (,; l)e l~ • S,' n's/, ldOJ ,d).Jr . re. Z-c f e! t.,,:/ _ · I' , 7 ·:.t .1 ;q 

~ r (_se.'s'• o. o.'• s e.'£').ls'f.'o/'/ r:,SE/ot },f's./f,'-''/ v,S'=/ol )* £7-z;-t I I I r . 7 J . .Z. .z ( • / / . /'\ J . { ':.I z oC I'{. ~ " 

" ~f V (-'Ji,~'- :ii-y;) . /Jot,, o1~ ( i,, v) (2.13} 

Th . • . . . I ,rl " . I _s I e. i f_. I C/. V. e _ s~,. is over_ ff, ~ , ~,, ~, , , z.. , v", • . 

=2.1ih [R.fv] r/J,Pe-1{fc I'=).. f ( i, v) are s. ten~ors of the particl:e a J 

1fo•= 

S is its spin, £ ·its total energy. · 

The symbol ( pc IE} equals a unity if f1: . is the root of the e.quat-

V rt ez.-,. J(/cf 
1 

T lrf,"c 2 -t-H/ct'::: £ = dta · ~z. . ion 

·1 

J 
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and is zero if fc does not satisfy. this equation ( see Appendix II) 

Let us examine a case when the particles a and i (or/and C 

·· and d ) are , identical. Let the· momenta j5: and· A · of · the particles and 

their spin projections m, and lnz. be variables of the 

. complete set ~ (and f2 ) in the definition. (1.2) of the density matr­

ix. It is necessary then that 

(2.14) 

i.e. the density matrix elements with a fix~d ft should either change 

their sign, if the identical particles have·a half-integral spin, or 

should not change at all for Bose-particles, depending on the fact 
. a ~ 

whether we ascribe to, the "first 11 particle""'a momentll:)Il and a spin pro-

jection m1 · and to the "second" particl~a 1:110.mentum jf. and proj action 
. -n,1 O'r we ascribe. to the "first" p~ticle f2. and m2 and -·to the "second" p1 , _m, • Independently, the same must .hold for _:he 

indices f1. if $2. are fixed. Substituting .the total m&mentum P 
and the rest system momentum jf for fr and ff, (2 .14) may be re-vyritte:r - . 

· as follows: (f1 lp/ P,1' m,,m,.)=={-1).i'{f,_ff/ ~-f, m2,m~) 

Taking into account that (ft lpl-f, ,;l1:mz, !ni) ;:;_ {f, /f f e U (t"stn)_a 

-(e;tp/n-J, 'f+Ji, f)•{ll.rm/ t"im2.mL) == (f, If} f.J< f t"t"sm)(-1)((!_;<1'/-P, ~,)~ 
,(-1) S-ll."( lt's In J l t"m; mz} -(the index P is omitted), we obtain that the density ID:atrix element 

symmetrized with respect to the rigb.thand indices(i.e. satisfying 
. . 0 ·. 

(2.14))may be written in this way:. . . . . . · ( (, { rt f, ,,,,, m,)s3mm. = 'la: [{ f,lf f f,m.,m,} +{-J)2 '(r, If /-f, m., m,) ]= 

=11.Ji [ ft If' I f;-crsm) [ 1 -1:[1) ~+SJ-( ~p I~ l(,f )-( t"t'J In I t't"M, mz) 

That is, why, if the particles a and t are identical, in for­

mulae (2, 10'1, (2 .11), besides equalizing appropriate indices .( 

4,,~iJ=i etc), it is necessary to insert in the sum the factor 

1/i[ d ..- {-J) e,+·s,]{ j + (-J)fz+S~j .. 
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. . " 
An. analogous factor (with t and S prilrf- ... ) -. should be inserted in-

, to (2. 4) , (2. 7) , (2 .11) , etc. , if c and d. are identical. 

