IABORATORY OF THEORETICAL PHYSICS

IVan ULEHLA

ELECTROMAGNEIIC INTERACTION OF ANOMALOUS PARTICLES

WITH SPIN 1/2

1957.

ядерных исследа а

It is shown in this paper that relativistic wave equations for particles with $\operatorname{spin} 1 / 2$ which are different from Dirac equations exist. Particles described by these "anomalous" equations can have one or more self masses and the corresponding fields have positive definite charge density. The electromagnetic interaction of particles described by the simplest "anomalous" equations is investigated, magnetic moment, cross-sections for Coulomb and Compton scattering, and self energy are determined. All these quantities differ from analogous expressions for electrons.

Introduction

Attempts to find relativistic wave equations of known type

for particles with spin $1 / 2$ but differant from Dirac equations were not successfull. The proois of Wild Il and Gelfand and Yaglom (2) about the uniqueness of Dirac equations have spoken against them. But their proofs are not general. They are based on the assumption that the equations for particles with the $\operatorname{spin} 1 / 2$ can be derived only in the frame of the representation of full Lorentz group for maximum value of spin $1 / 2$.

Because such assumption has no reason we can attempt to look for new equations for particles with spin $1 / 2$ starting from some other representation of full Lorentz group. We have taken the representatIon D_{R} for maximum value of spin $3 / 2$ and we have been ahre to show that "anomalous" equations for partioles with $\operatorname{spin} 1 / 2$ do exist.

1. Relativistic form of the anomalous equations

If the equations (1) are covariant, matrices β_{p} fulfil following known relations:

$$
\begin{align*}
& {\left[\beta_{\nu} I_{u}\right]=q_{\nu \sigma}-q_{\nu \sim} \beta_{\mu}+g_{v, ~} \beta_{o}} \tag{2a}
\end{align*}
$$

$$
\begin{align*}
& \beta, 7-\beta_{2}=0, \quad \beta, \frac{y}{2}+y_{1}=0, \ldots=1,2, \tag{2b}
\end{align*}
$$

Where If v represent infinftesimaly small rotations and Z is the inversion matrix.

With the help of these equations and the known representation of the full Lorentz group ie. representation of In and z we can find matrices β. There are three inequivalent representtrons of $I_{\text {, w }}$ and $\%$ for max. spin 3/2: 12 rows, 8 rows and 4 rows which we denote by $\tau_{3}, \xi_{2}, \sigma_{1}$ respectively.

We have studied more deeply only such cases in which the representations of I,u are given by direct sums:

$$
I_{n}=I_{0,}^{\left(\sigma_{s}\right)}(\infty) \quad I_{r}\left(C_{1}\right) \quad n=0,1,2, \ldots
$$

It was shown $\ln [3]$ that matrices β, for energy algebra with maximum spin $3 / 2$ can be decomposed into direct product of Dirac matrices f_{j} and certain adjoint matrices α

$$
\beta_{p}=\beta_{2}, \quad \text { (no summation!) }
$$

The explicit general form of matrices α^{\prime}, was also derived in [3] by use of equations ($2 a, b, c$) only. But the coefficients of matrices α_{v} are not determined only by invariant condition, it is necessary to impose on them further restrictive conditions: the field must have positive definit charge density and the matrices $\dot{\beta}$.
must be irreducibel.
It is not too difficult to show that the case for $n=0$ is not permissible and that the case for $n=1$ gives only the well-known Pauli-Fierz equations for particles with $\operatorname{spin} 3 / 2$ and one self mass. The case for $n-2$ is more complicated. Now we can choose the coefficlients of matrices α_{y} in several ways: first we get the equations found by Ginsburg $[4]$ and Bhabhe $[5]$ for particles with tho spin states $3 / 2$ and $1 / 2$ and two masses $/ 73 / 2$ and $m / 2$ resp., secon the Harish-Chandre equations for particles with two spin states with one mass only, and third two different cases which lead to the equations for particles with spin $1 / 2$ and one proper mass. Matrices $\alpha \nu$ in the both "anomalous" cases are 5 -rows and have the following form:

where

$$
V_{1}^{2}=\varepsilon_{1} k_{1}^{2} \frac{k_{2}}{k_{1}-k_{2}^{\prime}}, \quad v_{2}^{2}=\frac{2}{3} \varepsilon_{2}{ }_{2}^{2}-k_{1}, s_{1}-k_{2}, s_{2}=\varepsilon_{2} v_{2}
$$

