

A-52 845

7

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ НЕЙТРОННОЙ ФИЗИКИ

В.П. Алфименков, Ю.М. Останевич, Т. Русков, А.В. Стрелков, Ф.Л. Шапиро, Янь У-гуан

P-845

2,3

ЭНЕРГЕТИЧЕСКИЙ СПЕКТР РЕЗОНАНСНОГО ПОГЛОЩЕНИЯ у-ИЗЛУЧЕНИЯ 92 Кэв Zn⁶⁷ В ОКИСИ ЦИНКА МЕЭТФ, 1962, T42, 64, с 1029. В.П. Алфименков, Ю.М. Останевич, Т. Русков, А.В. Стрелков, Ф.Л. Шапиро, Янь У-гуан

P-845

ЭНЕРГЕТИЧЕСКИЙ СПЕКТР РЕЗОНАНСНОГО ПОГЛОЩЕНИЯ у-ИЗЛУЧЕНИЯ 92 Кэв Zn⁶⁷ В ОКИСИ ЦИНКА

130215 yg.

Фбъединенный институт адерных исследования БИБЛИОТЕКА

Описаны эксперименты по наблюдению методами скоростной развертки и частотной модуляции эффекта Мёссбауэра¹¹ на у -излучении 92 Кэв 67 Zn с источником и фильтром из окиси цинка. Наблюдаемая величина резонансного поглощения достигает 2.10⁻³, ширина линии несколько больше естественной. В спектре обнаруживается структура, интерпретация которой при достигнутой точности измерений затруднительна.

Abstract

Using the methods of Doppler shift and frequency modulation, experiments are described on the observation of the Mössbauer effect on γ -ray 92 KeV transition in Zn⁶⁷. As a source and absorber zinc oxide has been used.

The observed magnitude of the resonance absorption was found to be 2.10^{-3} , the width of the line being somewhat larger than the natural one. At the available accuracy of the measurements a certain structure which is rather difficult to be interpreted is observed in the spectrum.

1. Введение

Первое возбужденное состояние ядра Z_n^{67} имеет энергию $E_o = 92$ Кэв и период полураспада $T_{\frac{1}{12}} = 9,6\cdot10^{-6}$ сек /естественная ширина $\Gamma = 4,9\cdot10^{-11}$ эв/; оно может быть получено в результате Кзахвата в G_a^{67} / $T_{\frac{1}{12}}$ = 78 часов/ или β -распада Cu^{67} / $T_{\frac{1}{12}}$ = 67 час/^{2/}. Изучение эффекта Мёссбауэра на γ -излучении 92 Кэв, возникающем при переходе из этого состояния в основное, представляет значительный ин-

терес, так как эффект Мессбауэра на цинке может быть в принципе использован для выполнения ряда интересных работ, например:

 Обнаружение очень малых изменений в частоте у -излучения /относительная ширина у-линии 92 Кэв Zn⁶⁷ Г/E ≈ 5.10⁻¹⁶, что примерно на 3 порядка меньше относительной ширины линии Fe⁵⁷, на которой было измерено гравитационное смещение^{/3/}.

2. Измерение магнитного и квадрупольного моментов-ядра Zn⁶⁷ в первом возбужденном состоянии.

3. Измерение некоторых характеристик твердых тел, содержащих в своей решетке атомы Zn /внутренние поля, изомерные сдвиги и др./.

Однако изучение и использование эффекта Мессбауэра на Zn⁰ осложнено рядом обстоятельств. Сравнительно большая энергия отдачи ядра при У - переходе приводит к малым значениям вероятностей испускания и поглощения У -квантов "без отдачи".

В силу малости ширины у -линии 92 Кэв Zn очень опасны различной природы расщепления и уширения линий испускания и поглощения, которые легко могут сделать эффект Мессбауэра в Zn⁶⁷ практически ненаблюдаемым. В качестве причин, вызывающих расщепление и уширение линий, можно указать, например:

67 1. Наличие в местах расположения атомов Zn магнитных и неоднородных электрических полей.

11.13

2. Возмущение от распадов, предшествовавших образованию возбужденного состояния.

67 3. Неправильное положение части атомов Zn в решетке твердого тела.

4. Относительные вибрации источника и фильтра.

