

十次十

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

В.С.Барашенков, В.М. Мальцев

P-724

СЕЧЕНИЯ ВЗАИМОДЕЙСТВИЯ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

В.С.Барашенков, В.М. Мальцев

P-724

СЕЧЕНИЯ ВЗАИМОДЕИСТВИЯ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

113/9 45.

объедкненный институт ядерных исследований БИБЛИОТЕКА

 $\sigma_{i} \sigma_{i}$

Содержание

Стр.

1.	Введение	5
11.	Экспериментальные данные	6
	2.1.Взаимодействие нуклонов	8
	2.2. Взаимодействие антинуклонов с нуклонами	24
	2.3. Взаимодействие 🎵 -мезонов с нуклонами	30
	2.4. Взаимодействие ОГ-мезонов с гиперонами	48
	2.5. ЛЛ- взаимодействие	49
	2.6. Взаимодействие К-мезонов с нуклонами	52
	2.7. Взаимодействие К-мезонов с 🗊- и К-мезонами	64
111	. Теоретическая интерпретация экспериментальных данных	66
	3.1. О поведении сечений при очень малых энергиях	66
	3.2. О постоянстве сечений взаимодействия при больших энергиях	69
	3.3. Равенство сечений взаимодействия частиц и античастиц	70
	3.4. Зависимость взаимодействий от изотопических спинов	73
	3.5. Зависимость взаимодействий от спинов сталкивающихся частиц	77
	3.6, Слабые взаимодействия при больших энергиях	80
1У,	Заключительные замечания	82
	Приложение 1. Экранировка нуклонов в ядре дейтерия	83
	Приложение 11. Средний свободный пробег быстрых частиц в фотоэмульсии	86
	Литература	90

Введение

В настоящее время накопилось большое количество экспериментальных данных по сечениям взаимодействия элементарных частиц. Однако, эти данные разбросаны по многочисленным оригинальным статьям и отчетам, что сильно затрудняет их использование. Кроме того, в ряде работ сечения определялись из относительных измерений (например, измерялось отношение сечения упругого рассеяния к полному сечению, значение которого было взято из другой работы). Полученные таким образом сечения должны быть веренормированы в соответствии с более поздними экспериментальными данными. В некоторых случаях такая перенормировка значительно изменяет величину сечений, указанных в оригинальных работах.

В настоящее время известно несколько обзоров, в которых собраны экспериментальные эначения сечений: в обзорах ^[1-3] рассмотрены сечения взаимодействия протонов и нейтронов с протонами; в обзоре^[4] – полные сечения взаимодействия П -мезонов с нуклонами; в ^[5]собраны данные по взаимодействиям иуклонов, антинуклонов, К- и , -мезонов при больших энергиях T > 0,8 Бэв¹⁾. Однако, эти обзоры далеко не исчерпывают всех известных экспериментальных данных. В частности, после опубликования работы мы получили много писем от экспериментаторов, уточняющих и дополняющих нх райее опубликованные даиные. Были получены также новые теоретические и экспериментальные результаты, существенно уточняющие картину взаимодействия частиц при больших энергиях.

Далее будут подробно рассмотрены экспериментальные данные о сечениях взаимодействия нуклонов, антинуклонов, К – и П – мезонов при различных энергиях. Особое внимание мы уделим области больших энергий. Взаимодействия при больших энергиях имеют ряд специфических особенностей, общих для частиц различных сортов. Из анализа таких взаимодействий можно получить сведения о явлениях, происходящих в области очень малых пространственно-временных масштабов.

Большая часть экспериментальных данных о сечениях волучена из опытов на ускорителях, где большие плотности пучков ускоренных частиц поэволяют провести прецнаионные измерения. Лишь незначительная часть данных получена в опытах с космическими лучами. Трудности измерений обуславливают здесь сравнительно малую точность полученных результатов. Измеренные величины являются, как правило, усредненными по большим интервалам энергии. Однако, эта малая часть

Здесь и везде далее Т будет означать кинетическую энергию налетающей частицы в лабораторной системе координат.

данных имеет важнейшее эначение, так как дает нам информацию о вэаимодействии частиц при гигантских энергиях в сотни и тысячи Бэв. Если недавно запущенный 25-Бэвный ускоритель в Женеве дает воэможность проникнуть вглубь вещества вплоть до расстояний $\lambda \simeq 1/\tau_{max}^{4} \simeq 5\cdot 10^{-15}$ см, то опыты с космическими лучами, по-видимому, еще долго останутся единственными средством изучения пространственно-временных масштабов $\lambda \simeq 10^{-15}$ см - 10^{-18} см.

В связи с тем, что в последнее время интенсивно обсуждаются возможности опытов с нейтрино высоких энергий (см. например, сборник^[7], где приведена подробная библиография), мы кратко рассмотрим теоретические данные о сечениях слабых взаимодействий при очень высоких энергиях.

11. Экспериментальные данные

В оригинальных работах используются различные определения сечений взаимодействия. Поэтому прежде чем перейти к рассмотрению экспериментальных данных, условимся, что мы будем понимать под различными видами сечений взаимодействия, и введем иеобходимые обозначения.

Полное сечение взаимодействия б_t складывается из сечения упругого рассеяния б_{ct} и сечения неупругих пропессов б_{ib}

$$G_t = G_{el} + G_{in}$$

в свою очередь

$$\mathcal{G}_{el} = \mathcal{G}_{d} + \mathcal{G}_{p} + \mathcal{G}_{ie} + \mathcal{G}_{dp} \,.$$

Здесь б_л-сечение дифракционного рассеяния. Эта часть упругого рассеяния целиком определяется неупругими реакциями и обращается в нуль при б. -> 0.

Ср сечение упругого "потенциального рассеяния". Примером такого рассеяния может служить кулоновское рассеяние двух заряженных частиц или рассеяние нуклонов, обменявшихся мезоном. Существенно, что взаимодействующие частицы в каждый момент времени при этом сохраняют свою индивидуальность.

Первичные частипы могут также в пропессе взаимодействия на какой-то момент времени потерять свою индивидуальность, образовав единую "компаундчастицу", которая в частном случае может снова распасться на эти же частицы. Такое упругое рассеяние мы будем характеризовать сечением \mathfrak{S}_{ie} , где индекс отмечает "неупругое происхождение" этого рассеяния. В некоторых случаях

(например, при расчете вероятностей распада компаунд-частицы) оказывается необходимым включить бе в сечение неупругих реакций бе . Одиако, в последующем всегда будет ясно, что понимается под сечением бе и бе .

 \mathfrak{S}_{dp} - сечение рассеяния, обусловленного интерференцией между дифракционным и когерентной ему частью потенциального рассеяния. Понятно, что упругое рассеяние через компаунд-частицу некогерентно с дифракционным рассеянием. В некоторых случаях можно выделить такой тип упругого рассеяния, когда природа частиц в результате взаимодействия не изменяется, но частицы меняются ролями: например при рассеянии протона на нейтроне $p+n \rightarrow n+p$. Такое рассеяние можно назвать "рассеянием с перестановкой". Очевидно, $\mathfrak{S}_{pn \rightarrow pn}(\theta) = \mathfrak{S}_{pn \rightarrow pn}(\pi - \theta)$. При малых энергиях рассеяние с перестановкой физически ничем не отличается от упругого рассеяния "обычного типа", так как угловое распределение $\mathfrak{S}(\theta)$ симметрично относительно угла $\theta = \frac{T}{2}$. Однако, при больших энергиях "обычное упругое рассеяние" в основном сосредоточено в области углов $\theta < \frac{T}{2}$, и упругое рассеяние с перестановкой может быть обнаружено экспериментально $\mathfrak{S}[\theta]$.

Сечение неупругого взаимодействия б складывается из сечений всех воэможных неупругих каналов реакции

$$\vec{\sigma}_{in} = \sum_{j} \vec{\sigma}_{in}^{(j)}$$

Частным случаем неупругого рассеяния является "упругое рассеяние с перезарядкой" (например, $\pi + \rho \rightarrow \pi^{\circ} + n$), характеризуемое сечением \mathcal{G}_{ex} . Однако, в последующем нам будет удобнее рассматривать это сечение отдельно и не включать его в $\mathcal{G}_{ix}^{(2)}$.

Другим каналом неупругого рассеяния является "упругое рассеяние с переворотом спинов" с сечением \mathfrak{S}_5 . Если на опыте измеряется сечение, усредненное со спином взаимодействующих частиц (неполяризованный пучок и неполяризованная мишень), то \mathfrak{S}_5 автоматически включается в экспериментальное значение сечения упругого рассеяния $\mathfrak{S}_{\mathfrak{A}}$.

²⁾ При больших энергиях во многих работах сечение бек включается в біл. Однако, при этом бек «біл и соответствующее изменение біл незначительно. При малых энергиях бек велико и его удобно рассматривать отдельно.

Условимся также использовать следующие сокращенные обозначения методов, с помощью которых получены экспериментальные данные:

- В-ПК водородная пузырьковая камера;
- А-ПК дейтериевая пузырьковая камера;

П-ПК - пропановая пузырьковая камера;

В- ДК - водородная диффузионная камера;

А-АК - дейтериевая диффузионная камера;

- П-ДК пропановая диффузионная камера;
 - ИК- ионизационная камера;
 - С счетчики;
 - Ф анализ взаимодействий первичных частиц в фотоэмульсии;
 - ВФ первичные частицы, рассеянные на водородной мищени, детектируются фотоэмульсией;
 - Си нейтроны, рассеянные на водородной мишени, детектировались по реакции Си⁶³(n,2n)Си⁶²;
 - СС нейтроны, рассеянные на водородной мишени, детектировались по реакции С'2(n,2n)С";
 - Н метод измерений не указан.

Ошибки в полном сеченин $\delta \tilde{G}_{t}$, если они ие указаны авторами, будем полагать равными: $\delta \tilde{G}_{t} = \sqrt{(\delta \tilde{G}_{ec})^{2} + (\delta \tilde{G}_{in})^{2}}$. Аналогично будем вычислять ошибки упругого и неупругого сечений $\delta \tilde{G}_{ec}$ и $\delta \tilde{G}_{in}$ (если известны экспериментальные ошибки двух других сечений).

После этих общих замечаний перейдем к рассмотрению экспериментальных данных.

2.1. Взаимодействие нуклонов

В таблицах <u>I</u> - <u>У</u>1 приведены экспериментальные данные о сечениях *NN* взаимодействий.

При малых энергиях на взаимодействие протонов существенное влияние оказывают кулоновские силы. Поэтому сечения, полученные непосредственным интегрированием экспериментальных угловых распределений 5 = 5 56(0) d. Л. будут значительно отличаться от "ядерных сечений"³⁾. Можно получить более точные значения сечений pp - взаимодействия, не включающие кулоновских добавок, если учесть, что при малых энергиях ядерное рассеяние изотропно, а кулоновские силы искажают угловые распределения G(0) лишь в области малых $\Theta < \Pi_2$ и в области больших углов $\Theta > \Pi_2$. В этом случае

$$\mathcal{G}_{t} = \frac{1}{2} \int \mathcal{G}_{meda}(\Theta) \, d\mathcal{I} \simeq 2\pi \, \mathcal{G}_{exper}(90^{\circ}) \,. \tag{1}$$

Такой подход оправдан приблизительно до экергий 300-400 Мэв, так как при этих экергиях экспериментальные угловые распределения оказываются все еще приблизительно изотропными за исключением области малых и больших углов .

Формула (1) не применима для очень малых энергий, когда кулоновское рассеяние с заметной вероятностью происходит и на углы $\Theta \sim V_2$. На рис. 1 значения сечений, вычисленные по формуле (1), сравниваются с сечениями, рассчитанными по экспериментальным значениям ядерных длия рассеяния (подробнее см. § 3.1). Как видно, в области энергий $T \simeq (1-20)$ Мэв кулоновские силы заметно увеличивают величину $\mathfrak{S}_{\pm}(\rho p)$.

Вплоть до энергий **Т** =400 Мэв большинство приведенных в таблице **Г** сечений получены по формуле (1). По этой же формуле вычислялись ошибки

 $\delta G_{t} = 2\pi \cdot \delta G_{сарьс}(30^{\circ})$. Вычисленные таким образом ошибки являются заниженными, так как при этом не учтены ощибки, обусловленные неточностью формулы (1).

В некоторых работах при измерении $\mathfrak{S}_t(pp)$ в качестве абсолютного монитора использовалась реакция $\mathcal{C}^{12}(p,pn)\mathcal{C}''$. Так как в настоящее время сечение этой реакции известно более точно \mathcal{I}^{117} , \mathcal{I}^{127} , то некоторые из ранее полученных значений $\mathfrak{S}_t(pp)$ следует перенормировать. Перенормированные значения сечений отмечены в таблице 1 значком +.

