

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ЛАБОРАТОРИЯ НЕЙТРОННОЙ ФИЗИКИ ФИЗИЧЕСКИЙ ИНСТИТУТ АКАДЕМИИ НАУК СССР вм. П.Н. ЛЕБЕДЕВА

В.И. Лушиков, А.А. Маненков, Ю.В. Таран

P-831

ДИНАМИЧЕСКАЯ ПОЛЯРИЗАЦИЯ ПРОТОНОВ В ПЕРЕКИСЯХ ВОДОРОДА И ТРЕТИЧНОГО БУТИЛА

Дубна 1961

В.И. Лушиков, А.А. Маненков, Ю.В. Таран

P-831

ДИНАМИЧЕСКАЯ ПОЛЯРИЗАЦИЯ ПРОТОНОВ В ПЕРЕКИСЯХ ВОДОРОДА И ТРЕТИЧНОГО БУТИЛА

1262/4 39

Соъсдинскими чисти идерных исследова. БИБЛИСТТЯ:

Аннотация

Исследовалась динамическая поляризация протонов в перекисях водорода и третичного бутила. Сигнал протонного магнитного резонанса для перекиси водорода увеличивается в 3,5 раза при насыщении электронного парамагнитного резонанса /ЭПР/ свободных радикалов при темлературе 1,6° К. Для перекиси третичного бутила получено 12-кратное увеличение поляризации протонов при температуре 4,2°К и 8-кратное при 1,6°К. Измерены времена спин-решеточной ядерной релаксации.

The dynamic polarization of protons in H_2O_2 and $[(CH_3)_3 CO]_2$ has been investigated. The signal of the proton magnetic resonance for H_2O_2 is increased as much as $\partial_1 S$. 3.5 times in saturating the electronic paramagnetic resonance of free radicals at the temperature of 1.6° K. For $[(CH_3)_3 CO]_2$ the proton polarization is 12 times greater at 42° K and 8 times - at 1.6° K. The lifetimes of the spin-lattice nuclear relaxation have been abtained. В настоящей работе исследовалась динамическая поляризация протонов в 50% -перекиси водорода H₂O₂ и 100% -перекиси третичного бутила /CH₃/₃CO₂, которая имеет место при насыщении электронного парамагнитного резонанса "запрещенных" микроволновых переходов свободных радикалов. Указанные вещества исследовались с целью создания поляризованной протонной мишени.

Исследуемая перекись помещалась в кварцевую ампулу объемом 0,2см, замораживалась в жидком азоте и облучалась ультрафиолетом в течение нескольких часов. Источником ультрафиолета служила ртутная лампа сверхвысокого давления^{/1/}. Ампула с облученной перекисью помещалась в резонатор через специальное отверстие в широкой стенке резонатора. Отверстие незначительно ухудшало добротность резонатора. Увеличение поляризации протонов в перекиси при насыщении ЭПР определялось по усилению сигнала ядерного магнитного резонанса протонов /ЯМР/. Экспериментальная установка для совместного наблюдения ЭПР и ЯМР описана в работах^{/2,3/}.

Спектр ЭПР облученной 50% перекиси водорода вместе с линией ЭПР дефинилликридгидразила /ДФПГ/ при темлературе 1,8°К показан на рис. 1. Перекись давала на частоте 9300 мгц широкую асимметричную линию, форма которой в основном определяется анизотропным уширением ^{/1/}. Ширина линии на половине пиковой интенсивности равна ~60 э. Сравиение интенсивности линии ЭПР H_20_2 с интенсивностью ДФПГ, вес которого известен, позволяет оценить концентрацию свободных радикалов в H_20_2 . Концентрация оказалась равной ~5x10¹⁹ см⁻³ или ~0,2% относительно полного числа молекул H_20_2 /время облучения ультрафиолетом 11 часов/.

