

3

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

В.В. Балашов, В.Б. Беляев, Р.А. Эрамжяя

P-887

1

учет двунуклонных корреляций в теории µ⁻-захвата легкими ядрами

.

х) х) В.В.Балашов, В.Б.Беляев, Р.А.Эрамжян

P-887

учет двунуклонных корреляций в теории и[¬]-захвата легкими ядрами ^{xx)}

1349 /

Объедяненный институт LACHINE BLLACHORAPHS БИЕЛИОТЕКА

х) Научно-исследовательский институт ядерной физики МГУ.

хх) Работа доложена на III Всесоюзной конференции по теории поля и элементарных частиц в Ужгороде в октябре 1961 г.

Вопрос о взаимодействии и - мезонов с ядрами подвергается в настоящее время интенсивному исследованию /1/. Изучение элементарного акта захвата µ -мезонов протоном, который может быть рассчитан наиболее точно, сопряжено со специфическими экспериментальными трудностями и не дает исчерпывающей информации о свойствах и - -мезонных констант слабого взаимодействия. Задача состоит в определении этих констант из опытов по захвату и -- мезонов сложными ядрами. Однако, в отличие от задачи и -захвата протоном, положение здесь значительно осложняется незнанием точных значений так называемых 'ядерных матричных элементов", связанных со структурой ядра. В настоящее время эти значения вычисляются в рамках тех или иных ядерных моделей. Возникает вопрос: позволяют ли используемые в теории 🏨 – захвата предположения о структуре ядра рассчитать ядерные матричные элементы, а следовательно, и определить константы с требуемой степенью точности?

Целью настоящей работы является исследование влияния двунуклонных корреляций в ядре на вероятности парциальных переходов при и -захвате. Известно. что в ряде задач ядерной физики можно пренебречь этими корреляциями: спины основных состояний, магнитные моменты и ряд других характеристик ядер подчас успешно объясняются в рамках одночастичной модели (схема j-j связи). Использование же модели ј-ј -связи в теории µ⁻-захвата сразу настораживает. Дело в том, что вероятность и -захвата определяется соотношением различных ядерных матричных элементов, включающих разные радиальные интегралы. Эти соотношения, вообще говоря, должны существенно меняться при учете смешивания оболочечных конфигураций, обусловленного парными остаточными взаимодействиями между нуклонами (корреляционными). В этом отношении ситуация сходна с описанием смешанных электромагнитных переходов в ядрах, вероятности которых очень чувствительны к смешиванию конфигураций.

Ниже излагаются результаты расчета вероятности парциальных переходов в реакции $\mu^{-+} 0^{16} \rightarrow N^{16} + \nu$

с учетом остаточных взаимодействий между нуклонами (модель промежуточной связи). Выбор ядра О¹⁶ в качестве объекта изучения был сделан не случайно. Во-первых, поскольку О¹⁶ - дважды магическое ядро, то использование схемы

i-i - связи было бы в данном случае наиболее оправдано; таким образом, выяснение роли корреляций в этом экстремальном случае даст, образно говоря, нижний предел эффектов, связанных со смешиванием конфигураций. Во-вторых, ядерные расчеты в данном случае более просты, а результаты более достоверны, чем для ядер с незамкнутыми оболочками.

Захват μ^- -мезонов кислородом по схеме (1) приводит к основному и трем возбужденным состояниям ядра N^- , лежащим ниже нейтронного порога (см. рис.1). Переход на уровень 3 характеризуется более высоким порядком запрета, чем переходы на уровни 2,0 и 1, и его вероятностью можно пренебречь. Специфическим достоинством задачн μ^- захвата ядром О¹⁶ является то, что изучение переходов на различные уровни позволяет выделить эффекты, обусловленные различными членами слабого взаимодействия. Так, вероятность захвата на уровень 0 очень чувствительна к величине эффективной псевдоскалярной константы Cp и не зависит от константы слабого магнетизма; наоборот вероятность перехода на уровень 1 не зависит от Cp, но изменяется при учете или неучете слабого магнетизма.