In the first anomalous case we have:

$$
\begin{equation*}
K_{1}+K_{2}, K_{1}>K_{2}>0, \leq, \quad! \tag{38}
\end{equation*}
$$

and in the second

$$
\begin{equation*}
K_{1}+k_{2}, K_{2}>0>K_{n}, \varepsilon_{1} \& 1 . \tag{3c}
\end{equation*}
$$

The matrices 5 , are irreducible if and only if

$$
k_{1} t \pm k_{0}, \quad x_{1} \mid \eta, \quad v_{2}, 0
$$

and they satisfy the relations

$$
\sum_{p}\left(\operatorname{sum}^{2}, \beta-10-0 \beta_{0} \beta_{0}\right)=0
$$

where means the sum over all permutations of indices.
The coefficients of matrices \because are not completely determined by the relations (3). One coefficient is free and represents free parameter of the particle. Its role will be clear later.

For higher n, ie. $n=$ we obtain among the various equateIons for particles with spin $3 / 2$ further equations for particles with spin $1 / 2$. They describe the particles with $n-1$ mass-stetes

6 and contain n-1 free parameters.
In the following we restrict ourselves only to the simplest anomalous wave equations. It is convenient to write down them explicitly in Rarita-Sohwinger form:

$$
\begin{align*}
& \frac{1}{2} S O_{1} B^{\prime \prime}-i K_{1} \gamma_{1} x_{1}-w x_{1} \text {. } \tag{4}
\end{align*}
$$

where

$$
v_{1}^{2}-\varepsilon_{1} k_{1} \frac{L_{2}}{k_{1}-k_{2}}, \quad v_{2}^{2}-\frac{2}{3} \varepsilon_{2}{ }_{2}^{2}-k_{1}, s_{1}-k_{2}, \quad s_{2}=\varepsilon_{2} v_{2}
$$

In the first anomalous ouse we have:

$$
\begin{equation*}
K_{1}+k_{2}, k_{1}>k_{2}>0, \varepsilon, \quad \cdots, \tag{36}
\end{equation*}
$$

and in the second

$$
\begin{equation*}
K_{1}+k_{2}, K_{1} \gg K_{n}, \dot{c}_{1} \leqslant 1 \tag{30}
\end{equation*}
$$

The matrices are irreducible if and only if

$$
k_{1} t \pm k_{0}, v_{i}, D, k_{s}, 0
$$

and they satisfy the relations

$$
\sum_{P}\left(6, \beta_{2},-\beta_{0}-0,3,3\right) \times 0
$$

Where means the sum over all permutations of indices.
The coefficients of matrices \because are not completely determined by the relations (3). One coefficient is free and represents free parameter of the particle. Its role will be clear later.

For higher n, ide. $n \geqslant$ we obtain among the various equateIons for particles with spin $3 / 2$ further equations for particles with spin 1/2. They describe the particles with nil mass-states 6 and contain n-1 free parameters.

In the following we restrict ourselfes only to the simplest anomalous wave equations. It is convenient to write down them explicitly in Rarita-Schwinger form:

$$
\begin{align*}
& \frac{1}{2} S, O_{1} e^{1} \text { in, } \sigma_{1} x_{1}, \cdots x_{1} \text {. } \tag{A}\\
& \frac{1}{2} S_{2} \partial_{1} 3^{x}-\therefore 2 y_{1} \partial^{x} x_{2}=u X_{0}
\end{align*}
$$

Here \backslash and X_{0} are usual Dirac spinors, β^{4} is spinvector introduced by Rarita and sohvinger $[7]$, γ, are orainary Dirac matrices.

