

8

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

В.С. Барашенков, В.М. Мальцев

P-850

ОБРАЗОВАНИЕ ДЕЙТОНОВ ПРИ ВЗАИМОДЕЙСТВИИ БЫСТРЫХ НУКЛОНОВ С ЯДРАМИ

Дубиа 1961

В.С. Барашенков, В.М. Мальцев

P-850

ОБРАЗОВАНИЕ ДЕЙТОНОВ ПРИ ВЗАИМОДЕЙСТВИИ БЫСТРЫХ НУКЛОНОВ С ЯДРАМИ

Направлено в Nuclear Physics

Аннотация

Большой выход дейтонов в протон-ядерных взаимодействиях при энергиях Т >> 1 Бэв можно объяснить периферическими взаимодействиями первичных протонов с ядрами. Источником дейтонов при этом являются неупругие нуклон-нуклонные взаимодействия.

Abstract

A large yield of deuterons in proton-nuclear interactions at T >> 1 BeV can be accounted for the peripheral interactions of primary protons with nuclei. Deuterons are generated in inelastic nucleon-nucleon interactions. В работах многих авторов показано, что нуклон-ядерные взаимодействия в очень широкой области энергий, начиная от нескольких десятков Мэв и до очень больших энергий порядка десятков и сотен Бэв, хорошо объясняются механизмом внутриядерного каскада /см., например, работы где приведена подробная библиография/.

Однако, в настоящее время уже накопились экспериментальные факты, которые не удается объяснить в рамках такой простой модели.

В работах^{/8,9/} впервые было обнаружено, что в нуклон-ядерных взаимодействиях при энергиях порядка нескольких сотен Мэв с большой вероятностью образуются дейтоны. Так, при энергии Т = 660 Мэв сечение образования дейтонов на ядрах Ве, С. О составляет около 1% от сечения всех неупругих процессов. В последующих экспериментах это явление обнаружено и при больших энергиях^{/10,11/}.

Оценки показали, что столь большое сечение образования дейтонов при энергиях, в сотни и тысячи раз превышающих его энергию связи, нельзя даже качественно объяснить, оставаясь в рамках простой модели внутриядерного каскада.

В работе^{/12/} показано, что в области энергий порядка нескольких сотен Мэв можно получить согласие с экспериментальными данными по порядку величины, если учесть не только парные взаимодействия каскадных частиц внутри ядра, но и принять во внимание взаимодействия с группами нуклонов, образовавшимися в результате флюктуаций плотности ядерного вещества. Для этого необходимо, чтобы флюктуация произошла в объеме, размеры которого не превосходят величины керна нуклона; лишь в этом случае флюктуацию ядерного вещества можно рассматривать как единое целое^{1/}.

1/ Под керном мы понимаем центральную область в нуклоне с радиусом $r \sim \hbar/MC_{-0.2.10}^{-13}$ см, где сосредоточена основная часть ядерного вещества нуклона 7.13/. В более поздней работе 14/ максимальный размер области флюктуации выбран равным де'бройлевской длине волны первичного нуклона λ : . Однако это справедливо лишь для точечных частиц /или в области малых энергий, когда длина волны λ значительно больше размеров керна/. При взаимодействии реальных частиц определяющей -является не де'бройлевская длина волны λ : а геометрические размеры этих частиц. Однако, с ростом энергии упругое взаимодействие первичного нуклона с дейтоном приобретает все более ярко выраженный дифракционный характер. При этом вероятность столкновений с большой передачей импульса дейтону быстро уменьшается. Как показали оценки, образование дейтонов за счет флюктуаций ядерного вещества становится несущественным уже при энергиях T~ 1 + 2 Бэв.

При энергиях, больших нескольких Бэв, источником дейтонов могут являться неупругие NN и πN столкновения внутри ядра^{/15/}. Однако оценки показывают, что большая часть родившихся таким образом дейтонов поглощается, єще не успев покинуть ядро^{/16/}. Непоглощенными остаются в основном лишь дейтоны, родившиеся в далекой диффузной области ядра, где столкновение первичного нуклона с нуклоном ядра не сопровождается внутриядерным каскадом. Передача импульса ядру при этом невелика и ядро остается слабовозбужденным.

Для расчета таких столкновений можно воспользоваться оболочечной моделью ядра. Обозначим через N_{nlj} и P_{nlj} число нейтронов и протонов на уровне с квантовыми числами (n,l,j). Пусть коэффициент M_{nl} характеризует парциальный вклад от взаимодействия с нуклоном, находящимся

на этом уровне. Тогда наблюдаемое на опыте отношение чисел рождающихся дейтонов и протонов для некоторого ядра Х

$$\left(\frac{d}{p}\right)_{X} = \left(\frac{d}{p}\right)_{NN} \Sigma \left(N_{n\ell j} + P_{n\ell j}\right) M_{n\ell}, \qquad (11)$$

где $(\frac{d}{p})$ -отношение числа дейтонов и протонов с равными импульсами, рождающихся в неупругом *NN* столкновении, а суммирование выполняется по всем участвующим в реакции уровням ядра *X*. Число этих уровней определяется энергией возбуждения ядра *с*, которая является существенным параметром теории.