§ 3. In general . the final state of a a-+ 11- c+ d . reaction is de­

_scrib ed by{f~t-/}+{2.(J.+1) a.tensors (the total number of their compo-
. 2. • 2 . 

nents is ( 21,~ + 1 : ) -,. ( 2.J,el -t J ) ) • In turns out, however, that an ap-

propriate choiceoof the quantization axis in case of a completely un­

polarized initial state considerably reduces the number of final state 

a.tensor components requiring knowledge of the matrix elements (1.4) 

for their computation. 

As usual, the axis .2 · of the coordinate system in which a for--mula of the (2.10) type is written is directed along the /J.q_ • 

Let us direct it perpendicularly to the reaction plane, i.e.- along the 

vector f net" nl!J ' , In other words, for each particular case o,f rE 

action an axis .'l of its own is chosen, t};le axis :X being directed 
➔ . 

along the n4 so that the direction of the incident beam will always 

be described :tn the same way $4 = .:r.i I f « = 0 '5/. In °!ihis case the 

. -angle %. 113 one between the. direction o·f · the momentum f c and the in-

cident beam di_rection. 

For what will ensue we shall need the following factors in the sum• 

mand of the sum of Formula (2.10) in the chosen coordinate system: 
• 

C'JM ·-.c,,., ,cl'O -·Cl.,O .y (7¼ J·Y"" ,., . f I" t n,J 1~ l1t1• t,' o ti o e,o e,_ o 1,,\.,l 2
, 1' 4 ,,,/ 'Y.z, o} 

(3 .1), 

--------------------------
5/ s. tensors of the spin state of the beam and the target, howe­

ver, will genera~ly be dependent upon the choice o_f 2 axes. They may be 
. -expressed through s. tensors rel_ated, for instance, to the ·17.a , as to a 

quantization. axis, according to the formulae of § 2 (of the (2.5) type) •. 

\ 
1 



It follows i'rom the- properties of the coefficients 

and Ce,":~ 0 and from the· law of cons er.:-
. I I / . I / 

vation of total space parity that ~ -i- tz.. -t- 41 "-t f..z + l and t: + t;_ + 

+!,+l:. should be even numbers, Consequently, L '+Z is 

even too~ (This fact is a certain ru.le of selection independent 

of the choice of coordinate system). 

· Owing to th~ properties of the associat_ed Legendre polyno­

mials of the first kind, the ~ctio:rfs Ye; ( ~., f J do not--va­

nieh only when f+.f' is even. In (2.10) therefore_only tho-

se termgi. do not vanish in which· //-t ml, l.,. l'Y1_i, and, con-

sequently, l' + l + mi: -,. m1, are ·even. So /rl1, + m.£ must be 

even too. Owing to the properties of the first two Clebsch-Gor-

dan coefficients we have v' +m'-' = //-1- m1. , henc_e J/1
• V = m.G - ml 

are integers, the ru.le: of. selection 
-- ti I . 

we "have found out may be formulated as fo~~ows: V -t ti must be an 

even number, if the quantlzation axis is chosen perpendicular 

to the reaction plane". In an important particular case when the_ 

incident beam and the target are completely unpt1larized (in all ~ 
. . . . _,, . . . . . 

. coord,inate syst_emes all f {na J/Ja; f/4 tla i 6 //t . ) are zero~ excepting 

p{fi;, p~; 0, P, o, {))). th~e rule. re~ds that only p' (iit.,fr. j fe Ve 1A~} 
with even Ve+ V d do not vanish. ·-

In particular, -the fact that f'(he.,fr.i i,t_1,t1i o) ~!iJld f'{;:;;_,ft; ~/JJtl) 
are equal to. zero means. that the polarization veQto~ 

0
of each of 

the particles C and d is perpendicular to the reaction pla­

ne if the incident be~ and the target are unp,olarized. [ l J. 
If the initial state in formula (2.11) is considered to be 

unp.olarized and the usual coordinate system (axis 2 II fi~ .) is 
. -

chosen, we may derive one more ru.le of-selection. In thi~ case-~ 
- '. I ( ii, p; f .r:. 00) ( or f' { 'n, f; 00 tµc.)) dependence upon ?; is determined 
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3/. 
by the following factors in the summand of the sum (see (8) in 

[ 3] with 2):. 
0 

{--r,,0, 11-r) substituted for .2)~1 ,(fi111;,f)Jsee § 2): 
1!1 

(-1)~~ (1,e,'.s,', J '/e.; lz~'s:)• 2J:J (-Ji/~ 77~r) 
~ . . ~.,o . 

