

407

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

В.С. Евсеев, В.И. Комаров, В.З. Куш, В.С. Роганов, В.А. Черногорова, М.М. Шимчак

P-759

АСИММЕТРИЯ В УГЛОВОМ РАСПРЕДЕЛЕНИИ НЕЙТРОНОВ, ИСПУСКАЕМЫХ ПРИ ЗАХВАТЕ µ⁻-мезонов в кальции ЭКЭТФ, 1961, 741, 8 1, с 306-307. Асю Рау. Роботиса, 1942, 24, 1 Асю Рау. Роботиса, 1942, 24, 1 ССРП, 1962, Сели. 1962.

Дубна 1961

В.С. Евсеев, В.И. Комаров, В.З. Куш, В.С. Роганов, В.А. Черногорова, М.М. Шимчак

 ϵ^{ϵ}

E-25

P-759

АСИММЕТРИЯ В УГЛОВОМ РАСПРЕДЕЛЕНИИ НЕЙТРОНОВ, ИСПУСКАЕМЫХ ПРИ ЗАХВАТЕ µ--МЕЗОНОВ В КАЛЬЦИИ

Объедкненный институт ядерных исследовачие БИБЛИОТЕ КА

1148/3 y

1. В ведение

Для выяснения вопроса о несохранении четности в процессе поглощения μ^- -мезона протоном и для определения констант и варианта слабого взаимодействия μ^- -мезона с нуклоном был предложен ряд экспериментов по захвату μ^- -мезонов в водороде и ядрах. Одним из таких экспериментов является измерение асимметрии в угловом распределении нейтронов, испускаемых при захвате поляризованных μ^-_{4} -мезонов ядрами, т.е. в реакции типа

$$\mu^{-} + A \rightarrow A^{\prime} + n + \widetilde{\nu} \quad . \qquad /1/$$

Аналогичный эксперимент на водороде практически невозможен /3/

Часть нейтронов из реакции /1/ поглощается в том же ядре с образованием составного ядра. Другая часть нейтронов вылетает из ядра непосредственно после поглощения μ^- -мезона минуя стадию составного ядра. Это так называемые нейтроны прямого процесса. В случае несохранения четности угловое распределение нейтронов прямого процесса можно представить в виде

$$N(E_n, \theta) \sim 1 + P_{\mu} \beta(E_n) \tilde{a} \cos \theta , \qquad /2/$$

где $N(E_n, \theta)$ -число нейтронов с энергией E_n , испускаемых под углом θ ; θ -угол между направлением спина μ^- -мезона и направлением вылета нейтрона; P_{μ} -остаточная поляризация μ^- -мезона на К-оболочке мезоатома; $\beta(E_n)$ -множитель, зависящий от энергии нейтрона E_n и учитывающий влияние ядра на угловое распределение; \overline{a} - коэффициент асимметрии в угловом распределении нейтронов, испускаемых при захвате полностью поляризованных μ^- -мезонов ядром, зависящий только от констант взаимодействия μ^- -мезона с нуклоном /если четность сохраняется $\alpha = 0/.$

Величина $\beta(E_n)$ была вычислена в нескольких работах ^{/2,4,5,6,7/}. Наиболее детальные расчеты выполнены в ^{/4,5/} по модели оболочек, откуда можно получить усредненные по спектру нейтронов значения $\overline{\beta}$ от 0,5 до 0,75 для разных ядер. Из расчетов по модели Ферми-газа ^{/2/} получено значение $\vec{\beta} \cong 0,7$. Коэффициент $\vec{\alpha}$ в зависимости от констант взаимодествия рассчитан в $\frac{15}{}$.

В данной статье описывается эксперимент по определению величины \tilde{a} путем измерения коэффициента асимметрии в угловом распределении нейтронов, испускаемых при захвате поляризованных μ^- -мезонов в кальции.

Выбор кальция в качестве мишени определялся следующими соображениями. Для интерпретации результатов измерений необходимо энание спектра испарительных нейтронов, возникающих при захвате μ^- -мезона ядром. Чем тяжелее ядро, тем с большим основанием можно применять к нему статистическую теорию для описания распада составного ядра, т.к. непосредственные экспериментальные сведения о спектре нейтронов в реакции /1/ отсутствуют. С другой стороны, многие особенности захвата μ^- -иезона ядрами описываются только моделью оболочек ^{/4,5/} /например, преимущественное поглощение μ^- -мезона внешними оболочками/. Дважды-магическое и относительно тяжелое ядро Са удовлетворяет этим требованиям и, по-види кому, лучше подходит для постановки описываемого эксперимента, чем более легкие ядра. Кроме того, для кальция с достаточной точностью известно среднее число нейтронов Π_{Ca} на один акт захвата μ^- -мезона ядром. Знание этой величины также необходимо для интерпретации результатов.

Во время выполнения настоящей работы в печати появились сообщения /8-11/ об измерениях асимметрии нейтронов в экспериментах по захвату µ⁻ -мезонов в сере и магнии. Результаты этих работ будут обсуждены ниже.