³⁾ Фактор 1/2 перед интегралом учитывает тождественность двух протонов после упругого (РР)-рассеяния.

В ряде случаев сечение \mathfrak{S}_{in} в таблице Ш лолучено суммированием сечений парциальных неупругих каналов, взятых из работ разных авторов. При этом сечение канала $p+p \rightarrow \pi^+ + d$ иногда определялось с помощью экспериментального сечения обратной реакции $\pi^+ + d \rightarrow p + p$. Все использованные для вычисления \mathfrak{S}_{in} работы указаны в списке литературы.

В таблице I приведены также значения сечения $\tilde{G}_t(pp) = \tilde{G}_t(nn)$, полученные разностным методом из опытов по рассеянию и поглошению нейтронов на дейтерии и водороде:

$$G_t(nn) = G_t(nd) - G_t(np) + I(nd).$$

Аналогично вычислялись сечения pn - взаимодействия, приведенные в таблице <u>Пу</u>:

$$\mathcal{G}_t(pn) = \mathcal{G}_t(pd) - \mathcal{G}_t(pp) + I(pd).$$

Поправки I(nd) и I(pd) обусловлены тем, что поглощение или рассеяние налетающего нуклона нуклоном ядра дейтерия уменьшается, эсли последний попадает в тень другого нуклона (эффект экранировки). Эти поправки вычислялись по методу Глаубера^{13/} (подробнее см.: Приложение 1). Их величина определяется не очень точно. Поэтому приведенные в таблицах значения $\mathcal{G}_{t}(nn)$ и $\mathcal{G}_{t}(pn)$ следует рассматривать как ориентировочные. Указанные ощибки \mathcal{SG}_{t} в этих случаях являются чисто статистическими и меньше истинных. Для энергий

Т ≥ 1 Бэв величина поправок на экранировку составляет около 15%-20%. При меньших энергиях их величина уменьшается; ниже порога неупругих реакций поправками на экранировку можно пренебречь. Все сечения, полученные разностным методом из опытов с дейтерием, отмечены в таблицах значком **†**.

В таблице 🗹 приведены значения б_t н б_{in} . средние для *pp*-и *pn* - взаимодействий, полученные обработкой (в рамках оптической модели) экспериментальных значений средних свободных пробегов протонов в фотоэмульсии и экспериментальных эначений взаимодействия протонов с ядрами. (Подробнее см. Приложение 11). Приведенные в таблице ошибки **50** соответствуют средним статистическим ошибкам в значениях свободного пробега и сечений взаимодействия протона с ядрами⁴⁾. Средняя энергия для трех последних интервалов вычислена с учетом энергетического спектра протонов в атмосфере. Как видно, в области энергий **T** = 1 - 10 Бэв полученные таким образом значения **Б**(рм) дают заниженную оценку сечения **Б**(рр)и **Б**(рм) ⁴⁾. Однако, в опытах с космическими лучами при **Т** >> 10 Бэв измерение пробега исто является единственным способом получить заключения о величине сечений.

Для наглядности основные экспериментальные данные суммированы на рис. 1-3.

Соображения зарядовой симметрии и инвариантности по отношению к зарядовому сопряжению приводят к равенству сечений

независимо от того, какое это сечение 5 + , 5; или 5 = 5).

Из приведенных экспериментальных данных видно, что с ростом энергии сечения *PP* -взаимодействий стремятся к постоянным значениям. Совсем недавно считалось, что предельное значение $\mathfrak{S}_{t} \simeq 30$ ml. Однако, опыты на 25-Бэвном-ускорителе в Женеве показали, что это значение следует увеличить на 10 ml^[89]. Предельные значения сечений \mathfrak{S}_{el} и \mathfrak{S}_{in} равны приблизительно (8-9) ml. и (30-32) ml.

Мы благодарны М.И. Подгорецкому за подробное обсуждение этих вопросов.

5) Понятно, что при этом мы пренебрегаем электромагнитными взаимодействиями, что заведомо несправедливо при крайних периферических столкновениях, приводящих к рассеянию на малые углы. Однако, такие столкновения дают очень малый вклад в сечения \mathfrak{S}_{t} , \mathfrak{S}_{in} , \mathfrak{S}_{cl} . Указанные равенства сечений остаются справедливыми также н для дифференциальных сечений упругого рассеяния $\mathfrak{S}(\mathfrak{G})$.

⁴⁾ В работах, цитированных в таблипе **Д**, не указаны систематические ошибки, связанные с возможным пропуском звезд при просмотре фотоэмульсии. Учет этих ошибок увеличит значения **Б**(**рм**) в таблице **Д**.

Недавно выполненное в нашем институте Б.П.Банником изучение точностей фотоэмульсионных измерений показало, что при обычной методике измерений систематическая ошибка 5 L составляет в среднем около двух сантиметров.

<u>Таблица I</u>

РР-взаимодействие

	метод	JE mb	Т	Метод	T. mh
0 Мэњ	** **) **)	17800+40	37 45	34	<u> </u>
1,855	c ¹⁴	1053+30	J1,47	C	91 <u>+</u> 2
2,425	_ " _"	- 985+ 2	,8	-"-	90 <u>+</u> 2
3,037	_ "_	884+ 3	31,8	C ⁴⁰	89 <u>+</u> 2
3,435	В ф¹⁵	835±15	34,2	c ³⁷	84 <u>+</u> 1
3,527	C 14	812. 2	36,9	_"_	76 <u>+</u> 1
3,899	_ n	757. 2	39,4	c ⁴¹	69,02 <u>+</u> 0,05
4,203		771 2	39,6	c ³⁷	70 <u>+</u> 1
4.96	вф16	/1/+ 2	41	c ⁴²	71,6 <u>+</u> 5,0
5.07	ש¢ ש¢ 17	625 <u>+</u> 13	42	cc ⁴³	86 <u>+</u> 13 †
5.14	ΔΦ 218	602 <u>+</u> 6	44,66	с ³⁷	59,7 + 0,6
5 77	u=- 21	597 <u>+</u> 13	50,17	-"_	52.8 + 0.6
29// 5.77	Βφ 21	548 <u>+</u> 4	52	c ⁴²	55.5 + 3.9
2,17	C ^L	556 <u>+</u> 5	56,15	c ³⁷	46.8+ 0.5
6 , 848	Вф⊥∕	479 <u>+</u> 9	61,92	_"_	42.5+ 0.4
7,03	B¢ ~ 2	414 <u>+</u> 1	66	c ⁴⁴	47.4+4.7
7,514	Вф 19	435 <u>+</u> 7	68,3	c ⁴⁵	39.7.0.4
8,0	C ²³	377 <u>+</u> 8	68,42	c ³⁷	38 5 0 4
9,68	c ²⁴ , 37	343 <u>+</u> 3	69,5	c ⁴²	28, 2 <u>+</u> 0, 4
9,69	c ²⁶ ,27	342 <u>+</u> 3	75	o46	37,4 2,3
9,7	c ²⁸	352 <u>+</u> 3	78.5	ر 42	36,4 <u>+</u> 7,5
10	c ²⁹	314 <u>+</u> 13	85	c	33,9 <u>+</u> 2,0
12,4	вф ³⁰	252 <u>+</u> 5	03 /	CC 48	34,0 <u>+</u> 3,0 T
14,16	C ³¹	227 <u>+</u> 3	95	C+0	33,0 <u>+</u> 5,0†
14,5	c ³² .	210+ 1	5) 05	C	28,5 <u>+</u> 1,3
18,2	c ³³	171+ 1	99	C	29,2 <u>+</u> 1,6
18,8	c ³⁴	 171+ 4	92	CC ⁺⁹	31,0 <u>+</u> 4,0 t
19,8	c ³⁵	- 155+ 2	97,2	C ⁴⁰	32,0 <u>+</u> 4,0 t
21,9	c ³⁴	143+ 3	98	C ²⁰	27,7 <u>+</u> 1,3
25,2	, 11	117÷ 3	105	C ⁴⁶	30,1 <u>+</u> 5,7
25,45	a sa <u>i</u> ni a sa	115. 2	109	C ⁵¹	29,1 <u>+</u> 3,6†
25,63	_C 36	117. 1	117	-"-	27,2 <u>+</u> 2,4 t
28,16	c ²⁴	102, 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	118	c ⁴⁴	25,1 <u>+</u> 1,3
29.4	вф 38	100 C	118	C ⁵²	24,8+ 0,8
30.14	рт 39 вт 39	T00Ŧ 3	132	c ⁵¹	25,3+ 2,4t
31,15	C ³⁷	94 <u>+</u> 2 92 - 1	142	c ⁵⁰	- 25,2 <u>+</u> 1,2
	., .				

Τ	метод	JE mb	T : \sim	Heroz r. mk
144	C ⁵³	20,2 <u>+</u> 0,7	500	-68
146	c ⁵⁴	22,6+ 2,5	500	20,6 <u>+</u> 2,0↑
147	c ⁴⁴	25,7+ 1,2	520	29,9 <u>+</u> 0,4
147	c ⁵⁵	22.4+ 2.6	525	C^{04} 30+ 7
149	c ⁵¹	24.8+ 2.0t		C ⁷² 29,8 ⁺ 1,3 - 1,4
153	c ⁵⁶	24.3+ 0.2t	540	c ⁷³ 32,1± 0,5
155	c ⁵⁷	23.0 + 3.1	560	c ^{75,76} 34,0 <u>+</u> 0,5
160	c ³	25.1+1.0	580	c ⁷³ 35,6± 0,5
164	c ⁵²	22_6+ 1 1	590	c ⁶⁸ 37,8+ 2,1*
169	c ⁵⁹	23 14 2 01	590	c ⁷⁴ 36,0+ 3,0
169	c ⁵¹	23,1,2,0+	600	c^{73} 36.3+ 0.5
170	c ⁶⁰		615	c ⁷² 37.7 ⁺ 1,4
208	c ⁶¹	25,2 <u>+</u> 1,9	620	273
225	c ⁶²	29,8+ 2,0	630	68
240	6 3	22,4+0,9	640	-73
240	n + 64	22,4 <u>+</u> 1,8	660	C ¹² (Mg 39,8± 0,6 appear
247	ΔΨ 	22,8+1,8	660	$-"-$ 41,4 \pm 0,6
260	~60	22,4 <u>+</u> 1,8 *	740	$41,4\pm 0,6$
270	-53	$22,6\pm 1,3$	140 140	C' ² 44,4 ⁺ 2,8
270	65	23,0+ 2,0	747	c^{77} 46,9 ⁺ 1,0
270	C ⁰⁵	19,0 <u>+</u> 3,0	765	
280	Coo	16,0 <u>+</u> 4,0†	797	C ⁷⁷
315	Col	24,3 <u>+</u> 1,0	800	-74
330	C ^{D2}	23,4 <u>+</u> 0,9	800	-77 47 ± 2
345	c ⁵²	23,2 <u>+</u> 0,3	000	C'' 47,5+ 2,2
350	с ⁶⁷	23,3 <u>+</u> 0,7†	810 I	3- д к ⁷⁹ ,80 48 <u>+</u> 4
380	C ⁶⁸	23,0 <u>+</u> 1,5†	830	C^{81} 47,8 + 1,6
380	c ⁶⁹	24,4 <u>+</u> 0,4	850	-"- 47.6+1,7
408	c ⁷⁰	24,0 <u>+</u> 1,0	910	- 1,2 - 82
410	c ⁷¹	28,0 <u>+</u> 4,0 +	910	-77 46,1 <u>+</u> 0,5
410	c ⁷²	26,5+1,4	920	$47_{3}7_{-}^{+}1_{3}1$
410	c ⁷³	26 0 0 7	925	Φ ⁸³ 51 <u>+</u> 3 8.6
440	c ⁷⁴	27 0 2 0	940	, C ⁸⁴ 49 <u>+</u> 5 Kara
460	c73	~1,0 <u>+</u> ~,0	1,0 536	c ⁷⁴ 48± 3,5
460	c75,76	-/, 0 <u>+</u> U,4	1,03	c ⁷⁷ 46,5 ⁺ 2,0
•		,0<u + 0,4	l,075	c ⁸¹ 48, 2 ⁺ 1,6
			a serie the align	· · · · · · · · · · · · · · · · · · ·