Увеличение поляризации протонов характеризуется коэффициентом динамического усиления η , равного отношению сигнала ЯМР при наличии насыщения ЭПР свободных радикалов к сигналу ЯМР в отсутствии насыщения ЭПР радикалов. Обозначим через η коэффициент динамического усиления ЯМР при насыщении запрещенного перехода $\omega_{9 \mp} \omega_{9}$, где ω_{9} -частота разрешенной линии ЭПР, ω_{9} -частота ядерного перехода.

При температуре 4,2⁰К наблюдалось очень слабое динамическое усиление сигнала ЯМР при насыщении ЭПР свободных радикалов H₂O₂. Коэффициент уснления равнялся $\eta_{+} \simeq 1,25$ /насыщался переход $\omega_{\ni} - \omega_{g}$ /. При температуре 1,6[°]K получены значения $\eta_{-} \simeq 2$ н $\eta_{+} = 3,5 \pm 0,5$. Время ядерной спин-решеточной релаксации при 1,6[°]K – $T_{lg} \sim 1$ сек. Микроволновая мощность, необходимая для насыщения ЭПР, оказалась равной ~ 20мвт при добротности резонатора Q ~ 1000.

Затем исследовалась перекись третичного бутила /СН / СО₂. Продолжительность облучения ультрафиолетом при температуре 77°К равнялась ~7 часам. Зависимость коэффициента динамического усиления η сигнала ЯМР от напряженности внеш него магнитного поля при температурах 4,2° и 1,6°К показана на рис. 2. Максимальное усиление при 4,2°К равно 12 ± 2 и при 1,6°К - 8±1. Расстояние между максимальными эначениями η_{-} и η_{+} равно ~ 75 в /ширина линии ЭПР на половине пиковой интенсивности ~ 80 в/. Мощность клистрона, необходимая для насыщения ЭПР, равна ~ 10 мвт при добротности резонатора Q ~ 1000.

Разрушение и рост поляризации после выключения и включения мошности, насышающей ЭПР, соответственно, описываются, как и в случае с полиэтиленом², суммой двух экспонент. Если обозначить через T_{1g} время ядерной спин-решеточной релаксации, то при 1,6[°]K первая экспонента имеет короткое время релаксации $T'_{1g} = /1.6 \pm 0.2/$ сек, а вторая экспонента - длинное время $T''_{1g} = /11 \pm 3/$ сек. Вклад T'_{1g} в релаксацию равея ~70%, причем времена разрушения поляризации T'_{1g} и T''_{1g} совпадают с временами нарастания поляризации t'_{1g} и $t''_{1g} = T'_{1g}$, $t''_{1g} = T''_{1g}$. Измерение времени электронной спин-решеточной релаксации не производилось, поэтому причина уменьшения усиления с понижением температуры оставалась иеясной.

Описанные эксперименты проведены с целью поиска подходящих вешеств для лоляризованной протонной мишени. Исследованные вещества дают сравнительно небольшой коэффициент динамического усиления. Это, вероятно, связано с тем, что, во-первых, не очень благоприятно соотношение времен ядерной и электронной спин-решеточной релаксации, во-вторых, указанные вещества имеют очень широкие линии ЭПР. Наличие широкой линии ЭПР не позволяет произвести насыщение одной из запрещенных линий без частичного насыщенияя другой линии, дающей усиление с обратным знаком.

В заключение авторы выражают благодарность С.Д. Кайтмазову за содействие в облучении перекисей.

Литература

1. С.Д. Кайтмазов, А.М. Прохоров. Сборных докладов на совещанны по парамагнитному резонансу. Изд-во Казанского Университета, 1960 г.

2. В.И. Лущиков, А.А. Маненков, Ю.В. Таран. ЖФТ, в печати. 3. В.И. Лущиков, А.А. Маненков, Ю.В. Таран. Препринт Д-760, Дубна,

1961 г.

Рукопись поступила в издательский отдел. 10 ноября 1961 г.

6 *ΑΦΠΓ* HzOz 100 oe

Рис. 1. Спектр ЭПР облученной 50% - перекиси водорода при 1,6°К.

Рис. 2. Зависимости коэффициента динамического усиления поляризации протонов и от напряженности внешнего магнитного поля для перекиси бутила.