11. Постановка эксперимента

Из теоретических представлений о захвате поляризованных мезонов ядрами вытекает ряд особенностей постановки эксперимента. Так как существует определенная вероятность того, что реакция /1/ приведет к образованию составного ядра, процесс захвата μ^- -мезона ядром может сопровождаться испусканием у -квантов и испарительных нейтронов, возникающих при распаде составного ядра. Эти у -кванты и нейтроны испарения в отличие от нейтронов прямого процесса имеют изотропное угловое распределение.

С учетом возможной регистрации этих у -квантов и испарительных нейтронов наблюдаемое угловое распределение нейтронов прямого процесса из реакции /1/ будет иметь вид:

$$N(E_0, \theta) \sim 1 + P_\mu P_\mu P_\nu \vec{\beta} \vec{a} \cos \theta$$
, (37)

где P_n и P_y -множители, учитывающие возможную регистрацию изотропно распределенных нейтронов испарения и γ -квантов; E_o -порог регистрации нейтронов прямого процесса; $\overline{\beta}$ -значение $\beta(E_n)$, усредненное по спектру нейтронов прямого процесса с энергией больше E_o с учетом эффективности их регистрации.

Из вычислений, проведенных в работах $^{/4,5/}$, следует, что спектр нейтронов прямого процесса простирается примерно до энергии 20 Мэв. Спектр нейтронов испарения значительно мягче. Поэтому энергетический порог регистрации нейтронов E_o может быть выбран так, чтобы практически исключить регистрацию испарительных нейтронов при достаточно эффективной регистрации нейтронов прямого процесса. Кроме того, детектор нейтронов должен быть малочувствительным к у -квантам. При этих условиях величины P_n и P_y близки к единице, и обусловленная их неопределенностью ошибка величины $\tilde{\alpha}$ мала.

В данном эксперименте нейтроны регистрировались разработанным для этой цели пороговым эффективным слоистым сцинтилляционным детектором, подобным описанному нами ранее /12/. Асимметрия в угловом распределении нейтронов определялась путем измерения числа нейтронов при двух противоположных направлениях магнитного поля, используя прецессию спина μ^- -мезона в этом поле для выделения интервала углов вылета нейтрона относительно направления спина мезона. Счет нейтронов при противоположных направле-

$$N^{\pm} = l_{\pm} P_{\mu} P_{\gamma} P_{n} \overline{\beta} \widetilde{\alpha} b = l_{\pm} a_{n} , \qquad (4/4)$$

где b - коэффициент, учитывающий геометрию эксперимента, угловой интервал регистрации нейтронов относительно направления спина µ - мезона и время жизни мезона. Тогда асимметрия испускания нейтронов определяется равенством:

Для измерения остаточной поляризации мезона Р_µ одновременно с асимметрией испускания нейтронов измерялся коэффициент асимметрии в угловом распределении электронов от распада µ⁻ -мезонов в кальции.

III. Описание установки

Установка, использованная для измерения асимметрии, схематически изображена на рис. 1. Пучок π^- , μ^- -мезонов из синхроциклотрона ОИЯИ проходил через коллиматор в стене и отклонялся на 30° поворотным фокусирующим магнитом. После отделения по пробегам в фильтре из меди и графита от π^- -мезонов μ^- -мезоны останавливались в мишени из кальция размером 12 х 12 см² толщиной 12 г/см². Мишень помещалась в катушку с эффективной толщиной обмотки $\simeq 0,17$ г/см² меди. Величина Н магнитного поля в катушке определялась расчетным путем и измерялась с точностью 2%.

Телескоп из двух счетчиков1 и 2 с пластическими сцинтилляторами толщиной 1 см диаметром 10 см служил для регистрации μ^- -мезонов и для определения момента остановки мезона в мишени. Телескоп из трех счетчиков 3,4,5 с пластическими сцинтилляторами диаметром 14,5 см толщиной 1 см регистрировал электроны распада. Перед 4 и 5 счетчиками помещались фильтры из плексигласа толщиной 1 см. Во всех этих счетчиках использовались ФЭУ-29.

Слоистый нейтронный детектор 6, регистрирующий нейтроны по протонам отдачи, был изготовлен из 24 пластин пластического сцинтиллятора /на основе полистирола с добавкой 2% р-терфенила и 0,2% а NPO / диаметром 14,5 см, толщиной 0,4 см, разделенных черной бумагой, как это описано в / 12/ Объем сцинтиллятора через два световода длиной 15 см осматривался двумя ФЭУ-24. Фотоумножители помещались в четырехслойную магнитную защиту из пермаллоя и мягкого железа. Все счетчики для уменьшения внешнего фона были окружены со всех сторон общей защитой из свинца и парафина толщиной по 20 см.

/5/

1У. Описание электронной аппаратуры

Блок-схема электронной аппаратуры показана на рис. 2. Импульсы от счетчиков 1 и 2 формировались по амплитуде насыщающимися усилителями /н.у./ и поступали на схему совпадений /с.с.1/. Импульс совпадений /1+2/ длительностью $5 \cdot 10^{-8}$ сек с амплитудой ≈ 3 вольта, формированный триггером /см.рис. 3/, имеющим мертвое время $0.25.10^{-6}$ сек, поступал на схему µn совпадений /с.с. 2/. На эту же схему подавался формированный прямоугольный импульс с длительностью T = $0.67.10^{-6}$ сек и фронтом 5.10^{-8} сек от нейтронного детектора. Задержка L_1 выбрана такой, чтобы импульс совпадений /1+2/ и импульс из нейтронного детектора могли совпасть лишь в течение интервала T /длительность "ворот"/ спустя время t_0 = 0.1.1 сек и осле появления µ⁻-мезона. Введение дополнительной задержки t_0 исключало возможность регистрации нейтронов от захвата в мишени π⁻ -мезонов, прошедших через фильтр.

Так как число импульсов от нейтронного детектора значительно меньше числа совпадений /1+2/, то "ворота" открывались импульсами от нейтронного детектора. В этом случае задержка t₀ определялась временным интервалом между задним фронтом "воротного" импульса и формированным импульсом совпадений /1+2/. Поэтому было обращено особое внимание на стабильное положение заднего фронта " воротного" импульса относительно запускающего импульса от нейтронного детектора. С этой целью для формировки " воротного" импульса использовался триггер с двумя устойчивыми состояниями /рис. 4/, у которого момент возвращения в исходное состояние определен длиной кабеля задержки L_T.

Схема запирания отбрасывает импульсы, возникшие одновременно в обоих фотоумножителях нейтронного детектора, и пропускает без искажения амплитуд импульсы, возникшие в одном из двух ФЭУ. После схемы запирания импульсы поступают на схему µп -совпадений и на два интегральных дискриминатора. Наряду с измерением асимметрии по числу нейтронов на заданном пороге дискриминатора I, с помощью дискриминатора II измерялся спектр протонов отдачи. Регистрация импульсов, прошедших дискри-

минаторы 1 и II была возможна в том случае, когда в схемы совпадений /с.с.4/ и /с.с.5/ поступал разрешающий импульс из схемы µп -совпадений /с.с.2/. Такая двуступенчатая регистрация совпадений нейтронов с мезонами использована для того, чтобы импульсы на схему µп -совпадений не поступали сразу после дискриминаторов 1 и II, где они могли бы иметь разную задержку в зависимости от амплитуды импульсов.

Для одновременной регистрации случайных μ^n -совладений импульсы из нейтронного детектора после схемы запирания задерживались на время 2.8.10⁻⁶ сек /задержка L_2 /, так что в схеме μ^n -совладений /с.с. 3/ совладения с μ^- -мезонами возникали для нейтронов, попавших в детектор на 2,8.10⁻⁶ сек раньше прохождения μ^- -мезоном телескопа 1.2. Регистрация задержанных /задержки L_3 и L_4 / на 2,8.10⁻⁶ сек импульсов от дискриминаторов 1 и 11 разрешалась тогда, когда в схемы совладений /с. с.6/ и /с.с.7/ поступал импульс от схемы /с.с.3/.

Таким образом, с помощью такой электронной аппаратуры можно было в одном канале регистрировать нейтроны от поглощения μ^- -мезонов в мишени и случайные совпадения импульсов от мезонного телескопа и нейтронного детектора на двух порогах / $N_{3+\Phi}^{I}$, $N_{3+\Phi}^{II}$ / и одновременно в другом канале регистрировать фон случайных совпадений на тех же двух порогах / N_{\pm}^{I} , N_{\pm}^{II} /.

Электроны от распада µ -мезонов регистрировались аналогичным образом. Импульсы совпадений 3+4+5 /с.с.8/ после формирования поступали на схемы /с.с.9/ и /с.с.10/ µе -совпадений. Интервал времени для регистрации электронов после остановки µ -мезонов и мишени был тот же, что и для регистрации нейтронов. Счетное устройство $N_{3+\varphi}^e$ регистрировало как электроны распада, так и фон случайных совпадений. В то же время счетное устройство N_{db}^e регистрировало фон случайных совпадений.

Так как измерения асимметрии испускания нейтронов требовали длительной работы аппаратуры, было обращено особое внимание на ее стабильность. Напряжение сети стабилизировалось феррорезонансными стабилизаторами, а анодные напряжения – электронными стабилизаторами. Для питания ФЭУ-29 использовались выпрямители ВС-16, а для питания ФЭУ-24 – выпрямитель ВС-10.

Стабильность работы аппаратуры, предназначенной для регистрации электронов распада, проверялась в течение нескольких десятков часов путем измерения счета случайных совпадений от двух счетчиков. В одном счетчике импульсы от *а* -частиц Р₀ иммитировали импульсы от электронов, Другой счетчик, иммитировавший импульсы от *μ* -телескопа, облучался *γ* квантами от Со⁶⁰. Наблюдаемые в измерениях изменения в счете / ~ 0,2%/ определялись статистическими флюктуациями.

Стабильность электронной аппаратуры, относящейся к регистрации нейтронов, проверялась по счету нейтронов от Po - Be источника. В течение нескольких часов работы нестабильность в счете не превышала ~ 0,5%. Поскольку при измерении асимметрии испускания нейтронов интервал времени между изменением направления магнитного поля в мишени был выбран гораздо меньшим, больщей точности в определении стабильности не требовалось.

У. Измерения

6ď

Нейтронный детектор калибровался по энергии с помощью радиоактивных источников Co⁶⁰, Na²⁴, Po- Ве и нейтронов из реакции t+d → He+n, как это описано ранее в^{/12/}. Рабочий порог регистрации нейтронов был вы - бран равным 7 М эв.