-	a Baran Alfred an	 A second sec second second sec		and a second	21 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14
	T	метод	O'i mb				
	1,17	C ⁷⁷	46,3+ 3,2	41 <u>1</u> 1 1			
	1,275	C ⁸¹	47,5+ 1,6	an ang san ang San ang san ang			
	1,295		49,4+ 1,6	e al constructions	1		
	1,3	c ⁷⁷	45 ⁺ 3,0	1997 - N	•		1977 - 1977 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -
		. 85	- 1,0	÷.			•
	- 194 - San	_81	^{50,4} ± 1,8				* (e
	1,490	C	47,2 ⁺ 1,2				
	1,7	C//	45,6 - 0,7				1.14
	2,0	c ⁸¹	$41,4^{+},3,2^{-},1,4$				
	2,0	B-114 55	48,5 <u>+</u> 1,7	· · · ·		an di sana ang sana sana sana sana sana sana	
	2,17 (m. 1961)	c ⁷⁷	45,1 ⁺ 0,9 - 0,5		n de Afrika (d. 1997) 1997 - Angeles Afrika 1997 - Angeles Afrika (d. 1997)		
•	2,6	c ^{3,86}	41,6+.4				
	2,75	c ⁷⁷	43,3+ 0,6				
	3,0	ф ⁸⁷	44,5 <u>+</u> 2,0				
	3,0	ф ⁸⁸	42,5		an a	an a	1.1.1
•	3,17	c ⁷⁷	42,4 <u>+</u> 0,6	•			•
••	4,14	с ⁸⁹	43,7 <u>+</u> 0,7	•			df_{ii}
	5,13	_H	43,7 <u>+</u> 0,4				e Ser
	5,3 B.	-ДК ⁹⁰	32,4 <u>+</u> 6				. (J.+2)
	6,12	C ^{O9}	43,3 <u>+</u> 0,4				
	6,2	ф + 92	31,4	· · ·	n an		هيچاري د اند. د ده
	9 	φ - _93	31 ± 7,6		en al construction de la constru		
	9	د 89	39,4 <u>+</u> 1,5				
	9.8	-"	$42,1\pm0,4$	-			
	11,5	6 ⁹³	39,0+ 1,5	· · · ·			en en se
	14,9	_11_	38,7 <u>+</u> 1,5	· · · ·			
	16,8	_H_ 23.	39,7 <u>+</u> 1,5				
	18,5	_"_	39,7 <u>+</u> 1,5				
	20 ,5 ng tha gana sa	-"- 	39,4± 1,5				n ang s
	22,6	ቀ ²² የ	42,5 <u>+</u> 1,4		and the second sec		1994 (
	23,3	C ²	38,7 <u>+</u> 1,5		e gale segura de		19 A. S.
	27,5	-"	39,9+1,5				

*/ Вычислено по экспериментальному значению длины расселния /см.§ З.І /.

<u>Таблица II</u> РР – взаимодействие

Т	Tel mb	nd stand standard and standard	метод	T _{el} mb
Ниже порога рождения	Л°-мезонов	an indi pran menerara nya	Section of the sector	na an a
Т ≤ 290Мэв Се =	. σ _*	2.85	B-114 109	17,3 ± 1,5
417 Мэв с ⁹⁵	21,5 <u>+</u> 0,8	2,9	Φ ¹⁰⁸	12,5+ 2,5
429 c ⁵³	21,5 <u>+</u> 1,9	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		la dis≣ani∌i .
435 Β φ ^{.96}	22,2 <u>+</u> 1,1	3,0	φ ⁸⁷	8,9+ 1,0
437 c ⁹⁷	23,8 <u>+</u> 1,2	4,4	° ° 6 <mark>6</mark> 86	9,0+ 1,4
440 c ⁷⁴	23,5 <u>+</u> 1,2	5,3	в-дк ⁹⁰	5,6+ 2,3
460 c ⁷⁵ ,76	24,0 <u>+</u> 0,6	5 , 7	φ 110	13+ 6
528 c ⁸⁴	24 <u>+</u> 5	6,15	с ⁸⁶	6,9+ 1,0
560 c ⁷⁵ ,76	25,2 <u>+</u> 0,8	6,2	φ ⁹¹	8,8+ 2
582 Λ - Λκ ⁹⁸	24,2 <u>+</u> 1,6	6,2	HII	8
590 c ⁷⁴	25,0 <u>+</u> 2,0	8,5	Φ ¹¹²	8,7+ 0,4
650 В -д К ⁹⁹	26,3 <u>+</u> 1,8	9. 5	φ ⁹²	10+ 3
660 c ⁷⁵ ,76	24,7 <u>+</u> 1,0	22,6	φ ²⁵	5,5+ 3,9
800 c ^{3,74}	21,5 <u>+</u> 2,0	1- 2- 2- 2- 2-		2,8
810 (B-AK ⁷⁹ ,80	24 <u>+</u> 2			
925 ф ⁸³	17 <u>+</u> 3.			
930 п - п К ¹⁰⁰	21,6 <u>+</u> 2,5			
940 c ⁸⁴	26 <u>+</u> 3		the set	а 1
970 В -д К ¹⁰¹	25,8 <u>+</u> 0,9			a set a
970 д-д к ¹⁰²	25,9 <u>+</u> 1,7			
1,0 Бов с ⁷⁴	19^{+3}_{-2}		Sector 1 an	
1.0 c ¹⁰³	20.8+1.0	and the gr		
L.O c ¹⁰⁴	20.7+1 2			•
.,- B_ffw ⁸⁰ ,105	$\frac{20}{20}$			
B-nk ⁴⁵⁵	18.7+13	5 8 7 8 5 8 8 8	a state and a state of the stat	
2.24 c ⁸⁶	16 01 2 5	an a		
,75 В- д к ^{80,107}	16 <u>+</u> 2			

lê Lê _bê ke

Таблица 🛙

РР-взаимодействие

.

·			ana a 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Метод	Jin mb
Ниже	порога рождения Я	мезонов			
T 🗧	290 Мэв Сіп	= 0.	2		ана станата. Актория Актория
340 M	ев с ¹¹³⁻¹¹⁵	0,55 <u>+</u> 0,12	2.0	B-0K455	20 8. 2 7
345	c ¹¹³ ,114,116	0,67 <u>+</u> 0,13	2,75	B- 4 K ⁸⁰ ,107	27,0+ 2,1
380	_"_	1,85 <u>+</u> 0,35	3,0	φ87	35.61.4
437	c ¹¹⁷	2,43 <u>+</u> 0,34	5,3	в- д к ⁹⁰	26.8+ 5 5
440	c ⁷⁴	3,5 ± 2,3	6,2	φ 91	22.6. 5.3
460	c ⁷⁵ ,76	3,6 ± 0,7	6,2	ம் ¹²²	23+7
485	C ¹¹³ ,118,119	3,84 <u>+</u> 0,56	0	+ 92	
510	C ¹¹³ ,118,120	5,94 <u>+</u> 0,70	9 22 6	φ	21 <u>+</u> 7
520	c ¹¹³ ,118,119	5,98 <u>+</u> 0,68	22,0	φ	37 <u>+</u> 11
528	c ⁸⁴	6 <u>+</u> 3			
560	C ⁷⁵ ,76	8,8 ± 0,9			
560	c ¹¹³ ,118,120	8,38 <u>+</u> 0,68			
584	C ¹¹³ ,118,121	10,3 ± 0,8		· · · · · · · · · · · · · · · · · · ·	8 2 12
590	c ⁷⁴	10,8 <u>+</u> 3,6	•		
597	C ¹¹³ ,118,120	11,39 <u>+</u> 0,85			
610		12,38 <u>+</u> 0,85		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
620	_"_	13,54 <u>+</u> 0,90			
633		14,81 <u>+</u> 0,87			
650	в- дк ⁹⁹	14,4 ± 1,4		e e	
650	C ¹¹³ ,118,120	16,0 ± 0,88		·	
657	-"- 	17,22 <u>+</u> 0,87			· · · · · · · · · · · · · · · · · · ·
660	c ^{75,76}	16,7 <u>+</u> 1,2			
800	c ³ ,74	25,2 ± 2,8	· . •		· · · · ·
810	в - д к ^{79,80}	24 <u>+</u> 2	an a		
925	аф ⁸³	34 <u>+</u> 5,5			
940	c ⁸⁴	23 <u>+</u> 3			
970	в- дк ¹⁰¹	20,9 <u>+</u> 1,3			
970	Д-Д К ¹⁰²	18,7 <u>+</u> 1,5	· · ·		
L,0Бэв	C ⁷⁴	28,8 <u>+</u> 3,2	-		

<u>Таблица IУ</u> пр – взаимодействие

.	метод	or₄	Т	метод	σ _t
0 эв		20,57+ 0,04 daph	12.80	ык ¹²⁸	830 00
1,0	c ¹²³	$21,0 \pm 0,2$	13.13	c ¹²⁷	$\frac{350 \pm 30}{760 \pm 20}$
15	II	$19,8 \pm 0,1$	13.50	c ¹²⁹	700 ± 20
17	17	$20,3 \pm 0,1$	13.90	c ¹³⁰	770 + 40
20	_"_	$20,1 \pm 0,1$	14	cu 131	770 ± 40
24	_"_	20,0 + 0,1	14	c132	700 <u>±</u> 80
28	_"_	20,8 + 0,1	14-02	c ¹²⁷	090 ± 80
35	_11_	- 20,6 + 0,1	14.10	c133	720 ± 10
45	!!	20,4 + 0,1	14.12	c134	606 E
58	_11_1	19,5 + 0,1	14.20	e ³	686 ± 7
67	-"-	22,3 + 0,4	14,80	LN 128	675 ± 20
79	_"_	20.1 + 0.4	15	ик с. 131	610 <u>+</u> 90
94	e de la <u>Enc</u> erta	20.7 + 0.3	16.5	uu ¹²⁸	660 <u>+</u> 70
110	_"_	20.3 + 0.2	10,0	1	660 <u>+</u> 100
140	_===	19.8+ 0.3	10,10		550 <u>+</u> 80
180	_#_	18.7 + 0.2	19,66		520 <u>+</u> 90
230	¹¹	20.8 ± 0.4	10,00	c _136	494,2+ 2,5
300	_#_	20.2 ± 0.4	22,95		504 ± 10
430	_"_	19.3 ± 0.3	21,10	ик aal37	410 <u>+</u> 90
660		20.8 ± 0.3	25		390 <u>+</u> 30
1.1 Кэв	_"_	19.5 ± 0.3	27,2	د 139	360 <u>+</u> 30
1.9	_"_	19.5 ± 0.3	38,0	-140	223,0 <u>+</u> 7,6
10	<u></u> "	16.0 ± 0.2	39,0	C-+0	223,0 <u>+</u> 7,6
100	11	$10,5 \pm 0.2$	42,0	CC	203 <u>+</u> 7
1.005 Man	c ¹²⁴	$10, 9 \pm 0, 2$	42,0	C ⁺⁺⁺	170,0 <u>+</u> 8,3
1.315	_125	3 675 0 020	47,5	C ^{++,}	196 <u>+</u> 10
2.54	c124	$3,075 \pm 0,020$	63	.c ⁻²⁹	126 <u>+</u> 3
4,75	c126	$2,525 \pm 0,009$	64,5	C ¹⁴⁰	126 <u>+</u> 3
7,17	c ¹²⁷	1,09 ± 0,000	85	CC ¹⁴⁴	83 ± 4
9 77		$1,24 \pm 0,020$	88	C ¹⁴⁵	86,1+ 2,0
9 30	 	1,04 ± 0,010	90	ИК ¹⁴⁹	93,0 <u>+</u> 7,0
9,00	ык 127	920 <u>+</u> 80 mb	90,0	C 142	76,0 <u>+</u> 1,7
10,42		940 ± 20	93,4	C ¹⁴⁰	77,0 <u>+</u> 5,0
10,00	лк 127	780 <u>+</u> 90	95	с _{тур}	73,9 <u>+</u> 3,0
12,50	C129	880 ± 20	95	$C \frac{14}{140}$	73,0 <u>+</u> 1,5
	0163	040 T TO	97	C 140	73,9 <u>+</u> 3,0