4

На рисунке приведена зависимость отношения $(\frac{d}{p})$ от величины ϵ для случая взаимодействия 25-Бэвных протонов с ядрами платины. Расчет выполнен для угла $\theta = 16^{\circ}$ в лабораторной системе координат и импульса рождающихся частиц $p_d = p_p = 5.3$ Бэв/с, что соответствует условиям эксперимента в работе^{/10/}. Значение $(\frac{d}{p})_{NN}$, мы взяли из работы^{/15/}, где для его вычисления была использована статистическая теория множественного образования частиц. Коэффициенты $M_{n\ell}$ вычислены по данным Бениофода.

Для согласования с экспериментальным значением $(\frac{d}{p}) = 0.024 + 0.003^{/10/}$ следует предположить, что $\epsilon \sim 8$ Мэв, т.е. что основная часть дейтонов рождается в столкновениях, при которых возбуждаются лишь са-мые верхние уровни ядра.

Аналогичный результат получен для ядра алюминия.

Сравнение экспериментальных и теоретических данных приведено в Таблице 1.

Как видно, модель периферических взаимодействий протонов с ядрами может объяснить известные экспериментальные данные. Характерной чертой этой модели являются сильные изменения выхода дейтонов вблизи магических ядер.

В заключение мы считаем своим приятным долгом поблагодарить Д.И. Блохинцева, И.К. Взорова и М.Г. Мещерякова за обсуждения и ценные критические замечания.

5

ТАБЛИЦА . І

6

Отношения чисел рождающихся дейтонов, протонов и π^+ - мезонов

	Теория	Эксперимент/10/		
	$(2p)_{7+0.03}$	0,024 ± 0,003		
	(dp) AC 0,02	0,017 ± 0,002		
•	$(d_p)_{p+1}$ $(d_p)_{p+1}$ I,5	I,4I ± 0,34		
	(d_{+}) 0,08	0,080 ± 0,010		
	(d/T+)Ae 0,05	0,053 ± 0,008		

7 $\left(\frac{d}{P}\right)$ Tt 0,05-0,04-0,03-0,02 10 15 EMev Рис.1.

1. N.Metropolis, R Phys.Rev. 110,	.Bivins, M.Storm, A. 185 (1958).	Turkevich, I.M.M	iller, G.Friedland	er.	
2. N.Metropolis, R Phys.Rev. 110,	.Bivins, M.Storm, I.M 204 (1958).	M.Miller, G.Fried	lander, A.Turkevid	ch.	
3. В.М. Маль	цев, Ю.Д. Про	кошкин. ЖЗ)ТФ, <u>39</u> , 16	25 /1960/.	
 V.S.Barashenko R.M.Lebedev, V Wang-Shou Fend 	v, V.A.Beliakov, V. /.M. Maltsev, P.K.Ma g.Nucl.Phys. 14, 522	V.Glagolev, N.D. rkov, M.G.Shafra 2 (1960).	ılkhazhav, Yao Ts nova, K.D.Tolstov	syng Se, L.F.K 1, E.N.Tsygand	irillova, »v,
5. V.S.Barashenka	v, V.M.Maltsev, E.K	Mihul. Nucl.Pl	nys. 24, 642 (1961).	
6. Т.П. Лазарскосм	эва, П.А. Усик. ическим лучам	. Материаль Москва, <u>1</u>	междунаро) . 71 /1959/.	дной конфе	ренции по
7. V.S.Barashenka	v, Fortschr. der Ph	nys. 9, 29 (1961)	•		
8. Г.А. Лексин	. ЖЭТФ, <u>32</u> , 4	445 /1957/.			
9. Л.С. Ажгире нов, А	эй, И.К. Взоро .Ф. Шабудин.	в, В.П. Зре ЖЭТФ, <u>33</u> ,	пов, М.Г. М 1185 /1957/.	ещеряков,	B.C. Hera
10. V.T.Cocconi, T Phys.Rev.Lett.	.Fazzini, G.Fidecard 5, 19 (1960).	o, M.Legros, N.H	.Lipman, A.W.Men	rison.	
11.I.Oostens. Prer	rint Saclay, 1961.				
12. Д.И. Блохи	инцев. ЖЭТФ,	<u>33</u> ,1295 /1	957/.		
13. Д.И. Блохи	инцев, В.С. Бај /1959/.	рашенков, Б	,М. Барбашо	в. УФН, <u>6</u>	<u>8</u> ,417
14. А.А. Рухал	зе. ЖЭТФ, <u>34</u>	, 1014 /195	38/.		
15. R.Hagedorn. F	hys.Rev.Lett. 5, 276	6 (1960).			
16. I. von Behr, R.	Hagedorn. Preprin	t CERN, 1961.			
17. P.A.Benioff.	Phys.Rev. 119, 324 ((1960).			
				• •	•
	Рукој	ись поступи 7 декаб	ла в издател ря 1961 г.	њский отде	Эл
		•			
•					
10 18 <u>1</u> 8 1					: