

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лабораторня ядерных проблем

В.И. Никаноров, Г. Петер, А.Ф. Писарев, Х. Позе

P-863

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА СПИНОВОЙ КОРРЕЛЯЦИИ С_{кр} ДЛЯ (p-p)-РАССЕЯНИЯ ПРИ ЭНЕРГИИ 660 МЭВ В.И.Никаноров, Г.Петер, А.Ф. Писарев, Х.Позе

.

P-863

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА СПИЛОВОЙ КОРРЕЛЯЦИИ С_{кр} Для (p-p)-рассеяния при энергии 660 мэв

Направлено в Ж.ЭТФ

Аннотация

Измерен коэффициент спиновой корреляции С_{кр} при упругом рассеянии протонов протонами для энергии 660 Мэв под углом 90[°] в системе центра масс. Получено, что С_{кр} (90[°]) =0,22<u>+</u>0,18.

Abstract

The spin correlation coefficient C_{kp} in elastic proton-proton scattering was measured for an energy of 660 MeV at an angle of 90° in the c.m.s. C_{kp} (90°) has been found to be 0.22 <u>+</u> 0.18.

1. Введение

Коэффициент C_{kp} определяют как среднее значение оператора $\sigma_1 K \sigma_2 P$, где σ_1 и σ_2 – операторы спина рассеянного протона и протона отдачи, K и F-единичные векторы, направленные по p' - p и p' + p; p и p'-начальные и конеч-ный импульсы рассеянного протона в системе центра масс. C_{kp} характери уст корреляцию между компонентами спина двух протонов в плоскости рассеяния.

Впервые коэффициент С_{кр} был измерен при энергии 380 Мэв^{/1/} с целью выделения набора фазовых сдвигов при 310 Мэв.

Амилитуда упругого (p-p)-рассеяния может быть записана в виде^{/2,3/}:

 $M = a + \beta (\sigma_1 n) (\sigma_2 n) + \gamma (\sigma_1 + \sigma_2) n + \delta (\sigma_1 K) (\sigma_2 K) + \epsilon (\sigma_1 F) (\sigma_2 P).$ (1) Ско связан с коэффициентами амплитуды рассеяния следующим соотношением:

$$I_{\circ}(\theta) C_{kn} = -lm \quad de^{*}, \tag{2}$$

где $I_0(\theta)$ - дифференциальное сечение упругого (p-p)-рассеяния и $d=\delta-\epsilon$. $e=2\gamma$.

2. Эксперимент

Схема эксперимента изображена на рис. 1. Пучок протонов с энергией 660 Мэв рассеивался на полиэтиленовой мишени. Рассеянные протоны и протоны отдачи регистрировались совпадениями между сопряженными телескопами T_1 и T_2 , каждый из которых выделяет телесный угол 0,7·10⁻³ стерадиана. Анализ спиновых состояний протонов после рассеяния производился с помощью двух идентичных углеродных мишеней. Рассеяние на углеродных мишенях выделялось телескопами T_3 и T_4 , включенными на антисовпадения с T_1 и T_2 . Для регистрации направления движения протонов до рассеяния на углеродных мишенях и после рассеяния были применены газоразрядные камеры⁷⁴⁷. Производилось фотографирование проекций треков на плоскости, характеризуемые ортами K и P. В первой из этих плоскостей анализируется рассеянный протон, во второй - протон отдачи. При обработке экспериментальных данных учитывались протоны, проекции треков которых после второго рассеяния с направлением движения на углеродную мишень углы, заключенные в интервале 6,5-20°. Минимальный угол второго рассеяния, регистрируемый аппаратурой, равен 4,5°. Выбор несколько большего минимального угла, используемого при обработке результатов, позволяет избежать асимметрии, связанной с возможной неточностью юстировки телескопов T₃ и T₄. На рис. 2 приведены фотографии протонных треков, используемых при анализе эксперимента.

3. Калибровочный опыт

Для определения анализирующей способности углеродных мишеней применялся метод, аналогичный использованному в работе Б.М.Головина, В.П.Джелепова и Р.Я.Зулькарнеева¹⁵¹. С помощью полиэтиленового замедлителя энергия пучка протонов снижалась до 385 Мэв. Протоны, вылетевшие из первой мишени под углом 41° в системе центра масс и имеющие поляризацию 0,39±0,03⁶¹, анализировались на углеродной мишени, примененной в корреляционных измерениях. Для получения анализирующей способности обрабатывался тот же интервал углов второго рассеяния, что и при нахождении числа корреляционных случаев. При измерении С_{кр} (90°) в случае идентичных анализирующих мишеней можно принять, что их анализирующие способности Р₁ и Р₂ совпадают. В результате измерений получено P₁ = P₂ = 0,5±0,1.