Taking into account the expression (3 .3) in C 2] for -~ . 

and the formula :J>;,
0 

( 'fz., {), ftr~-[~u/£7fJ ]~·-(-/) C:: ~,z: (~ 7i-?z) 

we get tjlat this depenaence upon z; is finally due 

to the factors { Cf,c. J 'Cc -'Cc} fe.11./ 0} · 1/,-z:c { ~ 0) 

Similarly, f 1 
( nc, pc; f/e. -~ 1 o, 0) depends upon -z; 

as do the facto.rs ( fc 1 ~¾ 7:e. / 'Jc 1 L' 0} · Y7, -i; ( ,z9, 0). 

The law of conse:t'Vation of space pari~ of a system and 

presence of the coefficients ( e,1 e/ O o / f, 1 f/ L' 0) 1 ( f, lo I) If, fzL O) 

which are contained in &~ and C-0 *.' entail that the 

f,+ei +f,'-t-e.', t,'-,.f/+L'; l, +fz.+ :J 
are even numbers. Hence. J+l' (and, of course, 1-1/ ) must 

be even too. Consequently, ( lje 'J_-Y:1: -CL!/ 'fc. JL' 0) ={-I) fc 1-J-2: 

•(ft tf 'C;-'Cc / ft JL' 0} ={-/} '/t: •{ 'Jt: :J 7:e, -Z"c / ft J L'O} , 

Considering that Y.:1.-- {,P. 0) =(-1) ~. Y1. _. [?J; {)) · 
1 £e I 'I".: 

we obtain J'' { n, p; jc,-~, I}, o) =f-1} $c+'Cc j''(n, f; f/c.,Lc, q o} 

Taking into account also the Hermitian property of s.tenaors6/, 

we finally infer that if the initial state is completely unpola-

rized, .f'{Fi,f; ft.,"Cc) t3 I)} are real when 1/-t is even and purely ima-

ginary when t/,c is odd, 7/ This fact simplifies the problem· of find-

------------------------------
6/ It is easy to make out that the Hermitian p·roperty of the 

density matrix (Jn,lflm,_),,.= {m.tlf Jm1) corresponds to t.he following 

property of a.tensors:: f 'I:( i, 11)={:-!)f{i,-11) { see (L3)) 

7/ This selection rule may be generalized to a certain extent:· 

contribution topfp;tJ,'l',P,O)from each ·a.tensor p('4,p; ~a,O,'Jt,O) 

is real, if q,+ 1a + I/I is even, and purely imaginary if 

· q,+ 'fa+ '/,I is odd. 
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c, d . . 
ing out the spin state of the syst~n almost the same degree 

as the preceding selection·· rule does. 

In pE...rticular, if the particle C is unstable, the above ru­

les of selection enable us to simplify to a certain extent the 

description of the initial state of i.ts decay reaction without 

hypothesizing the mechanism of its creation. 

· Analogous rules of selection may be obtained for the react-
. ➔ 

ions directing the axis z perpendicularly to the fie and along 
_, . 

the ne . , respectively, and considering the particles a as 

9omple~ely unpolarized. 