В схеме *j-j* -связи указанные состояния ядра N¹⁶ характернэуются следующнми конфигурациями типа "дырка-частица";

$$2^{-} p_{\frac{1}{2}}^{-1} d_{\frac{1}{2}/2} \qquad 3^{-} p_{\frac{1}{2}}^{-1} d_{\frac{1}{2}/2} \qquad (2)$$
$$0^{-} p_{\frac{1}{2}/2}^{-1} 2s_{\frac{1}{2}/2} \qquad 1^{-} p_{\frac{1}{2}/2}^{-1} 2s_{\frac{1}{2}/2}.$$

Взаимодействие частицы и дырки, обусловленное остаточным взаимодействием между нуклонами, недиагонально по конфигурациям *j*-*j* связи – возникает смешивание конфигурация. Для уровня 2⁻, например, волновая функция представляет собой суперпозицию членов:

$$\psi (2^{-}) = a_{1} | p_{\frac{1}{2}}^{-1} d_{\frac{1}{2}} + a_{2} | p_{\frac{1}{2}}^{-1} d_{\frac{1}{2}} + a_{3} | p_{\frac{1}{2}}^{-1} 2s_{\frac{1}{2}} + a_{\frac{1}{2}} | p_{\frac{1}{2}}^{-1} d_{\frac{1}{2}} + a_{3} | p_{\frac{1}{2}} + a_{$$

аналогичны выражения для $\psi(0)$ и $\psi(1)$. Коэффициенты смешивания определяются соотношением спин-орбитальных сил

$$V_{sl} = -\sum_{i} a_{i} (\vec{l}_{i} \vec{s}_{i}), \qquad (4)$$

4

ответственных за расщепление одночастичных уровней по *j*, и сил парного остаточного взаимодействия между нуклонами:

$$V_{ij} = [W + MP_x + BP_\sigma + HP_x P_\sigma] V (r_{ij}).$$
(5)

Здесь W, M, D, H – коэффициенты, характеризующие вклад сил Вигнера, Майораны, Бартлета, Гайзенберга, в эффективном двунуклонном потенциале; радиальная часть $V(r_{ij})$ выбирается в виде потенциала Гаусса $V(r) = -V r^{\beta r^2}$ или Юкавы $V(r) = -V_0 \frac{e^{-r/a}}{r/a}$.

Анализ электромагнитных переходов между интересующими нас уровнями $\frac{16}{10}$ ядра $\frac{16}{N}$ показывает, что смешивание конфигураций в данном случае довольно велико. Действительно, в предельном случае *j-j* связи между уровнями 1 и 0 возможен только чистый переход типа M1, а уровнями 1 и 2 - переход типа E2. Поэтому радиационный распад уровня 1 в основное состояние был бы пренебрежимо мал по сравнению с распадом на уровень 0. В действительности, интенсивности этих двух переходов - одного порядка $\frac{w(1 \rightarrow 2)}{w(1 \rightarrow 0)} = 1/3$. Это обстоятельство естественно объясняется смешиванием конфигураций $^{3/}$.

В нашем расчете волновые функтии состояний 2, 0, 1 были получены путем диагонализации соответствующих энергетических матриц. Параметры потенциалов (4) и (5) были взяты согласно работе Эллиотта и Флауэрса , где они получены на основании расчета различных характеристих ядер N^{15} , N^{16} , O^{16} и O^{17} (спетр уровней, вероятности β и у -переходов и др.). Результаты диагонализации приведены в таблице 1. $V_0 = 0$ соответствует пренебрежению корреляциями $j \cdot j$ -связь; оптимальное значение амплитуды парных сил $V_0 = 40-45$ Мэв $^{/3/}$.

С этими функциями были рассчитаны вероятности парциальных переходов на уровни 2⁻, 0⁻, 1⁻ в зависимости от амплитуды корреляций V₀. В рамках V-A варианта исследована зависимость вероятностей от эффективной псевдоскалярной константы и константы слабого магнетизма. Результаты расчетов приведены в таблице 2 и на рис. 2-4.

