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It 1is shown in this paperkthat relativistic wave equations'for
particles with spin l/ZtWhich are different from Dirao\equations
‘existe-PartiClesfdescribed byvthese "anomalous! equations‘can have
]bné or more'self masses and‘the COrresponding fields have-positive
fgpdefinite charge densityo The electromagnetic interaction of partic-
fgles described by the simplest "anomalous" equations is investigated,
p;magnetic moment, cross—sections for Coulomb and Compton scattering,
‘lend self energy are deternined. All these quahtities differ from ana-

e{logous expressions for electrons.

Introduction

‘Attempts to findvrelativistic wave equatlions of known type
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for particles with spin 1/2 but differnnt from Dirac equations were
Tnot successfull. The proofs of Wild- ’lﬂ and Gelfand and Yaglom
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ZJ about the uniqueness of Dirac equations have spoken against

i{them. But their Droofs are not general. They are based on the assump-

Pﬁtion that the equations for particles with the spin 1/2 can be derived

t;nly invthe framc¢of the representation of-full»Lorentz group for maxi- .

V‘mum value of spin 1/2.

Because oUCh assumption has no reason we can attempt to look

Jfor new equations for particles,with spin. 1/2 starting from some other -
‘representation'of full Lorentz group. We have taken the representat-
“lon D for mayimum value of spin 3/2 and we have been abhle to show

R
‘that "anomalous" equations for partieles with spin 1/2 do exist.



l, Relativistic form of the anomalous equations
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'If the equations (1) are covarilant, matrices 2 fdlfil fol-
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lowing known relations:
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".where'.I;;LQ‘represent infinitesimaly smalirotations and £ is
'jfithevinvéision matrixe. |

g ‘With the help'of these equaﬁion” and the known representation
V,’of the full Lorentz group 1.8, representdtton of I}H and 7, we

R can find matrﬂceo /o s e There are three inequivalent representa-

LJon of .TL;V a4;/ Z. for max. spin 3/2: 12 rows, & rows and 4

 rows which we denote.by fZ;} :fq, @1 respectively. |

| We have studied more deeply only such cases in which the repre-

‘sentations of I w;f are given by direcct sums:
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It st shown in [BJ that matrices_ﬁy for energy algebra with

'fmaylmum spin 3/2 can be decomposed into direct product of Dirac mat-

s

" rices }p. and certain adjoint matrices
' a - : v

b, N . (no sumaticn!)
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The explicit general Torm of matrices <, was also derived

T  1n [3] by use of equations (2a,b,c) only. But the coefficients
of matrices «{v are not determined only by invariant condition, 1t

s necessary to impose on them further restrictive conditiohs: the

DF){}

field must.have positive definit charge density and the matrices



must be'irreducibel.

It is not too difficult to show that the case for n = 0 is not

ermissible und that the case for n = 1 glves only the well-knéwn
ﬁfaﬁli—rier equationg for partﬁclos with spin 3/2 and one self mass.
;The caﬂe for n =2 15 more compl icauod. Now we can choose thé coeffi-
ients Of’m&triCCS’{p# in geve*al ddjb- flrst we get the equations
‘found by Gihsbung [4] and Bhabha (5] for particles with the
f fsp1n states 3/9 and 1/2 and two masses'/yjé' and nf%& resp., se-
kxicond ‘the Harigh—Chandrc equatibns for pai%icles with two spin states
{with one mass*only, and third two different cases which lead to the
iéquationukfor partlcles with epir‘x’i/z\and one proper mass. Matrices

Tiaﬁw " 4n the both "anomalou s" cases are 9 -rows and ‘have the

j’;f;ollowing form,
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‘vahc,matrices 4, are irreducible if and only 4f
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whéré = means the sum over all permutations of indices.
| " The ooeffioients of matrices ‘g‘ are not completely determined
. by the relations (3). One coefficient is free and represents free

Evecr———cT

parameter of the partioleo Its role will be clear later.

‘ "~ Por higher n, 1.e. /17 , we obtain among the various equat-
| 1ons Por particles with spin 3/2 further equations for particles
with'apingl/z.‘They‘desoribefthe particles with n-1 mass—states
| 6/ =and contain n~1 frec parameters. |

'.In‘the following we restriot ourselfes only to the simplest

 anomalous wave equations. It is convenient to write down them ex-

'”T}plicitly in Rarita-Sohwinger form:
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where .
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 In the first aﬁomaloﬁs oase we have:
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‘where ?T- means the sum over all permutations of 1nd10350
Tho ooeffioients of‘matrices 'w~ are not completely determined
’:by the relationa_(3). One coefficient is free. and represents free
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~ parameter of the particle. Its role will be clear later.

-~ Por higher ;,ﬁi.ea N~ ., we obtain among the various equat-

| iohd for particles with spin 3/2 further equations for particles
A“withjspinv1/2.'They5deSOiibe7the particles with n-1 masséstates :
'[fél and’ ccntain n~1 free parameters.

In the following ve restrict ourselfes only to the simplest

‘V“”anomalous ‘wave equations. It.is convenient to write down them ex=

*,m p11c1t1y in Rarita-Schwinger forms
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Here \: and J@ are usual Dirac spinors, /5 is spinvector

introduced by Rdrita and Schwinger [7? ’ 3“”} are orﬂinary Di~

~ rac matrices.

2. Free anomalous particle

It 1s easy to verify with the help of the form (4), that the
equatlions déScribe pérticles poseSsing'spin 1/2. If we have free paf;
ticle without any interaction we get from (4) the equation Por spi°'

nor MX' - ,
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. and subsidiary conditions ’ ‘
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by which :Y& and Eiytare determined. completely, Thebequation (5) is
usual Dirac equation as we had also tbh expécto It is necessary to
stress that for anomalous particle in interaction is impossible to
dorive for spinor :¥,or JQ& tho Dirac equation. The equations (6)==
there are 20.suosidiary oondit%ns there - éxclude the superfluous

 states with spin 3/2 and 1/2.