При измерениях прежде всего было установлено, что счет $N_n = N_{2+ch} - N_{ch}$ соответствует регистрации нейтронным детектором частиц, образующихся в мишени кальция. Действительно, при убирании мишени

N = 1.05 ± 0.05, а при установлении задержки 1.3.10⁻⁶сек, в четыре раза большей времени жизни мезона в кальшии, в канале "эффект + фон"

 $N_{3+\phi} | N_{\phi} = 1,00 \pm 0,04$. Кроме того, время жизни μ^- -мезонов, полученное нами из кривой задержанных совпадений, в пределах ощибок совпадает с более точным значением /13/. измеренным для кальция/рис.5/.

Число нейтронов N_n из кальция определялось по разности счета в канале эффект+фон" и "фон" N_n = N_{э+ф} - N_φ. Однако, имелась некоторая вероятность того, что нейтроны эффекта сосчитаются одновременно и в канале "фон" из-за наличия случайных совпадений, т.е. число N_n уменьшится по

сравнению с тем случаем, когда таких совпадений нет. Из измерения числа совпадений между этими каналами получено, что доля таких нейтронов составляет меньше 2% от ^Nn•

В специальных измерениях, проведенных с дополнительным счетчиком, было найдено, что в счете N_n вклад от регистрации у -квантов незначителен. Дополнительный счетчик, диаметром 19 см и толщиной 1 см, располагался перед нейтронным детектором. При выключенной схеме запирания между двумя половинами детектора с дополнительным счетчиком, включенным в антисовпадение с каждой половиной детектора, нейтронный детектор не регистрирует электроны, но регистрирует У -кванты N_y и нейтроны N_n , т.е. сумму $N_y + N_n$. При отключенном дополнительном счетчике и с включенной схемой запирания между половинами детектора регистрируется сумма $N_y K_y^{*1} + N_n K_n^{*1}$, где K_y и K_n -интегральные коэффициенты отбрасывания у -квантов и нейтронов $^{12/}$ на рабочем пороге. Используя зависимость K_y и K_n от энергии нейтронов из $^{12/}$, получаем:

$$P_{\gamma} = \frac{N_n K_n^{-1}}{N_n K_n^{-1} + N_\gamma K_{\gamma}^{-1}} = 0.96 .$$
 (6/

Через каждые 2 часа работы на синхроциклотроне проводилась проверка рабочего порога нейтронного детектора по спектру импульсов от у -квантов Na²⁴. В процессе измерений через каждые 40 минут /знак магнитного поля в катушке изменялся через 20 минут/ проверялось равенство амплитуд от каждого фотоумножителя нейтронного детектора путем сравнения счета на рабочем пороге на единицу счета монитора от каждого фотоумножителя и в случае необходимости амплитуды выравнивались.

Несмотря на четырехслойную магнитную защиту ФЭУ-24, при наличии рассеянного магнитного поля ускорителя в несколько эрстед, перемена направления поля в катушке приводила к некоторому изменению коэффициента усиления фотоумножителей нейтронного детектора, что эквивалентно небольшому смещению рабочего порога регистрации нейтронов. При отсутствии рассеянного поля ускорителя такого изменения не наблюдалось. Смещение рабочего порога ΔU измерялось по разности счета на интегральных спектрах различных радиоактивных источников при изменении направления поля в катушке. Неоднократно повторенные измерения на спектрах разной крутизны /рис. 6/ дали одно и то же относительное смещение порога $\Delta U | U = 0.0295 \pm 0.0011$, где U -значение порога при отсутствии поля в катушке.

Чтобы учесть влияние магнитного поля на измеряемую асимметрию, с помощью дискриминатора 11 были измерены интегральные спектры в каналах "эффект⁺фон" и "фон". При наличии влияния магнитного поля на ФЭУ-24, счет нейтронов из мишени при двух противоположных направлениях поля в катушке в канале "эффект+фон" равен:

$$N_{\Im+\varphi}^{\pm}(U \pm \Delta U) = N_{\Im}(U \pm \Delta U) [1 \pm a_{\underline{h}}] + N_{\varphi}(U \pm \Delta U), \qquad /7/$$

где an -коэффициент асимметрии испускания нейтронов. Отсюда

$$a_{n} = \frac{N_{9} + \phi}{N_{9} + \phi} | N_{9} + \phi^{-} \Pi / \nu , \qquad (8/)$$

где

$$\nu = \frac{N \Rightarrow + \phi(U + \Delta U)}{N_{cb} (U + \Delta U)} = \frac{N \Rightarrow + \phi(U - \Delta U)}{N_{cb} (U - \Delta U)}$$

 $\Pi = \frac{N_{3} + \phi}{N_{3} + \phi} \frac{(U + \Delta U)}{(U - \Delta U)}$ описывает влияние магнитного поля на спектр в канале "эффект+фон".

Изучение влияния перемены направления поля в катушке на счет совпадений 1+2 и 3+5 показало, что оно отсутствует:

$$N^{-}|N^{-}= 1,0012 + 0,0032.$$

Согласно теории двухкомпонентного нейтрино^{/14/}, угловое распределение для электронов с энергией больше Е от распада µ⁻-мезона на К-оболочке описывается формулой:

•->

$$\mathbb{W}(\mathbb{E}_{0},\theta) = 1 + \lambda P_{\mu} a(\mathbb{E}_{0}) \cos\theta = 1 + a_{e}(\mathbb{E}_{0}) \cos\theta \quad , \qquad /9,$$

The
$$a_e' E_o = \lambda P_\mu a(E_o);$$
 $a(E_o) = \frac{1 + E_o + E_o^2 + 3E_o^2}{3(1 + E_o + E_o^2 + E_o^2)};$

θ -угол между направлением вылета электрона и спином μ⁻ -мезона;
Е -энергия электрона, отнесенная к максимально возможной энергии;
λ -коэффициент, зависяший от констант связи;

 ${}^{\mathbf{p}}_{\mu}$ - остаточная поляризация μ^- -мезона на К -оболочке мезоатома. Для ${}^{\mathbf{E}}_{\mathbf{O}}$ = 0

$$\mathbf{P}_{\mu} = \frac{\mathbf{a}_{e}(0)}{\lambda \alpha(0)} = \frac{3\mathbf{a}_{e}(0)}{\lambda} \quad \mathbf{T}_{\bullet}\mathbf{K}, \quad \alpha(0) = 1/3 \quad /10/$$

Согласно теории Фейнмана-Гелл-Мана $^{/15/}|\lambda|=1$, имеет место соотношение:

$$P_{\mu} = 3a_{e}(0)$$
 . (11/

Для определения остаточной поляризации Р_µ мезонов в кальции одновременно с асимметрией нейтронов измерялась асимметрия электронов распада с энергией больше Е_о, определяемой толщиной мишени и сцинтилляторов телескопа.

Выдэление интервала углов вылета электронов относительно направления спина µ⁻ -мезона заданием длительности "ворот" Т, частоты прецессии ^ω и времени задержки t₀ приводит к тому, что фактически регистрируется интегральная асимметрия по этому угловому интервалу, т.е. асимметрия определяется из соотношения:

$$(1 \pm \Lambda_{\theta}) = \mathbf{X} \int_{\theta}^{\theta + \delta} \int_{\theta}^{t_{\theta} + T} [1 - \mathbf{a}_{\theta}(\mathbf{E}_{\theta}) \cos(\theta \pm \omega t)] e^{t/T} d\tau d\theta = 1 \pm \mathbf{a}_{\theta}(\mathbf{E}_{\theta}) \mathbf{b}_{\theta}^{/12/T} d\tau d\theta$$

где К- коэффициент пормировки, θ-угол, под которым расположен электронный телескоп, по отношению к направлению движения μ-мезона; 26 = 35[°] - угол, под которым телескоп виден из центра мишени; $\omega = \frac{e}{m_{\mu} c \, \mathrm{i}}$ - частота прецессии спина μ-мезона в магнитном поле,

Н = 40,2 эрстеда; T = 0,67 $\cdot 10^{-6}$ сек, t₀ = 0,04 $\cdot 10^{-6}$ сек; r = /0,333 ± 0,007/ $\cdot 10^{-6}$ сек ^{/13/}-время жизни ^µ-мезона в кальции. Для электронов b = 0,64. Величины T, t₀, r, ω , δ известны с точностью в несколько процентов, отсюда суммарная ошибка величины b ~ 5%. С целью проверки работы аппаратуры была измерена кривая прецессии для электронов распада при остановке µ -мезонов в углероде, поскольку выход электронов из углерода значительно больше, чем из кальция. Эта кривая показана на рис. 7. Величина асимметрии электронов распада для углерода $a_e^c(0) = - /0.043 \pm 0,004/$ хорошо согласуется с результатами, полученными ранее в ОИЯИ^{/16/}.

При измерении асимметрии электронов распада μ^- -мезонов в кальции зарегистрировано около 4,10⁴ импульсов е μ -совпадений для каждого направления поля в канале "эффект+фон". С учетом фона, составлявшего 30% от этого количества, найдена асимметрия, равная $a_e^{Ce}(E_o) = -/0,058 \pm$ 0,0083/ на рабочем пороге телескопа. Учитывая зависимость a от E_o , эффективность регистрации электронов разных энергий для определенной толщины фильтра /17/, изменение телесных углов и порог регистрации для электронов, образованных в разных слоях мишени, получаем:

 $a_{\bullet}^{Ca}(0) = - /0,045 \pm 0,0065 / и$ $P_{\mu}^{Ca} = 0,135 \pm 0,019.$ /13/ Знак a_{\bullet}^{Ca} выбран отрицательным, согласно предположению о том, что нейтрино, испускаемое при μ^{-} -захвате, поляризовано против направления своего движения.

При сравнении асимметрии испускания нейтронов от захвата μ^- -мезонов в разных ядрах весьма важно знать величину $a_e^{(0)}$ для этих ядер. На рис. 8 приведены результаты измерений асимметрии электронов распада для некоторых ядер со спином нуль, полученные в работах /10,11.16,18,22/и в данной работе. Из рисунка видно, что имеются существенные расхождения в результатах разных групп авторов, которые вряд ли можно объяснить разницей в поляризации пучков μ^- -мезонов на разных ускорителях, возникающей вследствие разной кинематической деполяризации пучков.