В литературе опубликовано несколько экспериментальных работ по наблюдению эффекта Мёссбауэра в Zn⁶⁷. Все эти работы выполнены по методу пропускания с материнским ядром Ga⁶⁷.

В работе^{/4/} для ряда сплавов и соединений Zn при различных температурах с точностью до 0,1% эффект Мёссбауэра в Zn⁶⁷ не обнаружен.

В работе^{/5/} для металлических источника и фильтра /фильтр был обогащен изотопом Zn⁶⁷ до 33% и имел толщину ~ 1,5 г/см²/ при температуре 4,2[°]К получено увеличение пропускания фильтра на 0,03% при разрушении резонансного поглощения магнитным полем.

Заметно большой эффект был получен в работе⁷⁶⁷, где в качестве источника и фильтра использовались охлажденные до температуры 2°К образцы $ZnO \cdot .$ Измерялась зависимость пропускания фультра от величины наложенного на него магнитного поля /фильтр был обогащен изотопом Zn до 92,4% и имел толщину 1,2 г/см²/. Максимальное наблюдаемое изменение пропускания оказалось равным 2,5•10⁻³. В зависимости пропускания от величины магнитного поля обнаружена структура, причем максимум резонансного поглощения соответствовал полю ~10 гс. Интерпретация результатов работы⁷⁶⁷ затруднена малой точностью измерений и незнанием величины магнитного момента возбужденного состояния Zn⁶⁷.

В настоящей работе излагаются результаты исследований эффекта Мессбауэра в Zn⁶⁷, выполненные также по методу пропускания с материнским ядром Ga⁶⁷, но с использованием для получения энергетического спектра резонансного поглощения механизма допплеровского смещения.

2. Постановка эксперимента

5

Энергетические спектры резонансного поглощения у -квантов получались измерением зависимости пропускания фильтра для линии 92 Кэв 67 Zn от относительной скорости источника и фильтра.

Рабочие измерения выполнялись с источником и фильтром, охлажденными до температуры ~ 4,2°К.

Источник представлял собой тонкую /размерами 20x10x1мм/ пластинку из спеченной естественной ZnO /керамики/, облученную с одной стороны дейтонами с энергией 13,4 Мэв. В результате облучения на поверхности пластинки по реакции Zn⁶⁶ (d, n) Ga⁶⁷ наводилась активность в несколько десятых милликюри Ga⁶⁷. Для устранения радиационных повреждений кристаллической решетки источник отжигался в воздухе при температуре 1000-1100°C в течение 1-2 часов.

Фильтр был выполнен в виде тонкостенного латунного контейнера, наполненного связанным поливиниловым спиртом порошком окиси Zn , обогащенной до 33% изотопом Zn . Толщина фильтра составляла 1,6 г/см.

Схема экспериментальной установки изображена на рис. 1.

К гелиевому сосуду криостата на войлочном подвесе /для изоляции источника и фильтра от внешних источников вибраций/ крепился медный кронштейн, связанный с гелиевым сосудом гибкими медными теплоотводами. На кронштейн с одной стороны напаивался контейнер с фильтром, а с протовоположной стороны замазкой Рамзея наклеивалась пластина пьезокварца / Х -срез толщиной 2,5 мм/. На пьезокварц через тонкую медную фольгу, в свою очередь, наклеивался источник облученной стороной к фильтру.

Прошедшее через фильтр у -излучение регистрировалось сцинтилляционным счетчиком с тонким /2,5 мм/ кристаллом Na J (Tl). Линия 92 Кэв вырезалась из амплитудного спектра одноканальным анализатором ААДО-1.

6

Для получения энергетической развертки картины резонансного поглощения на пьезокварц подавалось напряжение треугольной формы с частотой 1,5 кгц и амплитудой, периодически проходившей ряд фиксированных равноотстоящих значений от 0 до U_{max} / в отдельных измерениях