§ 4. Let us obtain some consequences following from formu-

la (2 .13) for a a --,i_ c.-i- d reaction in a particular case when 

. le.= 1/2 1 id= 0 , of which .11° -decay is an important example:A~f+n: 

First,. when: id= 0 X { l~fe l~ j s,' q, 's~'; I} 1 d O) =: (2.L~ +J)-1. {2~.-,.J)-~ 

'E~,o·Sl/<tJ' ·Ss:t~~Ss;t~. Second, if l~ = ½ , then from the triads 

of the G1;,{s,e,:1z; f fe; sf}¾} in (2 .13) we get t,' = S ± 14,, l;.'-= S :t ½, 
I)/ /).' ,i.e. the difference between i-1 and c.... can not be more than a 

unity. As the r<. -matrix elements in (2 .13) do not vanish only 

-for transitions with. conservation of space parity, f,' and 

e:. must have the same pa.ri ty. We find that f,'== e: = t' = S+ ~ 
or. t,' =-f} = £'= s~ ~ depending upon the unknown parity of the particle 

a and the parities of C · and d • It is assumed hereafter that 

.the state of an assembly of particles with~reapect tB the varlab­

leaJ/ is pure one (i.e. foJ,d.z.(j,V)=f(c:1.;jl/)·&ci,o1.1.• Sol,oi,_. ). 

Then. only one element of the /:z -matrix in (2 .13) does not 
~ : 

vanish and if there is dther a1 ternati ve way for decay, from· _the 

S -matrix uni tari ty follows that: 



I() 
""' '1 {_) 

0 

( ½_o~ e'ol'/ R ss I cl.)·(½ o ½. e'ot' / R.sE / ol) "= j 
' I' • · (4.1) 

If there are other. schemes of decay, ( a➔ c' + d' ) · total 

probability UT (O<v.r<J ) of the. decay by the scheme a·-, e+d 

should be put i~ pl8:ce. of the unity on the right side of equat­

ion (4.1). 
. 0 . 

No.-, we •integrate p' ( fl, fc.,o1.';fe.,r'c,O,O) with the weight 

factor W.21ih )3 (see Appendix II) over the momentum. region 

(pc., ~ + ~ p) • · It is implied that this region contains. 

m~menta P:, for which (p.c IE) = J • Denoting th~ inter-

garated quantities divided by the solid angle of .this region , 

by TJt.[,O,y) . (:index o/..1 . is omitted) .we get 
l: 

~rom (2 .13): 

T Ir. { ,fJ, 'f) _ 'l,IJ" { 2 s + 1)- ½ . ~ (. l 1 7 c: + z;" 
.~ ~T/T·:li L- c_- I 

_ Cc-·( s e' ½; IJ, 1ci se'½) · 2J 1' · (-n, IJ, r,-r} ·p{o1.; Iv) 
l-e 'Z:c, V 

(4.2) 

The interchange of the upper and the lower rows of the 

arguments of'ttle coefficient G~ (stt.; tJ '/t., st'½) multiplies 

thtscoefficient by the factor (-/)2.S+t~IJ+ t"/e (see f 2]p •. 

1060). But since 
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these rows are identical, this does not affect Gz;; in any· way and 

2s~L+tJ.+ie. must be e-y-en. As the spin o:f. the particle g'is half;...integral, 

2s+l is ev:en · and tJ, + le must therefore -be even •. So. the decay. 

produc~s angu.lar distributio~; T;{rz9,'f) is determi·ned_ only by even 
. . £t . 

s. tensors of the initial state of the particl~d the .· decay proton . 

. ;olarization (i.e. s. tensors 7;, T;f . ) only by odd_·._ ~n~s. . 

By measureing the angular distribution and polarization of the 
. . . . 

. particle C we obtain· information about .f' ( 'I,, II) ;aG,ut the spin_ and. pari- · 

ty of the particle a. and, vice Yersa, if the latter·are known, we 

oa.n predict .all s.t_ensors,,- Tt.c(,8-, ~). 
. e 

By integrating the angt'llar distribution T: {~ r)w:_i :th respect to 

,{J or ff , ue may obtain ~eneral. formulae for distributions wic~· 

. are measured in experiment (e~g. by. integrating with ~espect to J} .we . 

get a distribution in an angle bet~een the plarie of A:0 
-creation srid 

the plane of its decay) [ 16] • 

Iti conclusion, the author believes it his duty to emphasize that 
... ~ ,. . . 

a considerable part of the subj ec.t-matter has 9een·worked o_ut in col-

laboration with A.M. Baldin (see [ 3]) to whom t~e au.tho·r owes deep 
. , I . -

gratitude for the dis_cussion of some other questions _treated · 1n this 

paper as well. The author takes pleasure in thanking professor M.A.Mar­

kov for his sustained interest and L.G. Zast~venko for discussion.of a· 

number of problems relative to the rotation group representation theo.;.. ., . 

ry. 
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A p~p en d·i x I. 