11379 Mg.

объединенный институт ядерных псследований БИБЛИОТЕКА

1	метод	٥f		T	метод	°€	
97,0	C ¹⁴⁸	74,0 + 10,0	n a kan sa ta ƙwaran 19 D	l , 4	c ⁸⁵	42,4 + 1,8	
97,2	c ¹⁴⁶	76,0 ± 3,0	ی : 0	1,48	c ⁸¹	40,8 + 1,9	t
101,1	_"_	80,0 + 7,0		2,0	!!	40,9 <u>+</u> 1,9	t
106,8	-"-	59,0 +16,0		2,6	_"	37,4 ± 1,8	t
117	c ¹⁴⁸	61,5 + 8,6		4,5	c ¹⁶¹	33,6 <u>+</u> 1,6	
126	c ¹³⁹	56,9 ± 1,8		8,5	ቀ ⁹	>(30 - 32) ^{**}
140	c ¹⁴⁸	48,5 <u>+</u> 5,6		9	c ⁹³	42 <u>+</u> 2,9	t .
153	c ¹³⁹	46,4 + 1,2		14,9	_**_	42,1 <u>+</u> 2,3	t
156	c ¹⁴⁰	46,4 + 1,2		23,3	_ 11	41,4 <u>+</u> 2,3	t .
156	c ¹⁴⁸	50,5 ± 8,3					
160	c ¹⁴⁹	51,2 ± 2,6					
169	c ¹⁵⁰	49,2 <u>+</u> 1,6		*).	n an		•
180	c ¹⁴⁸	44,0 +12,0		Вычисле	ено по эксперимен	тальным знач	ениям
208	c ¹⁵¹	37,0 ± 2,0	t 1	длин расс	сеяния /см. 9 3.1	./•	
220	c ¹⁴⁸	41,3 ± 3,5		жж). При опј	ределении этого з	начения в ра	боте (9)
220	c ¹⁴⁹	41,0 <u>+</u> 4,0		сделан ра	нд допуцений, спр	аведливость	которых
260	c ¹⁵²	35,0 <u>+</u> 8,8		<i>###10110 11</i>			•
270	c ¹⁵³	38,0 ± 1,5					
280	c ¹⁵⁴	33,0 <u>+</u> 3,0					
315	c ¹⁵¹	32,5 ± 4,0	t				•
350	c ¹⁵⁵	35,6 ± 0,7			1. A. A.		
380	c ¹⁵⁶	34,0 ± 2,0			•	•	
380	c ¹⁵⁷	31,0 + 1,5 - 1,3	†		N. Spection.	•	
408	c ¹⁵⁸	31,6 + 2,0	t jas				•
410	c ¹⁵⁹	-33,7 + 1,3		s	an a	e Mag	
500	c ¹⁵⁶	- 35,0 ± 2,0		• .			
590	<u>_n_</u>	36,0 ± 2,0	· · · ·				
590	c ¹⁵⁷	36,2 + 2,2	†			•	
630	c ¹⁵⁶	37.0 + 4.0					
765	c ¹⁶⁰	34.4 + 1.6					
810	c ⁸¹	32.5 + 1.2	t - 20 - 20				
910	c ⁸²	39.2 + 3.1	t				
970 1-	nx ¹⁰²	37.5 + 3.7	t				
	61	34.0 + 2.0	•				
T'OD DAP	U U		•				

n p - взаимодействие

T State	метод	Tel mb	Jin mb
Ниже порога рождения	Л° −мезонов	Т ≤ 290 Мэв	$\sigma_{el} = \sigma_{t} + \sigma_{in} = 0$
300 Мэв	ик ¹⁶²		~0,08
380	c ¹⁵⁶	~33	~1
400	θφ¹⁶³; c ¹⁶⁴	-	0.72 + 0.10
440	c ¹⁶⁴ ,165	- -	1,35 + 0,3
485	_"_	an an teachtraine 	3.00 + 0.70
520	_"_	_	4,4 + 1,0
560		=	5,21 + 0,85
590	c ^{164,166}		5,8 + 0,5
597	c ^{164,165}	-	$B_{1}9 + 1_{1}0$
610		-	10,1 + 1,4
620			10,8 + 1,5
630	-"-	. . .	11.7 + 1.0
630	c ¹⁶⁷	26,0+ 4,5	
645	c ^{164,165}	_	11.8 + 1.5
660	c ^{164,165}		10.5 + 2.4
665	_"_	-	,,,,,,,,,,
970 贞 ·	A K ¹⁰²	16,2 <u>+</u> 3,5	21,3 <u>+</u> 3

таолица	<u>3 T</u>

Т	Бэв	Пробег в змульсииж)		
Интервал энергии	Средняя энергия	Lege	Oin mb	Of mb
-	4,5 ¹⁶⁸			35 <u>+</u> 3
	5,7 ¹¹⁰	37,6 <u>+</u> 5,3	_	29^{+16}
-	5,7 ¹⁶⁹	35,6 <u>+</u> 2,4	-	34 <u>+</u> 11 5
-	6,2 ¹⁷⁰	34,7 <u>+</u> 3,4	_	35+13,5
- -	6,2 ^{171,172}	.≽36,4 _		\$ 31
-	6,2 ¹²²	38,2 <u>+</u> 1,5	-	28 <u>+</u> 3
-	9 ⁹²	37,3 <u>+</u> 0,7 ^{***}	—	30 <u>+</u> 2
-	9173	35,7± 0,7		33 <u>+</u> 2
> 9 [°]	~20 ¹⁷⁴	_ · ·,	-	32+10
-	22,6 ²⁵	36,6 <u>+</u> 1	-	31 <u>+</u> 3
0,9+-34	20175		-	32 <u>+</u> 3
28+- 58	37 ¹⁷⁶	-	28 <u>+</u> 4	_
58+-121	77176	-	21 + 4	_
121+387	178176	_	25 ⁺¹⁸	
-	200 ¹⁷⁷	42 <u>+</u> 10	_ /	22^{+}_{-13}
_	250 ⁵⁸	41 <u>+</u> 10	-	24 <mark>+</mark> 26 9
			1	

*). Как показали сравнительные расчети, средние свободные пробеги в фотоэмульсии НИКФИ-Р практически не различаются / подробнее см. Приложение П /. M Ilford G-5

**) В работе 92 по недоразумению указана неверная статистическая ошибка / SL = 0,3 /. Мы благодарны М.И.Подгорецкому, указавшему нам на эту неточность.

Рис. 1. Сечения взаимодействия нуклонов при очень малых энергиях. Сплошными кривыми нанесены значения, вычисленные по теории эффективного радиуса (см. § 3.1). Все сечения даны в единицах 10⁻²⁴ см².

б • \mathcal{O}_t • \mathcal{O}_{el} • \mathcal{O}_{ln} * $\mathcal{O}_t (PN)$ 150 125 100 75 50 è 25 10 mer 100 mer 1 Ber 10 Bev Ŧ

Рис. 3. Сечения протон-нейтронных взаимодействий. Указаны также значения Бс (рм), вычисленные по оптической теории. Все сечения даны в единицах 10⁻²⁷ см². Как показывают измерения, выполненные в космических лучах, в пределах экспериментальных ошибок постоянство сечений сохраняется вплоть до энергий в несколько сотен Бэв. Анализ экспериментальных данных по широким атмосферным ливням указывает, что порядок величины сечения о заметно не изменяется, по-видимому, вплоть до энергий Т~10⁹Бэв. Однако, точность опытов с космическими лучами невелика, и это заключение не является строгим⁶⁾.

Экспериментальная информация о np -взаимодействиях при больших энергиях очень бедна, однако, из таблиц и из рис. 2-3 видно, что с ростом энергии сечение $\mathfrak{S}_t(np)$ сравнивается по величине с сечением $\mathfrak{S}_t(pp)$. Недавние измерения выполненные в Женеве, показывают, что при $T \ge 10$ Бэв экспериментальная величина поправки Глаубера $I = \mathfrak{S}_t(pp) - \mathfrak{S}_t(pn) \simeq (S \pm 2) m^4$ и не зависит от энергии.

Можно ожидать, что при больших энергиях будут равными также сечения упругих и неупругих взаимодействий нуклонов:

$\mathcal{G}_{el}(pp) = \mathcal{G}_{el}(pn)$; $\mathcal{G}_{in}(pp) = \mathcal{G}_{in}(pn)$.

Измерения Бренера и Вильямса^[176] показали, что в интервале энергий от 28 Бэв до 387 Бэв сечения неупругого взаимодействия протонов и нейтронов с ядрами в пределах экспериментальных ошибок (~ 30%) не различаются, что указывает на равенство неупругих сечений pp - и иp - взаимодействий при этих энергиях.

2.2. Взаимодействие антинуклонов с нуклонами

Экспериментальные данные для взаимодействия антинуклонов с нуклонами более бедны, чем для NN - взаимодействий и ограничены областью энергий T < 10 Бэв. В области малых энергий велики экспериментальные ошибки. Известные в настоящее время значения сечений $\bar{p}p - \bar{p}n$ -взаимодействий приведены в таблицах $\bar{\chi}_{11}$. $\bar{\chi}_{11}$ и на рис. 4. В ряде случаев приведенные сечения

⁶⁷ Мы благодарны Я.Пернегру,В.Шимаку и другим сотрудникам космическо группы в Праге за подробное обсуждение этих вопросов и ценные замечания.

являются усредненными по широким интервалам энергии. Величина этих интервалов указана в скобках. В каждом из таких случаев указана также "средняя энергия антипротонов", которая не всегда совпадает со "средней энергией интервала". Все сечения $\vec{p}r$ - взаимодействий, приведенные в таблице <u>У111</u>, получены разностным методом из опытов с дейтерием и водородом:

$\Im(\bar{p}n) = \Im(\bar{p}d) - \Im(\bar{p}p) + \overline{I}(\bar{p}d),$

где I(pd) - поправка на экранировку нуклонов в ядре дейтона. В таблице III значения сечений приведены уже с учетом этой поправки, вычисленной по методу Глаубера (см.Приложение 1). Как видно, при больших энергиях сечения Бр-и рм - взаимодействий в пределах экспериментальных ошибок мало различаются, что указывает на слабую зависимость этих взаимодействий от изотопического спина.

Приведенные в таблицах значения \mathcal{S}_{in} являются суммой сечения аннигиляции ($\mathcal{N} + \mathcal{N} \Rightarrow \mathbf{\Pi}$ -мезоны + К-мезоны) и сечения неупругого рассеяния без аннигиляции \mathcal{S}_{na} ($\mathcal{N} + \mathcal{N} \Rightarrow \mathcal{N} + \mathcal{N}$ + частицы других сортов). Сечение \mathcal{S}_{na} равно нулю при малых энергиях, однако, быстро увеличивается с ростом энергии. Величина отношения $\mathcal{S}_{na}/\mathcal{S}_{in}$ в случае $\mathcal{P}\mathcal{P}$ - и $\mathcal{P}\mathcal{M}$ - взаимодействий сильно различæтся: так, для $\mathcal{P}\mathcal{P}$ - взаимодействия при \mathcal{T} = 925 Мэв $\mathcal{S}_{na}/\mathcal{S}_{in}$ = 0,09±0,02 [439] а для $\mathcal{P}\mathcal{M}$ - взаимодействия при \mathcal{T} = 900 Мэв $\mathcal{S}_{na}/\mathcal{S}_{in}$ = 0,33 ± 0,1⁴⁴⁰]

По соображениям зарядовой симметрии для всех сечений, указанных в таблицах, выполняются равенства

$\begin{aligned} & \overline{\sigma}(\overline{p}p) = \overline{\sigma}(\overline{n}n) \\ & \overline{\sigma}(\overline{p}n) = \overline{\sigma}(\overline{n}p). \end{aligned}$

Из приведенных данных видно, что при энергиях T < 10 Бэв сечения $\mathcal{N}\mathcal{N}$ - взаимодействий значительно превосходят сечения $\mathcal{N}\mathcal{N}$ -взаимодействий. Это можно пояснить следующими соображениями: так как антинуклон во многих отношениях подобен нуклону, то его, как и нуклон, можно представить состоящим из плотного керна и сравнительно рыхлой мезонной оболочки. С точки эрения такой модели естественно предположить, что аннигиляция происходит при столкновении кернов нуклона и антинуклона. Такие столкновения будут характеризоваться