<u>УШ. Результаты измерения асимметрии</u> нейтронов и их обсуждение

При измерении асимметрии нейтронов, испускаемых при захвате μ^- мезонов в кальции, для каждого направления магнитного поля зарегистрировано в канале "э" фект+фон" около 1.9.10⁴ импульсов; фон случайных совпадений, составлял около 1.2.10⁴ импульсов. Согласно формуле /8/ получаем:

$$a_{n}^{c_{a}} = \frac{N_{9}^{+} + \phi | N_{9}^{+} + \phi - \Pi}{N_{9}^{-} + \phi | N_{9}^{+} + \phi + \Pi} = - /0,0485 \pm 0,016/,$$

где $a_n = \frac{p}{\mu} \frac{p}{y} \frac{p}{n} \overline{\beta} \overline{a} b$; $\Pi = 1,087 \pm 0.0027; N_{3+\phi}^{-} | N_{3+\phi}^{+} = /1,052 \pm 0.01/.$ Поскольку $b_n = 0,73$, коэффициент асимметрии испускания нейтронов прямого процесса при захвате μ^{-} -мезонов в кальции равен:

$$A_{Ca} = P_{\mu} P_{\mu} P_{n} \overline{\beta} \overline{a} = - /0,066 \pm 0,022/.$$
 /14/

При напряженности магнитного поля в катушке, равной напряженности поля при измерениях с кальцием, был проведен контрольный эксперимент по определению асимметрии счета нейтронов от μ^- -захвата в алюминии, где асимметрия нейтронов отсутствует, из-за полной деполяризации μ^- -мезонов^{/16/} и вся измеряемая асимметрия счета должна быть обусловлена влиянием магнитного поля на фотоумножители нейтронного детектора. Для увеличения скорости счета измерения проводились для нейтронов с энергией больше 2 Мэв. Для каждого направления поля в канале "эффект+фон" набрано около 4.10⁴ импульсов; фон случайных совпадений составлял 2,6.10⁴ импульсов. Найденное по формуле /8/ значение асимметрии равно $A_A f =$ - /0,015 + 0,015/. Асимметрия счета электронов близка к нулю $a_A^{\bullet} f^{0} =$ /0,003 + 0,006/.

Значение $\vec{k_{A}}$ для кальция получено нами при использовании зависимости β от E_n и спектра нейтронов прямого процесса w(E_n), рассчитанного по модели оболочек $^{/4/}$ с учетом эффективности детектора к нейтронам разных энергий. Измеренная нами зависимость эффективности детектора δ от энергии нейтронов с достаточной точностью описывается формулой $\delta \sim \delta_{np} (1 - \frac{E_o}{E_n})$, где δ_{np} -эфdeктивное сечение упругого раст

сеяния нейтронов на водороде; Е_л-энергия нейтронов в Мэв; Е₀-энергетический порог регистрации нейтронов. Полученная величина 🛱 оказалась равной 0,58.

Величину P_n можно получить из следующего выражения:

$$P_{n} = \frac{gw / m w_{\Im KC}}{gw / m w_{\Im KC} + r(1 - w / m w_{\Im KC})}, \qquad /15/$$

где w = $3,7.10^{5}$ сек⁻¹ -вероятность прямого процесса при захвате μ^{-} - мезонов в кальции⁴; w_{экс} = $25,5.10^{5}$ сек⁻¹ -полная вероятность захвата μ^{-} -мезона в кальции /13/; m = $0,7 \pm 0,06$ -среднее число нейтронов на один акт захвата μ^{-} -мезона в кальции /19/; g = 0,42 - доля нейтро - нов с энергией выше 7 Мэв, определяемая по спектру нейтронов прямого процесса ⁴/с учетом зависимости от энергии эффективности нейтронного детектора; r = 0.006 -доля нейтронов испарения с энергией выше 7 Мэв по спектру в виде $dN/dE = E_n \exp^{-E_n/T}$, где T = 1.1 Мэв для кальция ²⁰/

Согласно этим значениям Pn = 0.94.

Величину P_n можно получить и из расчетов спектра нейтронов прямого процесса и спектра испарительных нейтронов, выполненных по видоизмененной модели Ферми-газа для ядра кальция ^{/7/}. Отсюда получается, что для E_n больше 7 Мэв $P_n = 0.8$. Однако эти расчеты, по-видимому, недостаточно точны, т.к., например, для $E_n > 3$ Мэв $P_n \sim 0.1$, что противоречит факту довольно большой наблюдаемой асимметрии нейтронов из серы. В дальнейшем используется значение $P_n = 0.94$. Подставляя величины P_n , P_y , $\overline{\beta}$, P_μ в выражение для A_{ce} , получаем $\overline{\alpha} = - /0.93 \pm 0.33/$.

В настоящее время опубликованы результаты нескольких работ ^{/8,9.10,11/} по измерению асимметрии испускания нейтронов, образованных при поглощении µ⁻-мезонов ядрами. В работе ^{/8/} на целом ряде ядер асимметрия не была обнаружена, по-видимому, вследствие выбора низкого порога для регистрации нейтронов /около 1,5 Мэв/ и регистрации нейтронным детекто-

ром у -квантов. В работе колумбийской группы^{/10/} также не обнаружена асимметрия испускания нейтронов от захвата µ⁻- мезонов в магнии, хотя эксперимент поставлен с учетом всех характерных для него особенностей.