2. Free anomalous particle

It is easy to verify with the help of the form (4), that the equations describe particles posessing spin 1/2. If we have free paro ticle without any interaction we get from (4) the equation for spio nor x^{\prime}

$$
\begin{equation*}
\delta_{\mu} \partial_{\psi}-i \frac{w_{2}}{K_{1}+K_{2}} \psi=0 \tag{g}
\end{equation*}
$$

and subsidiary conditions

$$
K_{2}^{2} v_{1} x_{1}+K_{1}^{2} v_{4} x_{2}=0
$$

$$
\begin{equation*}
-\vartheta^{\prime}\left(\frac{k_{2}^{2}}{\alpha_{2}^{2}}\right)\left(4 \partial^{k}-i \frac{\mu}{k+k_{2}} \gamma^{k}\right) x=\operatorname{k} R^{2}, k=1,2,2 \tag{6}
\end{equation*}
$$

by which X_{2} and S^{γ} are determined completely. The equation (5) is usual Dirac equation as we had also th expecto It is necessary to stress that for anomalous particle in interaction is impossible to derive for spinor X_{1} or X_{2} the Dirac equation. The equations (6) ∞ there are 20 subsidiary conditoris there - exclude the superfluous states with $\operatorname{spin} 3 / 2$ and $1 / 2$.

The wave equations for free anomalous particle can be derired from Lagrangian because the matrix A satisfying the conditions

$$
A B=B
$$

 Therefore we have the usual Lagrangian

$$
L=L\left(413 \sigma_{2} \varphi-L \| \varphi_{1}\right) \text { with }\left(f \theta^{\prime}\right.
$$

The "switch on" of the electromagnetic field does not represent any principial difficulty. We can define the interaction term in the classical way by

$$
\lim _{\operatorname{sen} t}=\left(\operatorname{lu}_{4}\right)
$$

The electromagnetic interaction does not change the number of subsidiary conditions only their form is different from (6).

To examine the behavious of anomalous particle interacting with electromagnetic field we have calculated: (a) the intrinsic magnetic moment, differential cross-sections for (b) Coulomb and (c) Compton scattering, and (d) self energy of the particle.

a. Intrinsic magnetic moment

In the non-relativistic approximation we can derive the intrinsic magnetic moment of the anomalous particle (egg. by the metho used in $[8]$). In both cases the magnetic moment has the value (measured in Bohr's magnetons).

$$
m=1-20
$$

where

For $\mathrm{Fr}>0$
is
and for $k_{2}<0$

$$
\frac{1}{i^{3}}<m<1
$$

$$
m>1
$$

Magnetic moment is anomalous. The anomality is given by the factor $\|$, The values $m=1$ or $M<\frac{1}{\square}$ are excluded, because in these cases the wave equations are reducibal.

b. Coulomb scattering

The coulomb scattering was calculated in the first approximation of the perturbation theory by Feynman method. Higher approximation and radiative coorections were not considered because mathematical difficulties. Wo took for the transition amplitude the expression Uß_u
The differential cross-section for the scattering on fixed center is then given by

$$
d \sigma=\pi\left(\frac{e^{2} x}{\mu}\right) \frac{\mu^{2}}{p^{2}} \frac{d \cos \hat{q}}{(1-c n \nu)^{2}}\left[2 \mu^{2}+1+\cos \sqrt{p^{2}}+4 \bar{\eta}\left(1+q \frac{p^{2}}{\mu^{2}}\right)(1-c \pi)\right]
$$

Last term in the squate bracket represents just the deviation from similar expression for eledtron. It is caused by the existence of anomalous magnetic moment. l_{l} differs also from cross-se8tion for ordinary $1 / 2$ spin particle with anomalous electromagnetic Interaction as was used in the theory of Pauli.

The main difference against the cross-section for electron is in non-vanishing bigh energy term. For high energies of the incidens particle $\alpha ?$ tends to the constant value.

c. Compton effect

The Compton effect was considered by the same method as the Coulomb scattering. Starting from the transition amplitude

$$
\left(\beta_{e}\right)\left[\left(\beta_{1} p_{0}+\alpha_{0}\right)-u\right]^{-1}\left(\beta e_{0}\right)+\left(\beta e_{0}\right)\left[\left(\beta_{1} p_{0}-k\right)-\mu\right]^{-1}\left(\beta_{e}\right)
$$

we calculated the cross-section $d_{\|}$for the light polarised after scattering in the same plane as the incident light and $\alpha \tau_{\perp}$ for the outgoing light polarized perpendicularly to the polarisation plane of incident light The exact eifpressions are very complicated and therefore we write down only approximate results for non-relativistic and relativistic cases.