	<u>Таблица УП</u>	
Ρp	- взаимодействие	

T	метод	Tel mb	Tex mb	Jin mb	O't mb
50 Мэв (5 + 80)	в – ղ к ¹⁷⁸	96 <u>+</u> 43	ana ang sanan Ang sanang sa Ang sanang sa		210 <u>+</u> 70
106 (75+137)	η – η κ ¹⁷⁹	66 <u>+</u> 17	€ 15	112 <u>+</u> 23	≰ 193 <u>+</u> 40
120	ũ – n K ¹⁸⁰	>41 $\frac{10^{2}}{7}$			- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1
133	C ¹⁸¹	$72^{+}_{-11}^{9}$	$10^{+}_{-3}^{2}$	84 <mark>+</mark> 14 - 12	166 <u>+</u> 8
137 (75+200)	n - n k ¹⁷⁹	>62 <u>+</u> 12 [*]	an a	n de la composition La composition d e la composition	and and a second se Second second
127 (20+235)	Φ ¹⁸²	>58 ⁺ 40 [*] 17	and a second second Second second second Second second	an a	a - Constantino de C Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constanti Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Constantino de Consta
125 (0+ 250)	φ ¹⁸³	77 <u>+</u> 17		1994 - 1997 - 1997 	n an
140 (30+250)	φ ¹⁸⁴	70,9 <u>+</u> 12,7		an a	a series de la companya de la compa La companya de la comp
150 (20+230)	φ ¹⁸⁵	71 <u>+</u> 30 - 11	- -	≰ 86 ⁺ 58 − 37	an a
150 (50+250)	φ ¹⁸⁶	71 <u>+</u> 13	_		
170 (37,5+200)	n - n k ¹⁷⁹	56 <u>+</u> 14		60 <u>+</u> 18	r Level - Constant Level - Constant
190•	c ¹⁸⁷	en de la tel de la cela de la cela Cela de la cela de la c	· · · · ·		135+16
197	c ¹⁸¹	64 <mark>+</mark> 7 9	$11^{+}_{-4}^{2}$	77^{+}_{-10}	- 152 <u>+</u> 7
265	c ¹⁸¹	50 <u>+</u> 6 7	8^{+2}_{-3}	66 <u>+</u> 10	124 <u>+</u> 7
300	C ¹⁸⁷	-			104 <u>+</u> 14
333	c ¹⁸¹	49 <mark>+</mark> 5 - 7	7 <u>+</u> 2	58 <mark>+</mark> 8 - 7	114 <u>+</u> 4
440	c ¹⁸⁸	en e	3.0 <u>+</u> 1.6	-	
457	c ¹⁸⁹			≽89+ 7	104+ 8
460	c ¹⁹⁰		-	- 89+ 8	n inu en m inera en anti-
470	ព- ព្រ ⁴⁵⁷	-	_	- 52+ 10	n forsland Sadesbare 1983 All
500	c ¹⁸⁷				97+ 4
534	c ¹⁹¹	44+ 6	6+ 2	69+ 5	119+ 6
540	c ¹⁹⁰	- 43+ 5		69+ 4	117+ 5
700	c ¹⁸⁷	-	. 		
700	C ¹⁹⁰	41 <u>+</u> 4		65 <u>+</u> 4	116 <u>+</u> 5

T	метод	Jel mb	Jex mb	Jin mb	σ_t mb	
700	c ^{l91}	43 <u>+</u> 5	8 <u>+</u> 2	6 3+ 4	114+ 5	•
816	c ¹⁹¹	37 <u>+</u> 5	7 <u>+</u> 2	60 <u>+</u> 5	- 105+ 6	
820	c ¹⁹⁰	37 <u>+</u> 4		- 61 <u>+</u> 4	- 108+ 5	
940	B– በ	1	<7,9 <u>+</u> 0,5	_	.	
948	c ¹⁹¹	33 <u>+</u> 3	8 ± 2	56 <u>+</u> 3	96+ 3	
960	c ¹⁹⁰	33 <u>+</u> 4	-	- 55 <u>+</u> 2.5	- 96+ 4	
1 Бэв	c ¹⁹²	33 <u>+</u> 2	5 +1.0 -1.5	62 <u>+</u> 2	- 100+ 3	
1,068	c ¹⁹¹	30± 3	7 <u>+</u> 1	58 <u>+</u> 3	– 96+ 4	
1,07	c ¹⁹⁰	30± 3		60 <u>+</u> 3	- 96+ 4	
1,25	c ¹⁹²	28 <u>+</u> 2	4 ± 1	- 57 <u>+</u> 3	– 89 <u>+</u> 4	
1,67	H ¹⁹⁴		-	-	 100+3	
2,00	c ¹⁹²	25 <u>+</u> 4	$6 + \frac{2}{3}$	49 <u>+</u> 3	– 80 <u>+</u> 6	
2,75	c ¹⁹⁴	en en jaar en eers			80 <u>+</u> 6	
4,14	c ⁸⁹		-		67.0 <u>+</u> 2.1	
5,13	-"-		-	· _	60.6 <u>+</u> 2.0	
6,12	<u> </u>	. – ²	_	-	63.0 <u>+</u> 2.3	
9.14	_11_	-	-		46.0 <u>+</u> 2.0	
9,30	_"_	-	- B		52.6 <u>+</u> 2.7	
9,8	H	· · · · · · · · · · · · · · · · · · ·	_	- .	53.0 <u>+</u> 1.1	

*) Не учтен вклад области малых углов.

<u>Таблига У</u>

рп - взаимодойствие

T	метод	Tel mb	Oin mb	0, mb	
457 Мәв	c ¹⁸⁹		≥ 74 [†]	113 <i>t</i>	
460	С _{та0}	-	74 <u>+</u> 9		
700	-"-	39 <u>+</u> 9†	80 <u>+</u> 51	120 <u>+</u> 8 †	
820	_"_	$\frac{24}{4} \pm 9$	71 <u>+</u> 6	96 <u>+</u> 6	
900	c ¹⁶³	+) <u>+</u> 101	69 <u>+</u> 5†	112 <u>+</u> 7 †	
960	c ¹⁹⁰	39 <u>+</u> 8†	64+ 4 t	- 102+ 6 t	
1.07 Бав	_"_	43 <u>+</u> 6†	66+ 5 t	110 <u>+</u> 5 †	

Рис. 4. Сечения взаимодействий антипротонов с протонами и нейтронами. Значения 6 даны в единицах 10⁻²⁷см².

большим поглощением, и, следовательно, большим сечением, чем в случае АА - взаимодействий. При столкновении кернов с периферическим мезонным облаком NN -столкновений, происходит упругое или неупругое, так же, как и в случае сопровождающееся рождением новых частиц, рассеяние нуклона и антинуклона. В области энергий, не превышающих нескольких сотен Мэв, такой модели столкновений соответствует потенциал взаимодействия, который на расстояниях 2>2a (a= t/me ~ 2.10 - характерный размер керна) 'cm лишь знаком отличается от известного NN - потенциала Гартенхауза-Сигнела-Маршака [441]7), а на малых расстояниях СЕО характеризуется сильным поглощением. Как показали оценки Коба и Такеда и более точные расчеты Болла, Чу и др. экспериментальные данные по - взаимодействиям хорошо объясняются такой феноменологической теорией. Соответствующие расчеты NN - взаимодействий показывают, что в этом случае происходит частичдля ная компенсация различных членов и величина сечений уменьшается.

При больших энергиях пока еще нет теории, позволяющей вычислить сечения взаимодействия нуклонов и антинуклонов. Однако, следует ожидать, что с ростом энергии сечения $\vec{N}N$ - и $\vec{N}N$ - взаимодействий будут сравниваться (ср. § 3.3). Недавние измерения, выполненные в Женеве^[89], действительно показали, что разность сечений \vec{pp} - и pp - взаимодействий уменьшается с ростом энергии: при T=1 Бэв эта разность составляет приблизительно 45 m4, а при T=10 Бав - уже всего лишь около 10 m4.

2.3. Взаимодействие П -мезонов с нуклонами

Экспериментальные значения сечений **Т** - взаимодействий представлены в таблицах <u>ТХ-ХТУ</u>.

В некоторых работах (например, ^[208] [215] и др.) приведены сечения 6±85 полученные при одной и той же энергии с помощью счетчиков: один раз методом выбивания из пучка, другой раз - методом интегрирования углового распределения. В этих случаях в наших таблицах приведены средние значения

Напомним, что П -мезонные заряды нуклона и антинуклона различаются знаком. Поэтому при обмене нечетным числом П -мезонов знаки потенциалов № и Я -взаимодействий также различаются знаком.

 $\mathfrak{S} = \frac{\mathfrak{S}_{1} \cdot (\mathfrak{S}\mathfrak{S}_{2})^{2} + \mathfrak{S}_{2} \cdot (\mathfrak{S}\mathfrak{S}_{1})^{2}}{(\mathfrak{S}\mathfrak{S}_{1})^{2} + (\mathfrak{S}\mathfrak{S}_{2})^{2}}; \qquad \mathfrak{S}\mathfrak{S} = \frac{\mathfrak{S}\mathfrak{S}_{1} \cdot \mathfrak{S}\mathfrak{S}_{2}}{\sqrt{(\mathfrak{S}\mathfrak{S}_{1})^{2} + (\mathfrak{S}\mathfrak{S}_{2})^{2}}}$

При малых энергиях учитывались поправки на кулоновское рассеяние из обзора^{[4}]. При больших энергиях влияние кулоновского рассеяния незначительно.

31

В некоторых экспериментальных работах сечения \mathbf{G}_{in} , \mathbf{G}_{el} и \mathbf{G}_{ex} нормировались на значение \mathbf{G}_{e} , взятое из другой работы. В тех случаях, когда это значение сильно отличается от полученных в более поздних работах, сечения \mathbf{G}_{el} \mathbf{G}_{ex} , \mathbf{G}_{in} перенормировались.

Следует также отметить, что приведенные в таблицах \overline{X} и \overline{X} значения сечений \mathfrak{S}_{in} и \mathfrak{S}_{ex} могут оказаться не очень точными в области энергий около 1 Бэв, так как в соответствующих экспериментальных работах случаи упругого рассеяния с перезарядкой не выделялись из числа всех πp - взаимодействий с рождением только нейтральных частиц. При больших энергиях это не существенно, так как $\mathfrak{S}_{ex} \ll \mathfrak{S}_{in}$.

Значения $\mathfrak{S}_{+}(\mathfrak{T}_{\mathcal{N}})$ в таблице $\overline{X}IX$ вычислены по оптической теории из экспериментальных значений среднего свободного пробега \mathfrak{T} -мезонов в фотоэмульсии. При этом указанные ошибки \mathcal{S}_{+} соответствуют экспериментальным ошибкам в значениях пробега \mathcal{S}_{\perp} . Как видно, полученные таким образом значения \mathcal{O}_{+} хорошо согласуются со значениями \mathfrak{O}_{+} из таблиц \overline{IX} , и \overline{XII} . Согласие здесь значительно лучше, чем в рассмотренном выше случае \mathcal{P}_{-} взаимодействий. Основные экспериментальные данные суммированы на рис. 5 и 6.

Из соображений зарядовой симметрии и инвариантности по отношению к зарядовому сопряжению для сечений бе, бе , бе следуют равенства ^[5]:

 $\begin{aligned} &\mathcal{G}(\pi^+ p) = \mathcal{G}(\pi^- n) = \mathcal{G}(\pi^- p) = \mathcal{G}(\pi^+ n) \\ &\mathcal{G}(\pi^- p) = \mathcal{G}(\pi^+ n) = \mathcal{G}(\pi^+ p) = \mathcal{G}(\pi^- n) \end{aligned}$

<u>Табдица IX</u> Я-р- взаимодействие

T	метод	Ot mb	energia Secondaria Secondaria	Т	метод	J. ml.
о Мэњ	*	5,8 + 0,2		10/	220.4	<u> </u>
20 ,7	c ⁴⁵⁶	5,4 + 0,4		105 0	-224	65,6 <u>+</u> 2,4
31,0		6,5 + 0,5	and an an	109,2	C	$67,7 \pm 1,0$
37	c ²⁰²	12.9 + 1.7	a De la Setteria	187	C/	$63,7 \pm 1,3$
41,5	c ²⁰⁴	7.8 ± 0.7		189,9	C+	67,8 <u>+</u> 0,8
58 .	c ²⁰⁵	17.6 + 2.2		194	222,4	69,5 <u>+</u> 3,8
65	c ²⁰⁶	15.3 + 1.6		194	C ²² ,4	64,5 <u>+</u> 2,5
72	c ²⁰⁸	15 + 8		195	C ²²³ ,4	61,8 <u>+</u> 2,5
79	c ²⁰⁸	±2 ± 8		196,2	C ²²⁴	64,0 <u>+</u> 1,1
85	c ²¹⁰	13 3 . 1 .		197	c ^{220,4}	71,5 <u>+</u> 2,5
89	212	1,5 <u>+</u> 1,1		201	c ²²⁴	63,8 <u>+</u> 1,0
98	213	21 ± 8		205,8	c ²²⁴	59,3 <u>+</u> 1,0
109	208,4	21,2 ± 0,7		209	C ²²⁸	57,2 + 2,9
112	212,4	30 ± 9		210	c ^{226,4}	61,6 <u>+</u> 3,8
120	o ² 15,4	30 ± 9		210,6	c ²²⁴	58,7 <u>+</u> 1,1
127	208.4	32,3 <u>+</u> 3,0		215	c ^{223,4}	55,7 <u>+</u> 2,2
130	-218	44 <u>+</u> 10		215,4	c ²²⁴	55,6 + 1,0.
122	-223.4	42,6 ± 0,7		216	c ^{220,4}	57,9 + 2,5
135	212.4	45,6 <u>+</u> 2,4		217	c ^{228,4}	57,7 + 6,0
100	-211	51 <u>+</u> 6		217	c ^{212,4}	58 + 6
100	220 A	56,8 <u>+</u> 3,2		220	c ²²⁸	52,1 + 2,3
140	215 4	42,6 <u>+</u> 2,7		220	c ^{229,4}	53.6 + 1.3
144	227,94	49,5 <u>+</u> 3,6		220,2	c ²²⁴	52.2 + 1.0
150	C	55,3 <u>+</u> 1,6		224	в - лк ²³⁰	50.5 + 2.1
152	C ²² ,4	59,6 <u>+</u> 3,0		225	c ²²⁴	50.2 + 0.9
152	C ²¹⁹	59,7 ± 1,0		226	c ²²⁰ ,4	54 ± 2 3 3 4 4
157	C ^{223,4}	61,9 <u>+</u> 2,4		228,3	c ²²⁴	48-2 - 0 0
158,2	C ²²⁴	56,4 <u>+</u> 2,0		230	H ⁴³³	58 + 0
165	c ^{225,4}	67,5 <u>+</u> 1,4		231,9	c ²²⁴	
169	c ^{226,4}	61,9 <u>+</u> 3,3		234,9	c ²²⁴	44.5 0.0
170	C ^{221,4}	62,4 <u>+</u> 1,4		236	c ²²³ ,4	
171,7	C ²²⁴	67,2 <u>+</u> 1,1		238.2	c ²²⁴	
176	c ^{212,4}	64 <u>+</u> 6		240	c ²³¹ ,4	44,9 <u>+</u> 0,9
178,4	c ²²⁴	67,2 <u>+</u> 1,1		240	.223,4	40,2 ± 3,3
179	c ^{223,4}	65,5 <u>+</u> 2,5		241:5	c ²²⁴	43,9 <u>+</u> 2,3
			· · ·	- 24 9 /	_U	44.7 + 0.9