Однако результаты этой работы изложены весьма кратко и непонятно почему не обнаружена асимметрия.

В работе ливерпульской группы⁹⁹ найдена большая асимметрия испускания нейтронов с эчергией больше 3 Мэв из серы A_e = -/0,45±0,015/. Так как в этой работе порог регистрации нейтронов довольно низкий, необходимо вводить большую поправку на испарительные нейтроны: P_n = 0,7, как следует из работы⁹ или P_n = 0,3, как получено из формулы /15/, где m_s взято равным m_{Ce}. Поэтому неопределенность оценки P_n, возникающая когда P_n существенно отличается от единицы из-за неточности, с которой известно среднее число нейтронов и спектры прямых и испарительных нейтронов, приводит к значительной ошибке в $\tilde{\alpha}$. Действительно, изменение среднего числа нейтронов тили вероятности прямого процесса w при захвате μ -мезонов в два раза приводит к изменению величины P_n

^Е_{пор}=7 Мэв в случае кальция.

Чикагская группа^{/11/} обнаружила асимметрию для нейтронов с энергией более 5 Мэв от поглощения µ⁻-мезонов в сере и магнии:

 $A_s = - /0,019 \pm 0,07/;$ $A_{Mg} = /0,020 \pm 0,05/.$ Для этих ядер измерена остаточная поляризация μ^- -мезонов /см. рис. 8/. Эти результаты по измерению асимметрии нейтронов можно использовать для определения \tilde{a} и сравнить с данными, полученными нами для кальция, поскольку остаточная поляризация известна, а порог регистрации нейтронов достаточно высок. Рассчитанная нами по формуле /15/ величина Р равна 0,43 для магния / m = 0,6/, а для серы Р = 0,53 / m = 0,7/.

В раблице 1 сведены данные экспериментальных значений асимметрии по результатам $^{(9,11)}$ и настоящей работы. При вычислении $\tilde{\alpha}$ из данных эксперимента с магнием и серой значение P_y взято равным 1. При вычислении α из данных $^{(9)}$ P_{μ} взято из $^{(22)}$, а $P_n = 0.7$, как это оценено авторами работы. Остальные значения оценены по формуле /15/. Значения $\tilde{\beta}$ для серы и магния получены таким же способом как и для кальция, причем для магния использованы данные $^{(5)}$ для кремния. Для величин P_{μ} , A, $\tilde{\alpha}$, в таблице приведены стандартные статистические ошибки.

Из таблицы видно, что значения а̃ по данным разных работ в пределах ошибок /которые примерно одинаговы и равны ≈ 35%/ согласуются друг с другом, хотя а́ для серы и магния менее достоверно, так как Р_ значительно отличается от единицы.

Полученное в данной работе значение $\vec{a} = -/0.93 \pm 0.33$ / значительно больше наиболее вероятного теоретического значения $\vec{a}_T = 0.41$, рассчитанного в работе^{/5/} в предположении, что $g_A/g_V = -1.25$, $g_P/g_A = 8$,

1148/3

g_m/g_v = 3,7, где g_v; g_A g_p, g_m - константы векторного, псевдовекторного, псевдоскалярного вариантов взаимодействия и константа слабого магнетизма, соответственно.

Большое отрицательное значение \tilde{a} , полученное нами, во-первых, подтверждает несохранение четности при захвате μ -мезона протоном, вовторых указывает на большой вклад псевдоскалярного варианта взаимодействия. Знак отношения констант g_p/g_A положительный. При этом лучшее согласие измеренной величины \tilde{a} с ее теоретическим значением из работы получается, по-видимому, при условии, что отношения g_p/g_A и $g_A/g_V g_m/g_V$ больше их наиболее вероятных теоретических значений.

Более точные сведения о константах g_p и g_m можно получить измеряя ^a с большей точностью, а также при изучении процесса радиационного захвата ^μ-мезона протоном ^{/21/}.

В заключение авторы считают своим приятным долгом поблагодарить И.С. Шапиро, Э.И. Долинского и Л.Д. Блохинцева за постоянный интерес к работе и обсуждение полученных результатов, а также Чжан Жунь-Ва за помощь при измерениях.