Из приведенных данных видно, что учет двунуклонных корреляций в ядре меняет рассчитанные вероятности парциальных переходов в 1,5-2 раза по сравнению с одночастичной моделью. Таким образом, ошибка в определении μ -мезонных

констант на основании одночастичных расчетов вероятностей составит 50-100%. Следует думать, что в ядрах с незаполненными оболочками влияние корреляций более существенно.

При подготовке к печати данной работы нами был получен препринт статьи П. Эриксона и Дж. Сенса, в которой обсуждается µ -захват в C¹⁶. Автеры интересуются только отношением вероятностей парциальных переходов 0⁺ → 0⁻ и 0⁺→1⁻. Давая несколько отличную от нашей оценку радиальных интегралов, входящих в скоростные члены, они приходят к тому же выводу, что и мы относительно роли смешивания конфигураций: учет остаточных взаимодействий между нуклонами меняет абсолютное значение указанного отношения в 1,5-2 раза.

6

- 7

Рис. 2.

00

Рис. 3.

<u>Таблица I</u>

Волновые функции состояний ядра **м¹⁶**

	J = 2 ⁻	а 1			
V.	p ¹ 2s; ³³ P	۴'d : ³³ P	p ² d: ³³ D	p ⁷ d: "F	p'd: 31D
0 45	0 -0,077	0,702 0,502	-0,592 -0,730	0,181 0,300	-0,350 -0,34I

 $\mathcal{J} = 0^{-1}$

V_	ρ'2S: ³³ P	ř'd : ³³ P	
0	I	0	
45	0,998	-0,057	

J= 1⁻

V.	p ¹ 2s: ³¹ P	p ¹ 25: ³³ P	p'd : ³¹ P	p'd: 33P	p ⁷ d: ³³ D
()	0,577	0,816	0	0	0
45	0,398	0,913	-0,053	-0,074	0,022

9

ŧ

ТАЕЛИЦА 2

Вероятности парциальных переходов в реакции

$$\mu + O' \rightarrow N' + V$$

в зависимости от амплитуды корреляций для различных значений эффективной псевдоскалярной константы и константы слабого магнетизма (в единицах $\frac{w}{sq^2(dzm_{ij})^3}$).

			§ = 0		S = 3,706
Ţ	X	V. = 0	V _e = 45	√ ,= 0	V _o = 45
	-8	0,39 10 ⁻²	0,18 10 ⁻²	$0,44 \ 10^{-2}$	0,20 10 ⁻²
2	0	0,29 10 ⁻²	0,13 10 ⁻²	0,34 10 ⁻²	0,16 10 ⁻²
	+8	0,22 10 ⁻²	0,10 10 ⁻²	0,27 10 ⁻²	0,13 10 ⁻²
	-8	0,38 10 ⁻²	0,33 10 ⁻²		
0	0	0,24 10 ⁻²	0,22 10 ⁻²		
	+8	0,13 10 ⁻²	0,12 10-2		
1-	-	0,08 10 ⁻²	0,05 10 ⁻²	0,10 10 ⁻²	0,07 10 ⁻²
	8=	м _г -м.		مور برو موجود کر بارد که اور موجوع ور مر	
	χ=)	Cp			

Литература

H.Primakoff . Rev. Modern Phys. 31, 802 (1959).
 A.Fujii, H.Primakoff. Nuovo Cim. 12, 327 (1959).
 M.Morita, A.Fujii. Phys. Rev. 118, 606 (1960).
 H.Überall. Phys. Rev. 116, 218 (1959).
 И.С. Шапиро, Л.Д.Блохинцев. ЖЭТФ, <u>39</u>, 1112 (1960).

2. F.Ajzenberg-Selove, T.Lauritsen. Nucl. Phys. 11,1 (1959).

ţ

3. J.P.Elliott, B.M.Flowers. Proc. Roy. Soc. A 242, 57 (1957)

Рукопись поступила в издательский отдел 9 января 1962 года.

۴.