- . .. 
A quantum-mechanical state. may be described· not· only• by · 

wave functions or density matrices but by giving mean values of 

set of Some-- , op~;ators [
12

] ., In particular,~ we u . - . . ' a 

wi.11 use this procedure to describe the spin state of a partio- -. 
. : . . I'! ' - . . .. 

le · ( or of a_ system of p~icles) .- Note that in eXJ?eriment as ,well 

it is the mean value of the spin vector operator (the so{_calied 
. ' ( 

polarization of particle), for instl;Ulce, that is measured and , 

not the probabilities of some values , of spin· projection. .. . ~ ( ' . 
;\ 

Let. JI- lie the op'erator acting 0~ the spin_ variables of.· 
' - . .. 

a particle with spin - l ; _ the state . of the particle is descril: 

ed by the density matrix (m.1f,,lplm.z.J,.) / ' where rn, and m2. 

are magnetic quantum- numbers;fthe- o~her variables of a represen-
. . . . "' 

tation •. It is possible to find the ·mean value -of . ':fl- in this 
. " 

state, if th~ matr_ix element~-cf./1- . _in the same mJ ~ -repre-

sentation are known: 

-- , . 

fl = > '. (m, r, I JI m,-r,}(m, f, If I mi r.) = sf_ffip) c1.11. 
hl,,Pl.z,fl:f~ . _ _ •_- · , . . ~, ~, ~-

Let us f9~ with. spin vector operator projecHoi½~\ensor 
' -

of the rank Cf which,transforinf under' three-dimensional rota-

tions· by the irreducible representation .of weight '/ and de­

. note ·1 ts, components byj'I~ Note, that, by its structure· this 
-

operator'has-the same covariance as 
-"\ - . . d , · in tp.e sense that 

- -

· under rotations_ it -transforms like· Y;v {n). and not like Y,v (ii} . 

"Jv 
For example; fi · are simply cyclical (or canonical 

[ l~) . . "' 
J projections. of . 'J and transform like the vect_or ii;_ 



" 
Dependence of the matrix elements of .fJIJ" upon fYJ2. 

and mt· according. to the Wigner...; Eckart theorem [ 
8

] coresportding­

ly modified ( V is a 11contravariant" index in the above sense[) 

may be written as follows: 

( mi ~~1 fi 'fV/ tn, ~1) = ./2.i+ J ' { i fi II A $1/ if1 ){ ~1 I E'~){-1) i-m.z[ ii m, -m.i J ,:l'f V) 
. · · (I.2) · 

(if the spin variables and variablesf separate,(lf,I/J1-//,:f,).do~s 
. . . 

not depend upon ~1 ) • Inserting (I.2) into (I.l), we see that -
to know .A 'J,V we n.eed to lmow directly not the d~nai ty matrix but 

rather the quant'i ty 

. Ce e_ ( o,
1 
V}= ~ :Zi+i • L (-J}t-m~{i i "},-mz} ii lfV ){ m, ~t If I 111,i f~) 

. J ·s~".,z. r . 111 m . (I.3) 
· . " .t. ___,.. - 12 . . 

which is proportional to A q,v (aee also [ J). It follows from 

(l.3) that the quantities p(q,,v) ·tJ,= O, 1 ..• 2.i, V=-tJ,,-i+J, ... -t--tj 
may characterize the spin state of the particle with the same 

success as the density matrix. The inverse transformation from 

Cf, V -representation to m,1 m,i -represenation is the fol­

lowing 
• 

( m, r, If Im,~)_= {2.t'+ 1r½,p (:-1r'.,'''-,(u m,-mi I li q,v )pf,, f;{ i,v) 