In the non-relativistic limit is

$$
\frac{d \sigma_{11}}{d \Omega} \times\left(\frac{d \sigma_{n}}{d \Omega}\right)-\quad \text { electron, } \frac{d \sigma_{1}}{d \Omega} \times 4 \frac{e^{4}}{\mu^{2}} g^{4} k_{0}^{2}
$$

and in extreme relativistic limit:
a - for large scattering angles:

$$
\frac{d \sigma_{11}}{d \Omega}, k_{0}, \frac{d \sigma_{2}}{d Q_{2}} \frac{1}{k_{u}}
$$

bo for small angles:

$$
\left.\frac{d \theta_{11}}{d \Omega} \frac{d \sigma_{11}}{d \Omega}\right) \text { electron } \frac{d \hat{O}_{1}}{d \Omega} \approx 4 \frac{e^{4}}{42} d^{4} k_{0}^{2}
$$

where k is the energy of incident photon measured in the units of mass of the anomalous particle 。 $d \sigma$ is given by $d \sigma_{11}+d \sigma_{1}$ In the extreme relativistic case the total cross-section

$$
\sigma_{r}=4+g^{4} e^{4} k_{0}
$$

is increasing linearly with the energy in contrary to the total cross-section for electron. The interesting deviation of $d \sigma_{1}$ for
non-relativistic case could become the basis of investigation for what kind of particles to apply these anomalous equations.

d. Electromagnetic self-energy

In analogous way as before the electromagnetic self-energy of the anomalous particle was calculated. We obtained
where \mathcal{E} Is invariant quantity and L is amplitude of the wave function. Although the self-energy diverges quadratically the theory can by renormalised. The utilisation of this fact is limited beau se complicated mathematic procedure by higher approximations.

© conclusion

The behaviour of the anomalous particle interacting with eleatromagnetic field is dependent on the parameter \mathcal{C}. We can call it as a parametr of anomality. For $Q=0$ we get the results known from the theory of electron.

It is very difficult to say if the anomalous equations are usefull for description of some particles with $\operatorname{spin} 1 / 2$ as for example byperon, nucleons or, mesons on the basis of results which we obtaine. Assuming especially the anomalous equations are convenient for, U meson we must put $g \ll 1$ according to the experiments of Ledermann. Then all deviations are neglible and the electromagnetic
interaction does not unable us to distinguish between electron and Meson. Therefore we have just now begun to study other type of Interactions.

It is possible to introduce mesons interaction without any incompatibility with subsidiary conditions. But in this case the pros blem is complicated in other manner. For a given type of interaction - for example pseudovector - there are several independent invariants, and it is difficult to choose among them the correct invariant form before calculations.

7

```
IL!terature:
```

E. Wild: Proof. Roy. Soc. A 191, 253 (1947).
I.M. Gelfand, A.M. Yaglom: JETF 18, 703, (1948).
I. Úlehla: Czechosl. Journ. Phys. 4, 101, (1954).
V.I. Ginsburg: JETF, 13, 33; (1943).

Bhabha: Phil. Mag. 1952, 43.
I. Úlehla: JETF 1957 (in press).
N. Rarita, J. Schwinger: Phys. Rev. 60, 61 (1941).
I. Úlehla: Czechosl. Journ. Phys. 4, 3 (1954).

* For scalar field $\dot{1}$
with scalar coupling to anomalous particles φ we have following linearly independent invariant forms

$$
\phi \varphi \varphi, \phi \varphi \beta, \phi \beta_{\mu} \varphi, \phi \varphi, \beta_{\mu}^{\mu} \varphi, \phi \varphi \beta, \beta, \beta_{\nu}, \phi
$$