T	метод	of mb		Г метод	0t mb	
244,8	c ²²⁴	43,1 <u>+</u> 0,9	42	26 C ¹⁹⁵	29.4 + 1.4	
248,1	c ²²⁴	41,0 <u>+</u> 0,9	42	27 H ⁴³³	27 + 2	
251,4	c ²²⁴	.39,3 <u>+</u> 0,9	45	50 C ²³⁴	25 + 3	
254,7	c ²²⁴	39,8 ± 0,8	45	c ²⁴⁴	30 + 1.2	
256	c ^{220,4}	38,5 <u>+</u> 1,9	45	c ²⁴⁵	25.8 + 3.0	
258	c ^{223,4}	38,7 <u>+</u> 3,4	45	c ²⁴⁶	28.8 + 2.7	
258	c ²²⁴	38,8 + 0,8	460+	-20 H ⁴³³	28 + 2	
261,4	c ²²⁴	36,8 ± 0,8	- 46	50 Π-Λ κ ²⁴⁷	29.9 + 3.0	
265	c ²³⁵	43,5 <u>+</u> 6,0	46	68 C ¹⁹⁵	29.9 + 1.2	
266,5	c ²²⁴	35,6 <u>+</u> 0,8	47	⁷⁰ c ²⁴⁸	27 + 5	
270	c ²³¹ .	36,5 <u>+</u> 2,4	47	0 C ¹⁹⁶	30,0 ± 1,1	
271,6	c ²²⁴	33,4 ± 0,8	50	0 c ²⁴⁵	28,8 ± 4,0	
276,7	c ²²⁴	31,1 + 0,8	50	0 c ²⁴⁶	31,3 <u>+</u> 4,8	
281,8	c ²²⁴	- 32,4 <u>+</u> 0,8	50	o c ²⁴⁴	32,8 ± 0,9	
286,9	c ²²⁴	31,6 + 0,8	51	0 c ²³⁵	20 <u>+</u> 7	
290	H433		51	.8 C ¹⁹⁵	35,0 ± 1,3	• .
290	c ^{220,4}	-34,8+1,2	54	0 C ¹⁹⁶	- 31,9 <u>+</u> 1,1	
292	c ²²⁴	30,5 + 0,8	55	0 c ²⁴⁴		
297,2	c ²²⁴	29,3 + 0,8	55	o c ²⁴⁵	35,8 <u>+</u> 3,0	14
302,5	c ²²⁴	28,9 + 0,8	55	o c ²⁴⁶	37,4 ± 3,0	
307	c ²³⁹	30.7 + 1.8	56	7 c ¹⁹⁵	- 44,8 <u>+</u> 1,9	۰.
307,7	c ²²³	28,1 + 0,8	58	0 c ¹⁹⁶	- 36 + 1,1	
313	c ²²⁴	28.7 + 0.7	59	1 C ¹⁹⁵	45,1 <u>+</u> 1,7	
318,2	c ²²⁴	27.0 + 0.6	60	o c ²⁴⁴	43,4 ± 0,9	
323,5	c ²²⁴	26,2 + 0,6	60	0 Π- ηκ ²⁴⁷	38,7 ± 4,7	
328,2	c ²²⁴	26.4 + 0.6	60	0 c ²³⁵	23 ± 11	
330	B-11×241	24 + 5	60	4 c ¹⁹⁵	45,7 <u>+</u> 1,8	
333	C ²⁴²	- 28.8 + 1.8	61	0 c ²⁴⁶	$37,0 \pm 2,1$	
334,2	c ²²⁴	26.0 + 0.6	61	6 c ¹⁹⁵	45,3 + 1,7	
335	c ^{220,4}	26.6 + 1.0	62	5 C ¹⁹⁶	41,1 <u>+</u> 1,1	
340	c ²³⁵	23 + 11	64.	3 c ¹⁹⁵	44,5 + 2,2	
345	c ²²⁴	24.0 + 1.0	65	o c ²⁴⁴	39,4 + 1,9	
361	c ²²⁴	25.2 + 1.0	66	5 c ¹⁹⁵	39,2 + 1,4	
363	c ^{220,4}	26.7 + 1.0	670	0 c ²⁴⁶	39,5 + 3,0	-
370	_H 433	27 + 2	67:	5 c ²⁴⁵	36 + 3	
373	c ¹⁹⁵	$-7 \pm -$ 28.8 + 1.4	680	0 c ¹⁹⁶	42,2 + 1.1	
393	c ²²⁰ ,4	26.2 ± 2.7	700	o c ²⁴⁴	35.6 + 1.2	
		2012 + 21/	,	· · · · · · •		

T	метод	Tt mb		Т	метод	Ti mb	
700	c ²³⁵	42 <u>+</u> 10		960	H ²⁷³	46.9 + 4.5	
719	c ¹⁹⁵	34,9 ± 1,5		960	в – п к ²⁵⁷	48.2 + 2.5	
725	c ²⁴⁴	38,4 ± 0,9	•	965	c ¹⁹⁵	45.70+ 1.62	
730	c ¹⁹⁶	40,0 <u>+</u> 1,1		970	c ¹⁹⁶	49.5 + 0.9	
749	C ¹⁹⁵	37,4 ± 1,6		97 0	c ²⁴⁶	45.0 + 2.7	
750	c ²⁴⁴	1,9 ± 1,9		972	c ¹⁹⁵	44,84+ 2,2	
769	c ¹⁹⁵	37,4 ± 2,0		985	c ¹⁹⁵	41,52+ 1,53	
770	N-NK²⁴⁷	40 ± 5		0,99	c ²⁴⁴	45+ 0,8	•
780	c ¹⁹⁶	36 <u>+</u> 1,1		1,0 Бэњ	c ²⁴⁶	46+ 3	
790	c ²⁴⁶	46,1 <u>+</u> 3,4		1 , 0	c ²⁴⁵	48+ 4	
/97	.c ¹⁹⁵	40,2 <u>+</u> 1,22		1,01	B- N K ^{258,259}	48,2+ 3,7	
800	c ²⁴⁵	42 <u>+</u> 3		0,014	c ¹⁹⁵	39,54+ 2,0	
800	c ²⁴⁴	42,2 <u>+</u> 1,3		1,03	c ²⁴⁴	39.8 + 1.1	
800	B-nK ²⁵³	53,3 <u>+</u> 2,4	یں 1 میں ا	1,03	c ¹⁹⁶	40,5 + 0,9	
816	c ¹⁹⁵	46,37 ± 1,5		1,064	c ¹⁹⁵	36,66+ 1.3	
819	c ¹⁹⁵	48,2 + 1,9		1,076	c ¹⁹⁵	35.77+ 2.0	
836	c ¹⁹⁵	48,13 ± 1,5		1,08	c ²⁴⁶	36,3 + 2,6	
840	C ¹⁹⁵	55,13 <u>+</u> 2,1		- 1,08	C ¹⁹⁶	37.5 + 0.9	
856	c ¹⁹⁵	53,32 ± 1,72	· .	1,096	c ²⁴⁴	36.3 + 0.9	
860	c ²⁴⁶	47,7 ± 2,7		1,12	c ¹⁹⁶	35 + 0,9	
860	c ²⁴⁴	50 <u>+</u> 1,1		1,15	c ¹⁹⁵	35,52+ 2.0	
860	c ¹⁹⁶	40 <u>+</u> 1,3		1,15	c ²⁴⁴	35.5 + 0.8	
866	c ¹⁹⁵	54,2 <u>+</u> 1,79	· *·	1,164	c ¹⁹⁵	34,45+ 1,32	
868	c ¹⁹⁵	59,22 ± 2,4		1,19	c ²⁴⁴	35,1 + 1,1	
880	c ²⁴⁴	53,1 <u>+</u> 1,6		1,24	c ²⁴⁴	34,4+0,8	
886	c ¹⁹⁵	56,76 <u>+</u> 1,84		1,25	c ²⁴⁶	29,2 + 3,7	
890	c ¹⁹⁵	53,46 <u>+</u> 2,2		1,263	c ¹⁹⁵	35,72+ 1,35	
890 _,	.c ²⁴⁴	55,4 <u>+</u> 1,25	ŧ.	1,3	c ²⁴⁴	34,3 ± 1,1	
900	c ²⁴⁶	44,4 <u>+</u> 2,3		1,33	c ²⁴⁴	34,6 + 1,0	
900	c ¹⁹⁶	48,5 <u>+</u> 1,3		1,35	c ²⁴⁶	30,1 + 2,8	
915	c ¹⁹⁵	55,17 <u>+</u> 1,79		1,363	c ¹⁹⁵	33,48+ 1,41	
918	c ¹⁹⁵	55,02 <u>+</u> 2,4		1,37	в - д к ²⁶¹		
920	c ²⁴⁴	54,5 <u>+</u> 1,1		1,38	c ²⁴⁶	30,8 <u>+</u> 2,8	
940	c ¹⁹⁶	51 <u>+</u> 0,9	. ·	l,4	c ²⁴⁴	33,4 ± 0,9	
943	c ¹⁹⁵	50,67 <u>+</u> 2,6		1,46	c ²⁴⁴	- 33,2 <u>+</u> 0,8	
945	c ¹⁹⁵	48,82 <u>+</u> 1,63		1,462	c ¹⁹⁵	31,81 <u>+</u> 1,5	
960	C ²⁴⁴	48,9 <u>+</u> 0,9		1,47	c ²⁴⁶	31,4 <u>+</u> 1,8	

- T	метод	Of mb		- T	метод	Je me
1;50	c ²⁴⁶	30,0 + 2,0		14.0	_C 312	33
1,5	c ²⁴⁵	34 <u>+</u> 3		16.0	ر 323م	25 ± 4
1,52	c ²⁴⁴	32,5 ± 1,3		16.0	B- 0 x ²⁷⁵	20,5 1 7
1,57	c ²⁴⁴	31,9 ± 0,6		,-		2017 - 11(
1,65	c ²⁴⁴	26,2 + 2,5				
1,67	c ²⁴⁶	31,4 + 3,9		. •		· · · ·
1,71	B-дк ²⁶³	31,4 + 3,9				
1,9	c ²⁴⁶	31,3+1,6	· · ·			
4,16	c ²⁶⁴	28,7 + 2,6				
4,4	c ²⁶⁵	30 + 5				
4,5	н ²⁶⁶	20,4 + 3,5				
4,6	c ⁸⁹	32		ан ал ал ан		
4,7	H ²⁶⁷	28		•	•	•
4,85	c ⁸⁹	32.2		· · ·		
5,0	в-дк ²⁶⁸	24.5 + 2.4			n Alexandra Alexandra Alexandra	
5,0	в – д к ²⁶⁹	29.1 + 2.9				· ·
5,1	c ⁸⁹	30.9				
5,1	H ²⁷⁰	29 + 3	•		a sha	
5,2	_H 27ọ	29.1 + 2.9				
5,35		29.7				
5,6	c ⁸⁹	30.2				
5,85	c ⁸⁹	30.7				
6,1	c ⁸⁹	29.5	÷.			
6,6	c ⁸⁹	30.9				
6,65	n-n K ²⁷²	28.2+ 2.3				
6.85	c ³²⁴	27.8 +0.8		· · ·		
6.85	c ⁸⁹	20 7				• • •
7.35	c ⁸⁹	20 3	an an an 1470. An 1470 - An 1470 - A			
8.35	c ⁸⁹	20.3	an shakarin in sa	•		х
8.85	c ³²⁴	25. 1			na an a	
9.0	c ⁸⁹	20 20		•	allandar an	
9,85	م 89					
.,		29				.