4. Коэффициент Скр

Корреляционная асимметрия определяется соотношением:

$$a = \frac{N_{BB} + N_{HH} - N_{BH} - N_{HB}}{N_{BB} + N_{HH} - N_{BH} - N_{HB}},$$
 (3)

где N_{BB} обозначает количество совпадений, когда рассеянный протон и протон отдачи после рассеяния на анализаторах отклоняются вверх, N_{HH} соответствует случаю отклонения обоих протонов вниз, N_{BH} и N_{HB} относятся к двум возможным комбинациям для случая отклонения протонов в противоположных направлениях.

Коэффициент $\mathsf{C}_{\mathbf{k}p}$ выражается через асимметрию по формуле

$$C_{kp} = \frac{a}{\frac{P_1 P_2}{P_1 P_2}}$$
(4)

4

В результате измерений было набрано 630 корреляционных случаев, которые распределились следующим образом:

$$N_{BB} = 165 \pm 14 \qquad N_{BH} = 146 \pm 13$$
(5)
$$N_{HH} = 167 \pm 14 \qquad N_{HB} = 152 \pm 13 .$$

Приведенные здесь количества случаев получены после вычитания фона от углеродной мишени, поставленной на место первого рассеивателя.

Корреляционная асимметрия, вычисленная по формуле (3), равна

$$C_{kp} = 0,22 + 0,18$$
 (7)

5. Обсуждение

Настоящий эксперимент является частью программы опытов, необходимых для восстановления амплитуды рассеяния и проведения фазового анализа. В области энергий, меньших порога рождения мезонов, пяти независимых экспериментов оказывается достаточно, чтобы восстановить амплитуду рассеяния. Ввиду большой роли неупругих процессов при энергии протонов 660 Мэв необходимо осуществить, по крайней мере, 9 независимых экспериментов. Однако, как отмечалось в работе ^{/7/}, в случае рассеяния протонов на угол 90° в системе центра масс и в "неупругой области" возможно определить амплитуду рассеяния для этого угла из пяти экспериментов.

В работе $\binom{5}{1000}$ получены численные значения модулей коэффициентов амплитуды рассеяния. Использование результатов работы $\binom{5}{1000}$ и полученного в нашем эксперименте значения C_{kp} в соотношении (2) позволяет установить энак разности фаз комплексных коэффициентов е и d . Учитывая |e|>0 и |d|>0, получаем, что $sin(\delta_e - \delta_d) > 0$ с вероятностью = 0,9. δ_e и δ_d - фазы коэффициентов е и d.

Формула (2) нерелятивистская. Учет релятивизма не повлияет на полученный результат, так как релятивистской поправкой можно пренебречь из-за ее малости по сравнению с ощибкой эксперимента в определении С_{кр}. Для получения более определенных результатов для сдвига фаз $\delta_e - \delta_d$ необходимо не только экспериментальное уточнение значения коэффициента C_{KP} , но и более точное в сравнении с известными в настоящее время измерение көэффициентов C_{nn} (90⁰) и D_{nn} (90⁰), из которых определяются |e| и |d|.

Авторы благодарят Л.И.Лапидуса, Ю.П.Кумекина, С.Б.Нурушева и Г.Д.Столетова за полезные дискуссии.

Литература

- A.Ashmore, A.N.Diddens, G.B.Huxtable. Proc. Phys. Soc. 73, 957 (1959).
- 2. R.Oehme. Phys. Rev. 98, 147 (1955).
- 3. Л.Пузиков, Р.Рындин, Я.Смородинский. ЖЭТФ, 32, 592, 1954.
- 4. А.Говоров, В. Никаноров, Г.Петер, А.Писарев, Х.Позе. Препринт ОИЯИ, 1961г.
- 5. Б.Головин, В.Джелепов, Р.Зулькарнеев. ЖЭТФ, 41, 83, 1961г.
- 6. W.Hess. Rev. Mod. Phys. 30, 368 (1958).
- 7. С.Б.Нурушев. ЖЭТФ, <u>37</u>, 301, 1959.

Рукопись поступила в издательский отдел 25 декабря 1961 года.

Рис. 1. Схема эксперимента по измерению С_{кр}. С₁ и С₂ - анализирующие мишени; К₁, К₂, К₃, К₄ - газоразрядные камеры; Т₁, Т₂, Т₃, Т₄ - телескопы сцинтилляционных счетчиков.

7

Рис. 2. Фотографии протонных треков, соответствующих корреляционному событию.