достигало 1500 в/. Каждому значению амплитуды треугольного на-U max пряжения соответствуют два равных по величине и противоположных по знаку значения относительной скорости \pm v , обуславливающие энерге-Е, v/c между спектром испускания источника и спектические смещения тром поглощения фильтра. Управляемый от генератора треугольного напряжения блок быстрой коммутации позволял регистрировать в двух различных каналах отсчеты, соответствующие энергетическим смещениям разного знака. Этот же блок на несколько десятков микросекунд запирал счетные каналы вблизи изломов треугольного напряжения. Скачкообразное изменение амплитуды треугольного напряжения, одновременно с переключением пар считающих каналов, производилось блоком медленной коммутации автоматически через равные промежутки времени / ~ 10 сек/, задававшиеся датчиком интервалов времени, стабилизированным кварцем. Вклад в энергетический спектр от изменения интенсивности источника за счет Ga с достаточной в нашем случае точностью устранялся распада встречным обходом каналов в последовательных циклах изменения амплитуды треугольного напряжения.

При измерениях с частотной модуляцией у -излучения /7/ на пьезокварц через блок медленной коммутации может быть подано синусоидальное напряжение нужной частоты и амплитуды.

Для определения пропускания фильтра при заведомом отсутствии резонансного поглощения в каждом цикле имелся реперный канал, при счете в котором на пьезокварц подавалось синусоидальное напряжение большой частоты и амплитуды /100 кгц, 150 в.эфф/, разрушавшее резонанс за счет механизма частотной модуляции.

Описанная установка позволяла за одни сутки работы получить на

спектре до 50 точек, причем статистическая точность в каждой из точек составляла 2·10⁻⁴.

3. Результаты измерений

Типичные энергетические спектры резонансного поглощения^{1/} для линии 92 Кэв Zn⁶⁷ в окиси Zn при температуре ~ 4,2[°]К для различных источников, полученных при облучении тождественных образцов, представлены на рис. 2 и 3.

Вычисление энергетических сдвигов проведено с использованием табличного значения пьезомодуля кварца при температуре ~ 4,2[°]K d₁₁ = 2,02 • • 10⁻¹⁰ см/в^{/8/}. Об экспериментальной калибровке шкалы сдвигов будет сказано при обсуждении результатов.

На всех наблюдавшихся энергетических спектрах максимум резонансного поглощения имеет место при нулевом энергетическом сдвиге.

Величина эффекта в центральном пике достигает 2.10⁻³ и несколько меняется от одного источника к другому. С поправкой на разбавление у -спектра нерезонансным излучением и на резонансное рассеяние в детектор полный резонансный эффект оказывается в 2 раза больше. Ширины пиков в несколько раз превосходят идеальную ширину 2Г, причем, источники, обнаруживавшие меньший эффект, дают более широкую линию. Эти изменения нельзя отнести за счет различий в условиях отжига, так как несколько последовательных отжигов одного из источников, дававшего меньший эффект, не привели к заметному изменению картины. На спектрах; где эффект больше /рис. 2/, имеются указания на сложную структуру картины резонансного поглощения.

Представленный на рис. 4 контрольный спектр получен при температуре источника и фильтра ~ 80[°]К, когда резонансное поглощение должно быть значительно ослаблено. В пределах ошибок измерения данные

^{1/}Энергетическим спектром резонансного поглощения мы называем зависимость <u>I-Io</u> от энергетического сдвига $E_o v/c$ между спектрами испускания и поглощения / I, Io -скорость счета в рассматриваемом и в реперном канале, v -скорость движения источника относительно фильтра, E_o -энергия y -излучения/.

рис. 4 не обнаруживают зависимости пропускания от энергетического сдвига.

На рис. 5,6 представлены результаты измерений, выполненных с чассотной модуляцией у -излучения 92 Кэв Zn .

На рис. 5 приведена зависимость величины резонансного поглощения $\frac{I-I_0}{I_0}$ от амплитуды U приложенного к кварцу синусоидального напряжения с частотой 80 кгц; данные нормированы к 1 п ри U = 0.

На рис. 6 представлен энергетический спектр резонансного поглощения частотно-модулированного у -излучения 92 Кэв Zn⁶⁷; в этом опыте на пьезокварц совместно с развертывающим треугольным напряжением подавалось синусоидальное напряжение с частотой 80 кгц и постоянной амплитудой 1,1 в.

Для одного из источников, наряду со спектром резонансного поглощения обогащенного фильтра, был измерен спектр резонансного поглощения естественного фильтра той же весовой толщины /в 8раз более тонкого по Zn⁶⁷ /. Результаты этих измерений представлены на рис. 7.