Вичислено по экспериментальным значениям длини рассеяния /см.§З.I/.,

*)

<u>a X</u>	Таблица
------------	---------

*π***-***ρ*- взаимодействие

T	метод	Tel mb	Jex mb	
о Мэв	3	2,0 <u>+</u> 0,1	3,8 ± 0,2	n a fan in sean ar ar ar ar fan ar ar a
15	в- Дк ¹⁹⁷	1,77 ± 0,66	- * · · ·	
18,5	в- Дк ¹⁹⁸	1,32 ± 0,20	en an en 🖕 🖕	· ·
20	c ¹⁹⁹		5,0 ± 0,8	
30	c ¹⁹⁹		5,7 ± 0,9	2.
34	c ²⁰¹	-	5,0 <u>+</u> 1,5	
40	c ²⁰³	-	7,9 <u>+</u> 1,8	•
42	c ¹⁹⁹	-	$6,9 \pm 1,2$	
61	c ²⁰⁷		7,7 + 0,6	
65	c ²⁰⁶	2,5 + 0,5	$12,4 \pm 1,5$	
75	209	~3	_	· .
95	c ²⁰⁷		13,2 + 0,8	
98 [.]	c ²¹³	6,15+ 0,22	15,0 + 0,8	
118	თ c ²¹⁴	9,6 + 2,0	-	·
120	c ²¹⁵	10,1 + 1,6	$21,5 \pm 2,7$	
128	B- 0 K ²¹⁶	12,8 + 1,0	-	
128	C ²¹⁷		25,1 + 1,3	4. 1.
130	c ²¹⁸	~12	-	
135	c ²¹¹	16.2 + 2.3	40,6 + 2,4	
144	c ²¹⁵	15.9 + 2.4	30,5 + 3,8	
150	c ²²¹	20 + 1	34,6 + 1,2	
150	c ²²²	-	42,6 + 1.9	
	~219	10.0		
152	c216	18,8	•	
162	в-дк	$21,4 \pm 1,2$	-	
165	c	21,2 + 1,5	40,5 ± 3,5	
169	c	20,1 ± 2,0	40,9 ± 2,9	
170	-227	$23,3 \pm 1,0$	39,1 + 2,0	
187	C7	22,9 ± 1,3	42,2 ± 1,2	
194	C ⁰	25,7 ± 2,7	46,3 ± 3,6	
210	C===0 228	$28,4 \pm 3,1$	33,6 + 3,6	
217	C-20	$19,7 \pm 2,3$	36,6 ± 3,4	
220	C ²²⁷	$20,1 \pm 0,6$	33,3 ± 0,7	
224	B-AK-30	$16,0 \pm 0,8$	34,4 ± 1,9	
230	C ²³⁰¹⁴⁴ /	$20,8 \pm 0,4$	30,4 ± 1,3	
240	C ²³²		30,0 ± 1,4	

3	ľ	7	

•		37		
T	метоц	Tel mb	Jex mb	·····
240 libb	c ²³³	15.1 + 0.8		•
260	c447	17,1 + 0,8	-	
270	c ²³²	-	29,4+ 1,0	
290	• c ²⁵⁰ ,447	-	23,94 1,1	
300	c ² 36	1,0 <u>+</u> 0,5	18,24 0,8	
300	φ237	13, 2	2	
307	232	1) + 2	-	
307	233	-	17,8+ 1,0	
- 317	č447	1194 <u>+</u> U98	-	
330	υ π αν ² 41	-	17,6 <u>+</u> 0,8	
222	в– <u>дк</u> _232	11 <u>+</u> 4	13 <u>+</u> 4	
	ر 233	-	18,0 <u>+</u> 1,1	
	-243	10,3 <u>+</u> 0,6	-	
370	C -250-447	10,8 <u>+</u> 0,2	- - '	
370	C-20,433	10,9 <u>+</u> 0,2	13,6+ 0,6	
427	C ² , 4, 4, 5, 5	13,0 <u>+</u> 0,34	10,3+ 2,3	
460	n-nK ²⁺⁷ 247	13,8 <u>+</u> 1,0	9,1 <u>+</u> 1,2	
600	Ω-ΠK ²⁺⁷	23,2 <u>+</u> 2,5 ^{**}	8,1 <u>+</u> 1,5* *	
610	Л-ЛК ²⁴⁹ 240	16,6 <u>+</u> 2,2		· · ·
655	ũ-ηκ²⁴⁹	16,1 <u>+</u> 1,6	- -	
750	Π-ηκ ²⁴⁹	14,4 <u>+</u> 1,3	-	
770 <u>+</u> 75	η-η χ ²⁴⁷	16,7 <u>+</u> 2,0	7,35 <u>+</u> 1,2	
800	C ¹⁹⁹ ,190,240	~ 16,4	~7,3	
800	в-ПК ²⁹³	21 <u>+</u> 1	~10	
810	H ³²¹	21,0 <u>+</u> 1,2	- 	
900	Φ254	23 <u>+</u> 3,7 ^{**}	≤ 12,5 <u>+</u> 3,7**	
915	n-n x ²⁵⁵	~19,8	— *	
950	B-11K256	20,8 <u>+</u> 1,7 ^{**}	9 * *	
960	H ²⁷³	19 <u>+</u> 2	<7,6 <u>+</u> 0,8	
960	в-д к ²⁹⁴	20 <u>+</u> 3		
960	в-пк ²⁵⁷	20,8+ 1,5	<3,1 <u>+</u> 0,4	
1,01 Bob	B-NK ^{258,259}	22+ 3,1	-	
1,3	ព-ព ដ ²⁶⁰	10 <u>+</u> 0,8	-	
1,37	в-дк ²⁶¹	10,0 <u>+</u> 0,8	<3,7 <u>+</u> 3,7	
1,4	ቀ ⁴⁴⁵	9 <u>+</u> 1	-	
1,4	H ²⁶²	10 <u>+</u> 2	- *	
1,5	ф 322	9,0 <u>+</u> 1,5	. 	¹
ter an earlier an earlie				
Τ	метод	Jel mb	Jex mb	
------	-----------------------------	--	------------	
1,72	в-д к ¹⁰⁶	11,1+ 2,3		
2,66	ח-ח ג ²⁷⁴	n = n = n = n Normalista esta esta esta esta esta esta esta e	0.2 + 0.25	
4,5	φ ²⁶³	4,5+ 1		
4,7	H ²⁶⁷	6,0+ 1,5		
5,0	в-д к ²⁶⁸	4,7+ 1,0	-	
5,0	B-n x ²⁶⁹	5,6+ 0,5	-	
6,65	ח-ח ג ²⁷¹	5,5+ 0,5	-	
6,65	n-n K ²³⁸		1.0+ 0.3	
16,0	B-11K275	6	-	

¥/

Внчислено по экспериментальным значениям длин рассеяния /см. §3.1/.

кж/ Перенормировано на более точное значение

Т	метод	Jin mb	
Ниже пор	ога рождения	Л —мезонов	
r ≤ 175	Mob 6in :	 0.	
224 M9B	8-0K-250-433	0,09 <u>+</u> 0,04	
230	ردجو معرفي	>0,3 ± 0,3	
245	φ ² ²	$0,2 \pm 0,1$	
260	C ^{2,04}	$0,3 \pm 0,2$	
290	Φ ²⁵²	1,3 ± 0,3	
290	c ⁴³³ ,447	>2,4 +.0,8	
307	c ²⁴⁰	1,47 ± 0,10	
317	c ²³⁴	1,5 <u>+</u> 0,4	
333	c ²⁴⁰	2,5 <u>+</u> 0,1	
370	c ²⁴⁰	4,3 <u>+</u> 0,1	
370	c ^{433,447}	>3,1 <u>+</u> 0,8	
371	c ²³⁴	4,1 <u>+</u> 0,8	
427	c ²³⁴	7,2 ± 0,2	
460	n-п к ²⁴⁷	7,0 + 1,0	
600	π-Πκ ²⁴⁷	$16,2 \pm 1,7^{*}$	
770±75	N-NK ²⁴⁷	16,0 <u>+</u> 1,4	
800	c ^{195,196,24}	⁶ 17,3	
800	B-N K ²⁵³	22,3 + 1,5	
900	φ ²⁵⁴	21,7 + 3,7 [*]	
950	B-1 K ²⁵⁶	$>20 + 1.6^{*}$	
960	_H 273	20,3 + 2	
960	В- ДК ²⁵⁴	18,3+2	
960	6-1K ²⁵⁷	-24.3 + 1.3	
1,01Бэв	B-0 K ^{258,259}	25.2 + 2.5	
1.2	Π- η κ ⁴³⁴	12 + 0.8	
1.3	η-η κ ²⁶⁰	20	
1.37	B-0 K ²⁶¹	20.9 + 3.5	
1.4	н ²⁶²	24	
1.5	بر م ²³²	24 + 2.5	
-,-,- 1.71	ч ² в-вк ² 63	20.3 ± 3	
4.5	6 263	24.5 ± 1.7	
4 7	Ψ ₂ 267		
7 97	b-p x ²⁶⁸	17 7 9	
5	р-цл 2. д. 269	$\pm 1 + 1 \pm 2$	
=	ь-пк 	$2,7 \pm 3,4$	
0,02	N•UR /-	22,7 - 2,8	

<u>Таблина XI</u> Л⁻р- взаимодействие

*) Перенормировано на более точное значение

 Q_{t}

,	T	аблина	XП	
	ĴГ [†] р –	взаимо	одейст	вие

	метод	O' MB	Т	метод	Of mb
о Мэв	ж)	1,9 + 0,2	113	φ ^{290,4}	80 + 6.5
6	в-п к ²⁷⁶	- 1,6 <u>+</u> 0,8	114	φ 288	83
8	 11	- 2,6 + 0,8	115	c ^{208,4}	99 + 15
12	 1	3,2 + 0,8	118	c ²⁸⁶	91 + 6
18	¹¹	4,7 ± 0,3	119	n-n x ²⁹¹	93 + 12
20	H ²⁷⁷	- 4,5 <u>+</u> 0,9	120	ф ^{306,4}	97.5 + 12
21,5	c ²⁷⁹	3,3 <u>+</u> 0,3	124	d ²⁸⁸	106
23	B-11K276	4,8 ± 0,5	127	c ^{208,4}	13 8 + 17.5
23	ቀ ²⁷⁸	~ 5,5	128	c ^{223,4}	120.3 + 9.3
24,8	c ²⁸⁰	4,4 <u>+</u> 1,3	133	c ^{208,4}	157 + 19
31,5	c ²⁸¹	4,7 ± 0,4	135	c ²¹⁵	141.4 + 11.5
33	c ²⁸²	$6,4 \pm 2,1$	135	c ^{223,4}	125.1 + 4
37	c ³⁰⁷	6,5 <u>+</u> 0,5	135	c ^{211,4}	123 + 19
37	c ^{202,4}	$12,6 \pm 1,2$	136	c ²⁸⁶	152 + 14
38	c ^{308,4}	7,9 <u>+</u> 1,4	136	A-0 K313	120 + 10
40	c ^{283,4}	$13,3 \pm 2,3$	140	c ^{292,4}	135 + 8
41,5	c ²⁸⁴	10,0 <u>+</u> 1,0	142	c ²²³	150 + 8
44	c ²⁸² ,4	12,4 <u>+</u> 2,7	143	c ^{294,4}	140.5 + 7.4
45	φ ²⁸⁵ ,4	10 <u>+</u> 2,2	144	c ^{292,4}	153 + 4.3
53	в-дк ^{309,4}	19,2 <u>+</u> 3,6	145	φ 293	169 + 23
56	c ²⁸² ,4	19,2 <u>+</u> 3,6	146	c ^{235,4}	150 + 9.1
56	c ²⁸⁶	20 <u>+</u> 10	150	c ²⁹⁵	129 + 19
58	c ^{206,4}	15,5 <u>+</u> 2,0	150	c ^{221,4}	166.0 + 4.3
58	c ^{205,4}	28,8 <u>+</u> 2,5	151	φ ²⁹⁶ ,4	161 + 20
65	c ²⁰⁶	20,4 ± 2,0	151	¢ 297	- 152 + 31
70	c ^{282,4}	21,4 <u>+</u> 5,5	152	.c ^{223,4}	- 174 + 6
75	φ ²⁰⁹ ,4	45 <u>+</u> 15	156	c ^{223,4}	168 + 5
78	c ²¹⁵	32,2 <u>+</u> 3,8	157	c ^{235,4}	- 162 + 8,6
78	N-NK ⁴⁴⁶	39 + 6	162	c ^{294,4}	170,5 + 3,8
79	c ^{208,4}	48,3 <u>+</u> 10	164	c ^{292,4}	170 + 5.1
82	c ²⁸⁶	50 <u>+</u> 13	165	c ^{225,4}	189.6 + 4.9
83	φ 287,4	34,5 ± 6,9	166	c ^{235,4}	179.4 + 4.8
100	ф 289,4	59,0 ± 8,0	166	c ^{223,4}	187,6 + 5.3
109	c ^{208,4}	88,0 <u>+</u> 11,4	170	c ^{294,4}	198 + 3.7
110	c ²¹⁵	79,5 <u>+</u> 4,2	170	c ^{221,4}	194.9 + 4.3
110	c ^{221,4}	76,4 <u>+</u> 7,7	171	c ^{223,4}	202 <u>+</u> 4