3. Electromagnetic interaction -

- The wave‘equations for free anomalous particle can be deri-
ved from Lagrangian becanse the matrix /ﬁ- satisfying the condif
_ tions | ' |

‘Af>f=a$;;ﬁ |

{ / ) - .

where /1= (o © Q ?_ - diag /fnf 4 &£ <./ - exists.
Therefore we have the usual Lagrangian | | | |

| L t /Lf /’5 C"u L/ uw cf”‘f)."'it-h L*
£
The "switch ‘on! of the electromagnetic field: does not represent
g any principial difficulty. We can define the interaction term in the
elassical way by

hé.'w‘[ A U{M s
The electromagnetic interaction does not change‘the numbexr of sub-
sidiary conditions only their form is different from (6).
To examine the behavious of anomalous particle interacting
with electromagnetic field we have calculated: (a) the intrinsic
magnetic moment, differential cross—sections for (b? Coulémb and

(e) Compton scattering, and (d) self energy of the particle.

ae Intrinsic magnetic moment

‘In the non-relativistic approximation we can derive the in-
trinsic magnetic monent of'the'anomalousAparticle (eegs by the me-‘:
‘thod used in [é]").‘ In both cases the magnetic moment has the
value (measured in Bohr's magnetons). |

Wy=(-%.o  where ¢ =z~
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Magnetic moment is_anomalous. The anomality is given by the
factorVKi e The values m = 1 or M s W are excluded, because in -

‘:these cases the wave equations are reducibal,

‘be. Coulomb scattering'

The Coulomb scattering was calculated in the first approximate-
l*iion of the perturbation theory by Feynman methad. Higher approximat=

’””ion and radiative conrections were not considered because mathematim

" cal difficulties. Wd took for the transition amplitude the expressior
The differential cross—section for the scattering on'fixed

~ center 1s then given by
L 2
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Last term in the squate bracket represents just the deviation
from similar expression for eleidtron. It 1s caused by the existence
of anbmalous magnetic momeate b3, differs also from cross-see=
tion forvordinary‘l/z spin particle with anomalous electromagnetic
3.f1nteraction as was used in the theory of Paulie. |
'» The main difference against the cross—section for electron is
i in non—vanishing high energy term. For high energies of the incident
’ particle AL tends to the constant value.

Ce Compton effect

The Compton effect was considered by the same method as the

Coulomb scatteringa'Starting ffom thé transition amplitude
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we calculated the cro°s~section.CJQT for the light polarised aftezr
scattering in the same plane as the incident light and o T & for
7the outgoing'light polarixed perpendicularly‘to the polarisation -
‘plane of incident'lighto The exaot e&piésSions are very complicated |
and‘thereforé ‘we write down only approxi@ate results for non-rela-
tivistic and relativistic caseso

In the non-relativistic limit is

e ‘;{‘) - .electron, / — ,-773<? K,
dse Tl dse ) | 2 ey
and in extreme relativistic limits '
a o for large'scattering angles:
O,{®/, w vf‘“” ld/ @1 '[ X
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b. for small angles:
o @7/ o 0/( . ol @, </ YR
- = felectrong = g Y e U A
/5 ) C/JZ / 'f;’/ Sl “ <

.where kk) is the energy of incident'photon measured in the units
of mass of the anomalous particle. o/ox/ ia given by CjQ%-+6¥QZ

In the extéme relativistic case the fotal cross-section
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is inoreasing linearly with €he ennggy in contrary to the total

cross-sgotion for electronorThe interesting deviation ofC{Q& for
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non-relativistic case could become the basis of investigation for .

what kind of particles. to apply these anomalous equations..

d.‘Electromagnetic selféenergy

~ -

In analogous way as before the electromagnetic self-energy of

the anomalous particle was calculated. We obtained

('f?)éwcfwirg{é’f%ﬁbQ#~DGﬂMZN§iJfﬂ"bﬁ”ﬁg
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where;(S is invariant quantity;and LL is amplitude of the wave

. function. Although the selt—energyAdiverges quaﬂratically the theory

can by renormalised. The utilisation of this fact 1s.1limited becau-

se complicated mathematlic procedure by higher approximations.

Qonclusion

iThe behavliour of the anomalous particle interacting with elec~

. ¢
tromagnetic fileld 1s dependent on the,parameté ¢} o We can call 1t
‘ . . ' r : & :
as a paramet% of anomality. For ¢/ = 0 we get the results known from.
: oo : '

the theory of electron.

i

| It is very difficult to say- if the anomalous equations are use=
full for description of some particles with spin 1/2 as for example hy=

perons, nucleons or k, ‘mesons on the basis of results which we ob—
s
tained. Assuming especially the anomalous equations are convenient

,for/bo meson we must’ put g ﬁé ,lvacccrding to the experiments of
; < . ~
Ledermanne Then all deviations are neglible and the electromagnetis

i
1
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:interaction does not unable us to distinguish between ‘electron and '
| }*meson. Therefore we have just now begun to study other- type of
',interactions. | |

It is possible to introduce ~£5 mesons interaction without any
_incomparibility with subsidiary conditions. But in this case the pro-=

blem is complicated in other manner. For a given type of interaction
’:nr— for example pseudovector - there are everal independent invariantsﬁ
ﬁ"hifand it is difftcult to choose among them the correct inVariant form |

tl?febefore calculations.:.« 77377E7‘9f45
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S * For scalar field CD with scalar coupling to anomalous.
”*particles 'f we have following linearly independent 4nvariant formsz
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