4. Обсуждение результатов

Кварцевый вибратор, использованный нами в качестве элемента, задающего энергетическое смещение, нуждается в калибровке, поскольку связывание пьезокварца по одной из плоскостей и возможные изгибные колебания могут исказить действующее значение пьезомодуля.

Провести измерения действующего значения пьезомодуля кварца в рабочих условиях /смещение порядка долей миллимикрона на вибраторе, помещенном в криостат/ какими-либо известными методами крайне затруднительно. Поэтому для калибровки вибратора использовался эффект Мессбауэра в Zn⁶⁷.

Нижняя граница действующего значения пьезомодуля получается не-

посредственно из энергетического спектра, если предположить, что ширина центрального пика на рис. 2 является минимально возможной, т.е. равна удвоенной естественной ширине уровня. Эта граница оказывается примерно в 2 раза меньшей табличного значения пьезомодуля.

Для точного определения пьезомодуля могут служить измерения резонансного поглощения с частотной модуляцией у -излучения.

При частотной модуляции движением источника по закону x = U d₁₁ sin Ω t спектр у -излучения расшепляется на компоненты, энергетические смещения и относительные интенсивности которых даются выражениями

 $\Delta \mathbf{E} = \mathbf{h} \ \Omega$

 $I_{0}: \ I_{1}: I_{2}: \ldots = J_{0}^{2}(\ U \, d_{k} \): J_{1}^{2}(\ U \, d_{11} k): J_{2}^{2}(\ U \, d_{1k} \): \ldots \, ,$

где U -амплитуда приложенного к кварцу синусоидального напряжения, J -бесселева функция 1-го рода, к -волновое число у -излучения.

Если компоненты расщепления не перекрываются и фильтр неподвижен, то резонансное поглощение испытывает только нулевая компонента, т.е. при включении модуляции поглощение уменьшается как $J_o^2 (Ud_{11}k)$. Эту зависимость легко использовать для измерения d_{11} ; однако, если частота модуляции приближается к собственной частоте вибратора, действующее значение пьезомодуля может отличаться от интересующего нас значения, соответствующего частоте треугольного напряжения /1,5 кгц/. Ввиду этого более удобно калибровать вибратор по расстояниям между компонентами частотного расшепления в энергетическом спектре резонансного поглощения частотно-модулированного у -излучения.

Нами были использованы оба метода калибровки; результаты измерений представлены на рис. 5 и 6. К сожалению, интерпретация этих опытов осложняется тем, что при использованной частоте модуляции 80кгц компоненты частотного расщепления еще заметно перекрываются из-за большой ширины спектра резонансного поглощения Z_n . Увеличить

. 9

частоту модуляции было затруднительно - это требовало соответствующего увеличения амплитуды развертывающего напряжения и числа счетных каналов.

При анализе данных рис. 5 и 6 использовался спектр резонансного поглощения, полученный для того же источника без частотной модуляции.

Лучшим образом удается описать данные рис. 6 в предположении, что пьезомодуль для треугольного напряжения частоты 1,5 кгц примерно равен табличному, а пьезомодуль для синусоиды 80 кгц вдвое больше. В этих предположениях и проведены кривые на рис. 5 и 6. Видно, что расхождение между экспериментальными точками и кривой на рис. 5 значительно. Причина этого расхождения нам не %сна.

Заметим, что рис. 5 наглядно демонстрирует возможность использования резонансного поглощения у -излучения 92 Кэв ^{2n⁰⁷} для измерения крайне малых /в области 10⁻⁹ - 10⁻¹⁰ см/ амплитуд механических колебаний частоты от нескольких десятков кгц и выше.

Авторы работы⁶⁷ наблюдали в опытах с Zn⁶⁷ заметный сдвиг между спектрами испускания и поглощения и объяснили его различием в частотах нулевых колебаний источника и фильтра, обусловленным неодинаковостью их изотопических составов.

В наших измерениях максимум резонансного поглощения проявлялся при нулевой относительной скорости источника и фильтра. Это указывает на отсутствие или малость такого сдвига, хотя условия по среднему изотопическому составу в наших измерениях авторов работы ^{/8/} были почти одинаковы.