(1.4) 

Note that fflJ fz ( 1, V} is the same density matrix l!{i th res­

pect to ~ as (m,f1 lp/mz.f}· 
By origin frl' ~ (j,JJ) may be called mean values or statisti­

cal mean values of the irreducible tensor spin operators. There-
. 

fore we will call them statistical tensors (abbr.a. tensors) in 
. [13] 

accordance .with (p. · 735) • 

Suppose we are interested only in distribution·of_probabi-



Presence of _the ·factor i-e in (II._2) assures :i.nvari_ance of the_ti..;. 

me-r~versal operator ac~ion on w~ve functions with definite t _and,/-' 

under additio~ of angular momenta [ 15J (i.~. the applicatio,n of this 

'Ji operator to 1(e;,, mity oe written in the same way as -
---~_,. . --

if' e =e,1-t1 ) Note that -

(e.~ s. It{} rp) :: (,{} 'f p I e~ £) *=r-1r,e +pt {{}ff pl e, ~ EJ 

to 7fe,J', and ?f ez)'1. 

(II .3) 

It may be establish~d in a similar way that (ff/'} takes t?-e 

form of' (17) in l~4](i.e. (flf')= 1 when f=f' and {f/f);.o 
when f :;t: p' } 

If {p 11
/ p }(f / f1 is required to b~ equal to ( f" / f'} · ac~ord­

ing to the Dirac_ formalism [ 5J , it turns oU:t that normalization 
-- . . -- -
(II~ l) requires that the tntegration with respect to p implied ·in 

the notation (f" ff )C-f ff'} should be performed with the_ weight 

facto_r ¾7ih/(wliich is ~quivalent to a certai~ summation) •. According·_ 

to Dirac -(see -[ 5] ,·§ ·24), this factor must be, introduced into ~very : 

formula in whiq_h integration wi tl_l. _respect to momenta is being perfor­

med. 

In connection with normalization (II.l), there arises a prob-

lem of obtaining with the help of f '{ ne_ ,fc j fe. Ve-9"'- II;;} _ 

quantities which can be d~re?tly-compar~d wit?, results of the experi­

-~ mental study of ctt & ➔c~:d reaction. What does p'{pe. i tfe 1/4 ffel V4 ) mean? 

There is a physical system which originally·consists (at the instant 

of time -T where T= 13/z, and V- · is .the module of the relati ;e velo-
a. 

city of the particles a and _ C: 1T= /141+1¼1 ) of particles-v-and .i 
enclosed in volume V, its state is described EY the quantities~ 

p(f. ;q,,,v,1,n xp:!f.)-(f:lf,,_) T_hen f'C~; ::, D, 0) . 
is a: probability that by the instant of ti~articles C and d with 

momentum pc. will appear in the volume V . The other _p' with i,, ia, f/4
1 

are quantities proportional to the mean values of cowresponding spin 

operators (see Appendix I} in J;he · as_;rnmbly of particles with such 

a.momentum • 

For comparison with the experiment it is necessary, first of al.l, . . 
to know how many particle~ C and d -·with momenta in the interval 
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will appear per 1 sec_., if given are the constant flux of· 

incident particles and target particles density_ (and not the number 

of particl~s - ·a· and d in. some volume). For this .p/{ f-; j ~ ,q ~ o) 

must be first divided by 2 T an~ integrated (with weight V/{2.nh/ 3 ) 

➔ - .... \' ' 
over the interval Cfe 1 fc.,. Ii f ) • If the resu.1 t is multiplied then by 

't?l-zr · (renormalization to the flux) ~' · we shall get the dif:f erential 

cross section ~cs for the reaction: 

(II. 4) 
, 

I , f~ is those module of 
. . -, 

the momentum fc , which follows from the law of energy·conservation. 

The interv~l(fc, fc+I.Jf} ia · assumed to .contain momenta with the modulef; . 

.a J2 is the f!-~lid angle of this interval. 