> Объединенный институт ядерных исследовария БИБЛИСТЕКА

Литература

- И.С. Шапиро, Э.И. Долинский, Л.Д. Блохинцев. ДАН СССР, 116,946, 1957. Б.Л. Иоффе, ЖЭТФ, 33, 308, /1957/; К. Huang, C. Yang, T. Lee. Phys.Rev. 108, 1340 (1957). L. Wolhenstein.' Nuovo Cimento, 7, 706, 1958.
- 2. H. Uberall, Nuovo Cimento, 6, 533 (1957)..
- 3. С.С. Герштейн, ЖЭТФ, 34, 463, /1958/.А.Е. Игнатенко, Л.Б. Егоров, Д. Чултэм, Б. Халупа ЖЭТФ, **35,4**/10//1958/.
- 4. Э.И. Долинский, Л.Д. Блохинцев, ЖЭТФ, 35, 1488 /1958/.
- 5. М.К. Акимова, Л.Д. Блохинцев, Э.И. Долинский, ЖЭТФ, 39,1806,
- 6. W. Majewski, Acta Phys. Polonica XIX, 525 (1960).
- 7. E. Lubkin. Ann. of Phys. 11, 414 (1960).
- 8. C. Coffin, A. Sachs, D. Tycko. Bull.Amer. Phys.Soc. 3, N 1, 52 (1958).
- 9. A. Astbury, I.M. Blair, M. Hussain, M.A.R. Kemp, H. Muirhead, R.G. Voss. Phys.Rev.Let. v. 3, N 10, 476 (1959).
- 10. W. Baker, C. Rubbia. Phys.Rev. Let. v.3, N 4, 479, 1959.
- 11. V. Telegdi. Proc. of the 1960 Annual Intern. Conf. on High Energy Phys. at Rochester, 713 (1960).
- 12. В.С. Евсеев, В.И. Комаров, В.З. Куш, В.С. Роганов, В.А. Черногорова, М.М. Шимчак, ПТЭ, № 1, 68, /1961/;

Acta Phys. Polonica, XIX, 675 (1960).

- 13. I. Sens. Phys.Rev. 113, 679 (1957).
- 14. Л.Д. Ландау, ЖЭТФ, 32,407,/1957/. А. Salam. Nuovo Cimento 5, 299 (1957).
- 13. R. Feinman, M. Gell-Mann. Phys.Rev. 109, 173 (1958).
- 16. А.Е. Игнатенко, Л.Б. Егоров, Б. Халупа, Д. Чултэм, ЖЭТФ, 35,1131, /1958/. Л.Б. Егоров, А.Е. Игнатенко, Д. Чултэм. ЖЭТФ, 37, 1517 /1959/.
- 17. А.И. Мухин, Е.Б. Озеров, Б.М. Понтекорво, ЖЭТФ, 35, 341, /1958/ S. Lokanathan, L. Steinberger. Suppl. Nuovo Cimento, VII, s X, w.1, 151 (1958).
- R. Prepost, V.W. Hughes, S. Penman, D. McColm, K. Ziock, Bull. Amer.Phys.Soc. ser. II, v.5, N 1, 75 (1960).
- 19. R.V. Pyle, J. Diaz, S.Kaplan, B. Macdonald. Bull.Amer. Phys.Soc. ser II, v. 4, N 8, 447 (1959).
- 20. P. Gugelot. Phys.Rev. 81, 51 (1951); J. Lang, K. Le Couteur.. Proc.Phys.Soc. v67, 586, (1954).
- 21. L. Wolfenstein. Proc. of the 1960. Annual Intern. Conf. on High Energy Phys.at Rochester, 529
- 22. A. Astbury, P.M. Hattersley, M. Hussain, M.A.R. Kemp, H. Muirhead, T. Woodhead (1960).

препринт 1961 г.

/1960/.

Рукопись поступила в издательский отдел 7 июня 1961 года.

Рис. 1. Общий вид установки и защиты.

Рис. 2. Блок-схема электронной аппаратуры. / $L_{I} = T + t_{0}$, $L_{2} = L_{3} = L_{4} = L_{5} = 2,8$ мксек, T = 0,67 мксек, $t_{0} = 0,1$ мксек/.

Рис. 5.

Счет нейтронов N_n от захвата µ⁻-мезонов в. кальции в зависимости от задержки t₀ ; точками обозначены результаты измерений, прямая линия проведена согласно результатам работы /13/ для кальция.

Рис. 6. Зависимость относительного смещения рабочего порога ∆U/U о' крутизны спектра, характеризуемой величиной |1-П/1+П|. Стре. соответствует крутизне спектра протонов отдачи от нейтронов г захвате µ⁻-мезонов в кальции.

٤.

Рис. 7.

Кривая прецессии для электронов распада от остановок µ-мезонов в углероде.

Рис. 8.

Коэффициент асимметрии а(0) в угловом распределении электронов распада для ядер с нулевым спином по результатам работ [/]10,11,16,18,22/ и настоящей работы.

26

ТАБЛИЦА	I
---------	---

.

.

.

Ядро .	Порог Мэв	$A = P_{\mu} \cdot P_{n} \cdot P_{y} \cdot \overline{\beta} \cdot \overline{\alpha}$	$P_{\mu} = 3 \alpha (o)$	P n	Ā	ã
Сера ^{/9/} Сера ^{/II/} Магний ^{/II/} Кальций (данная работа)	3 5 5 7	-(0,045 <u>+</u> 0,015) -(0,019 <u>+</u> 0,007) -(0,020 <u>+</u> 0,005) -(0,066 <u>+</u> 0,022)	0,126 <u>+</u> 0,018 /22/ 0,084 <u>+</u> 0,015 0,066 <u>+</u> 0,012 0,135 <u>+</u> 0,0 1 94	0,7 /9/ 0,28 0,53 0,43 0,94	0,59 0,62 0,62 0,58	-(0,86+0,31)-(2,16+0,78)-(0,69+0,28)-(1,14+0,36)-(0,93+0,33)
						X

.

•

5 E E