Структура энергетинеских спектров резонансного поглощения, по-видимому, обусловлена квадрупольным расщеплением уровней ядра Zn^{67} в искаженной кубической решетке ZnO. $^{/9/}$. Для расшифровки структуры точность измерений должна быть значительно повышена.

Обработка энергетических спектров резонансного поглощения для двух фильтров различной толщины по Zn позволила оценить значение Z_n^{67} вероятностей поглощения и испускания у -квантов в без отдачи, В предположении квадрупольного расшепления для вероятности по $f^{1} = 2.10^{-2}$. Вероятность испускания fглощения получено значение оказывается в 3 - 5 раз меньшей, что возможно обусловлено влиянием Zn , образодолгоживущих возмущений в электронной оболочке атома /10/. С этой точки зре-67 Ga вавшегося в результате К -захвата в Zn ния представляют интерес измерения резонансного поглощения в с материнским ядром Си , поскольку возмущения оболочки атома при β - распаде должны быть заметно меньшими.

Оценки из величины ^{f¹} эффективной температуры Дебая для ZnO приводят к согласующемуся с результатами работы^{/6/} значению Θ_n≈300°K.

Малая величина эффекта Мессбауэра на Z_n^{67} в Z_nO осложняет его использование и заставляет искать пути его повышения или более эффективного выделения.

Заключение

В заключение авторы благодарят П.А. Бажулина за предоставление пьезокварца; А.Б. Фрадкова и М.П. Малкова за сжижение гелия; Ф.А. Рябову, А.И. Секирина и А.В. Соколова за помощь в измерениях.

Облучение образцов проводилось на циклотроне НИИЯФ МГУ. Авторы пользуются случаем выразить глубокую благодарность С.С. Васильеву, А.А. Тулинову, Ю.А. Воробьеву и персоналу циклотрона.

11

Р и с. 1. Блок-схема экспериментальной установки.

1.

Рис. 2,3. Энергетические спектры резонансного поглощения у -ислучения 92 Кэв Zn⁶⁷ в окиси Zn, охлажденной до ~ 4,2°К. По эси абсцисс отложен энергетический сдвиг в единицах 2 Г.

13

Рис. 4. Энергетический спектр резонансного поглощения при температуре 80° К.

Рис. 5. Отнормированная к 1 зависим ость кенного к пьезокварцу синусоидального напряжения / $\nu = 80$ кгц/. Кривая – расчетная с использованием представленных на рис. 6 и 7 энергетических спектров резонансного поглощения в предположении, что пьезомодуль для треугольного напряжения 1,5 кгц равен табличному, а для синусоиды 80 кгц в 2 раза больше.

15

Рис. 6. Энергетический спектр резонансного поглощения частотно-модулированного у -излучения /на пьезокварц подавалось синусоидальное напряжение частоты 80 кгц и амплитуды 1,1 в/. Кривая - расчетная в тех же предположениях, что и для рис. 5.

Рис. 7. Эпергетические спектры резонансного поглощения у -излучения одного из источников для обогащенного и естественного фильтров равных весовых толщин.

Литература

- 1. R.Mössbauer, Z.Physik 151, 124 (1958).
- 2. Б.С. Джелепов и Л.К. Пеккер. "Схемы распада радиоактивных ядер", 1958 г. Издательство Академии наук СССР.
- 3. R.Pound, G. Rebka, Phys.Rev.Lett. 4, 274 (1960).
- 4. С.И. Аксенов и др. ЖЭТФ, 40, 88, 1961 г.
- 5. R.Pound, G.Rebka, Phys.Rev.Lett. 4, 397 (1960).
- 6. R.Craig, D.Nagle, D.Cochran Phys.Rev.Lett. 4, 561 (1960).
- 7. S.Ruby, D.Bolef Phys.Rev.Lett. 5, 5 (1960).
- 8. Л. Бергман "Ультразвук и его применение в науке и технике". Издательство иностранной литературы, М. 1956.
- Landolt Bornstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik; Sechste Auflage, Band 1, Teil 4. Berlin, Gottingen, Heidelberg; Springer-Verlag, 1955.

10. "Бета и гамма - спектроскопия" под редакцией К. Зигбана, 1959. Физматгиз.

> Рукопись поступила в издательский отдел 3 декабря 1961 г.