We could obtain_ ciuanti ties. f ;e. ( "fi 1 p: i IJ,e Ve 'J1 v4) ..., · 

normalized to the flux which· would be related with f'(n&',f~; tJ,~ 'JdVd) 

in just .the. same way as Jlil(ne}·is related with .f'{fk,fc; 41?,~o). 

They would be mean values of certan spin·opera-

tors / in. an assembly of· particles.with momentum in the interval 

(pc 1 pc rllf} The mean values thus obtained would depend, however, 

not only upon th~ nature of the spin state but upon the number of 

particle in such an assembly as well. . . A 

It is therefore the mean value of the ··operator . o'1 'j,V (for 

the particle c , ~or instance) computed per one particle that is - ' 

characteristic of the spin state: 

.A 'I" ( f,) = ( L~ II j.1/11,,)-pJe. {ii., fc'; IJ,, v, I), o). 11 ; (ii,) -

_ {l~llj.'J//t~}·f'(nc,fcj i, V, ~o). :..1 . · ~ 
· . __ · _ . . .fl ~i!J fc; o,~ qo 

(II.f) 
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F o r mu 1 a (2.10) 

-, ~ . . . . . .·· f (n,,p~ 1 o1'; Cj-c V, 1j,1V,1} = •. 

- . - . ½ . . -1., 
tv/41i o[(!,,~, f ){2t;,r'1}] ,_ -{{2t~ +f)(2 t{•t)}':1. • 

- . 

1 L C 'f,'v' .· . V { YI,) . ce.'-t,_'. ct' 0 
f [(2e,' .. 1}(2t,' + 1)}· ½ -

1e flt i" t/J - I./, I mf . . . e/ p el, 0 - . . >' 

,[(2. s: + J)(:z.s: + f) { 2f~ + 1){2 'f,i d)( 2;'•1} ( 2 :J, + i) ( 2. 72 + 1}] ½, 
- -

, X { 1~ 1, 1~; s/ ff'S,'; i,1 'I" ,d) • X (s,'j'.s,'; :o:c e1 
,, t.') ·, C !f 1v1 -,){ 

· - · · _ _ - ' · I jJ 2. I) IV' I I I -
. - - . 7 ~~ 

- I.. - . -

)( (s' i.' o1.; I R :Ii '=- {pttJ/ r. e. o1 )-- .- { s' e/ ;;,; 11
tJ~ E{f,,JJ (' e.· o1 J jf 

I I - I I f - · L 2, _ . "\ ->2 2. ;z /( 
. ' ' ~ - - . . . . 

-- . 

<c;:.,,,l · X (s, 9 s,; ~ l ~ ; e, uJ. X (l~ t• ,; ; SJ 1, s. ; l/'JI ti}~ 

, {(2s, •t){ 2 s,:.1) { 2Ja +1 ){2.i, + t) (2.1 +1} ( .2 7, ~ !)( 2 :t. +1 ))1/2 , . 
' . ~ . 

• [~u,,, Jf 2 e, ,1)] It~ . C Lo. ~ i e, ,e,. v~ t ii,, F C 'Iv .· x 
1 _ - __ e,oez.o _ Jlm1._ . - 9a 11~ 'Jtvt __ _ 

'f .i.,, cl, (ii,., ftr; tJ,a //,, I/,; v,) 

L denote a summCLtt'on t>Ve'"l - s/ Is/, ~', e/ 1 'J', L \ ,/2 J J, ~ J 

l, Cf, e,, ~ ,s,', s~, i,~, ·ti~ -aYLd i>1Je'l f_:m./, M, ml, v, i{, vi. -
-. 

/,f = {J."J[ h J1'. (2 RJ-' ·. ( {'• j Pa Y'· [ 1/2 • f/: p/]-~ . 

The symbol ( fc ; f ~ ) = ( E 'fpc) j E {fa)) eq~s -unity, if fc take ·such 

a value that the' ~aw of energy conservation is assured, and vanishes 

·otherwise. 
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