			41	. •	
	an a		41	•	
Т	Метод	Otmb	Т	метод	σ _t me
171	c ^{235,4}	204 <u>+</u> 6,4	307	c ^{298,4}	65 5 J 7
173	c ^{235,4}	$205 \pm 6,1$	335	c ^{235,4}	57 5 0
173,5	C ²⁹⁴	193,5 ± 3,5	340	c ²³⁵	19 <u>+</u> 9,9
174	c ^{292,4}	193,3 <u>+</u> 6	376	ر 195 م	40 ± 9
176	c ^{298,4}	197,7 <u>+</u> 7,3	450	235,4	$40,09 \pm 1,02$
177	c ²⁹⁴	198 <u>+</u> 5	450	°245	$27, 5 \pm 0, 5$
180	c ²⁹⁵	- 146 <u>+</u> 18	450	246,4	22,9 + 3
181	.c ²³⁵	- 187 + 7	460	3 04	24,8 + 3,6
182	c ^{223,4}	174 + 20	469	c195	$28,4 \pm 2,5$
183,5	c ²⁹⁴	-192 + 3,5	510	_304	23,47 <u>+</u> 1,08
184	c ^{292,4}	195,7 + 6	533	م م304	24,1 <u>+</u> 0,9
185	c ^{223,4}		550	ر 246	$22,5 \pm 2,5$
188	φ ^{297,4}	158 + 34	550	245	16,1 <u>+</u> 2,5
189	c ²⁹⁹ ,4	194.0 + 4.4	550	_195	14,5 <u>+</u> 3,0
189	c ²³⁵	182 + 7	267	C	17,26 ± 0,82
194	c ²⁹² ,4	196 + 6	575	195	21,5 <u>+</u> 1,9
195	c ²⁹⁴	174 + 4	626	106	15,11 <u>+</u> 0,72
196	c ²²³	$\frac{1}{2}$	628	C ¹⁹⁰	13,7 <u>+</u> 1,3
200	c ²⁹⁸ ,4	193 6	650	C ²⁰⁴	17,2 <u>+</u> 1,5
205	c ^{294,4}		664	CTAN	14,75 <u>+</u> 0,67
209	c ²⁹² ,4	$1/0 \pm 4,9$	6 7 0	C ²⁴⁰	14,5 <u>+</u> 2,0
210	235,4	1/1,4 + 0,2	675	C ²⁴⁹	13,1 <u>+</u> 3,0
214	,235,4	148 + 22	685	C ₁₉₆	14,14 ± 1,3
216 5	L 310,4	141 + 9,4	700	c ²³⁵	17 ± 3
210,2	ဟု 292,4	165 + 19	734	C ¹⁹⁶	17,1 <u>+</u> 1,3
-13 -13	o ²²⁹ .4	154,1 <u>+</u> 7,2	7 50	c ³⁰⁴	20,9 ± 0,9
20	_235 . 3	140 <u>+</u> 5,2	770	c ¹⁹⁵	19,44 <u>+</u> 0,8
22	300.4	148 ± 9,7	788	c ¹⁹⁶	18,3 <u>+</u> 1,3
29	в- <u>рк</u> -292.4	142 <u>+</u> 18	790	c ²⁴⁶	19,5 <u>+</u> 2,0
229	298.A	130 <u>+</u> 7,2	798	c ¹⁹⁶	16,5 ± 1,3
240	235 4	124,2 ± 2,3	810	c ²⁴⁴	23,3 ± 2,0
262	C+	111 <u>+</u> 8,7	816	c ¹⁹⁵	21,40 <u>+</u> 0,81
263	200 A	107 <u>+</u> 8,8	838	c ¹⁹⁵	22,49 ± 0,83
270	235	813 $\pm ^{2,2}$	860	c ²⁴⁴	25,6 ± 1,2
280	C ²³⁷	88 <u>±</u> 11	863	c ¹⁹⁵ ,	- 21,88 ± 0,86
295	ϕ^{2}	63 <u>+</u> 10	866	c ¹⁹⁵	- 23,40 ± 0,65
298	C ^{2,3,9}	75 <u>+</u> 6,2	890	c ²⁴⁴	24,9

л	n
4	4

 T	метод	σ _t me			Т	метод	JE MB	
 910	c ²⁴⁴	25,8 <u>+</u> 1,1			1,50	c ²⁴⁶	35,3 + 2,5	-
915	c ¹⁹⁵	23,12 ± 0,74			1,51	c ²⁴⁴	37,6 + 1,2	
947	c ¹⁹⁶	21,3 <u>+</u> 1,3			1,60	c ⁷⁷	30,1 + 0,5	
/960 .	c ²⁴⁴	25,7 ± 0,9			1,67	c ²⁴⁶	$32,6 \pm 1,8$	
965	c ¹⁹⁵	23,8 ± 0,78			1,76	c ⁷⁷	28,4 + 0,6	
990 B	n x ^{450,451}	27,9 ± 3,6			1,91	c ⁷⁷	- 27,8 + 0,6	
1 Бэв	c ²⁴⁶	23,5 <u>+</u> 1,5			2,33	c ⁷⁷	29,0 <u>+</u> 0,6	
1,0	c ²⁴⁴	27,6 ± 1,2			2,76	c ³⁰³	28 + 4	
1,014	c ¹⁹⁵	25,85 ± 0,84		-	2,83	c ⁷⁷	29,2 ± 0,5	
1,04	c ²⁴⁴	$28,40 \pm 1,12$			3,44	c ⁷⁷	$29,2 \pm 0,4$	
1,064	c ¹⁹⁵	26,78 ± 0,94			3,55	c ³¹¹	30,0 ± 1,2	
1,07	c ²⁴⁶	27,3 ± 3,7		2 - 1 -	3,86	c ⁷⁷	29,3 ± 0,4	
1,09	c ¹⁹⁶	27,4 <u>+</u> 1,3		· · · · ·	-4,3	C ³¹¹		71 .
1,1	c ²⁴⁴	31,2 ± 0,6			4,6	c ³¹¹	31 <u>+</u> 1 , 2	
1,114	c ¹⁹⁵	27,51 ± 1,07			4,66	c ⁴⁵³	29,4 + 1,4	
1,14	c ²⁴⁴	35,0 + 1,2	•		5	c ⁸⁹	30,3	
1,15	c ²⁴⁶	31,3 ± 1,7			10	c ⁸⁹	26,5	
1,164	c ¹⁹⁵	30,65 ± 1,19			14	c ³¹²	26 <u>+</u> 4	
1,18	c ²⁴⁴	30,3 ± 0,6						
1,213	c ¹⁹⁵	35,27 ± 1,37			.1			1.2
1,24	c ²⁴⁴	38,8 ± 0,8	-			•		
1,25	c ²⁴⁶	38,8 ± 2,5	· · ·		2 - L			
1,263	c ¹⁹⁵	36,64 <u>+</u> 1,56						
1,288	c ¹⁹⁵	37,37 ± 1,45			: .			
1,3	c ⁷⁷	39,4 + 0,6			*).			
1,313	c ¹⁹⁵	38,07 ± 1,47				слено по экспер	ментальным значен. рт/	инм
1,33	c	39,1 <u>+</u> 0,8			thun b	accentur /cm. ş	3.1/.	
1,338	c ¹⁹⁵	37,65 ± 1,54	•					
1,34	c ²⁴⁴	40,3 ± 0,9	· .					
1,363	c ¹⁹⁵	36,16 ± 1,56						
1,38	c ²⁴⁶	41,4 ± 3,0						
1,412	c ¹⁹⁵	36,53 ± 1,60						
1,44	C ²⁴⁴	38,7 ± 0,8						
1,462	c ¹⁹⁵	34,10 <u>+</u> 1,59						
1,47	c ⁷⁷	35,8 + 0,9						

:

. .

43 <u>Таблица XIII</u> Л[†]р - взаимодействие

Т	метод		Jel rib	Jin rub
Ниже порога	рождения л	-ме зонов	Т ≤ 175 Мав	$\sigma_{el} = \sigma_{t}$; $\sigma_{in} = 0$
500 Мэв	в– n к ³⁰⁵	4	17,2 <u>+</u> 3,0	2,9 <u>+</u> 0,9
990	в – п к⁴⁵¹		15,3 <u>+</u> 1,5	12,6 <u>+</u> 3,3
1,1 Бев	B- n K ³⁰¹		12,3 <u>+</u> 1,2	15,2 <u>+</u> 2,5
		- 		

Таблица XIУ

Л-N- взаимодействие

т Бэв Пробег	в фотоэмульсии Ц см	0± mb
1,0 ²⁵⁴	38 <u>+</u> 3	29 + 6
1,5 ³⁰²	35 <u>+</u> 1	- 35 + 2,5
3 314	35,5 <u>+</u> 5	34 + 18,5 - 11
4,2 ³¹⁵	38,7 <u>+</u> 3,5	27 + 8
4,3 ³¹⁶	33,7 <u>+</u> 4,7	39 + 21 - 12
5,7 ³¹⁷	41 <u>+</u> 6	$24 + \frac{11}{-6}$
6,8 ³¹⁸	35 <u>+</u> 3	35 + 10 - 6
7,5 ³¹⁹	38 <u>+</u> 2	29 ± 4
50 ³²⁰ /Среднее по интервалу	37 <u>+</u> 6	30 + 20 - 8
І.÷200 Бэв /		
230 ⁴⁵⁰	41 <u>+</u> 8 ^{**} .	24 + 16 - 8

х Строго говоря, это значение L в работе ⁴⁵⁰ приводится как средний пробег для всех ливневых частиц, рождающихся при столкновении первичной частицы. Так как большая часть ливневых частиц состоит из π -мезонов, то в пределах экспериментальных ошибок можно считать, что это значение L равнс пробегу π -мезонов.

 $\mathfrak{S}(\mathfrak{n}^{\bullet}\mathfrak{p}) = \mathfrak{S}(\mathfrak{n}^{\bullet}\mathfrak{n}) = \mathfrak{S}(\mathfrak{n}^{\bullet}\mathfrak{p}) = \mathfrak{S}(\mathfrak{n}^{\bullet}\mathfrak{n})$

кроме того

и

$$\begin{split} & \mathfrak{S}_{e_{x}}\left(\pi^{\circ}p\right) = \mathfrak{S}_{e_{x}}\left(\pi^{-}p\right) = \mathfrak{S}_{e_{x}}\left(\pi^{\circ}n\right) = \mathfrak{S}_{e_{x}}\left(\pi^{\circ}p\right) = \\ & = \mathfrak{S}_{e_{x}}\left(\pi^{+}n\right) = \mathfrak{S}_{e_{x}}\left(\pi^{+}\overline{p}\right) = \mathfrak{S}_{e_{x}}\left(\pi^{-}\overline{n}\right). \end{split}$$

В таблице \overline{XX} указаны значения энергии T_{rmax} , спина J и изотопического спина t, при которых наблюдается резонансное πN – взаимодействие. Значения T_{rmax} для трех последних резонансов приведены по данным [195] Эти значения несколько отличаются от приведенных в работе [196]. Причина этого различия в настоящее время не ясна. По-видимому, она связана с различием в градуировке. Следует отметить, что приведенные в таблице значения Jдля максимумов при T =605 Мэв и T=880 Мэв пока еще не вполне достоверны.

Как видно из таблиц и из рис. 5 и 6, значения сечений $\pi^+ \rho$ - и $\pi^- \rho$ - взаимодействий сравниваются между собой и становятся не зависящими от энергии практически уже при T=4 Бэв. Предэльное значение $\mathfrak{S}_t = 29 \ \mu$; $\mathfrak{S}_{et} = 6 \ \mu$; $\mathfrak{S}_{in} = 23 \ \mu$; $\mathfrak{S}_{ex} = 0$.

В настоящее время очень мало прямых экспериментальных данных о взаимодействии П° -мезонов с нуклонами, особенно при больших энергиях. Однако, величину полного сечения П°р -взаимодействия можно определить из соображений зарядовой симметрии:

$\mathcal{O}_{t}(\pi^{\circ}p) = \frac{1}{2} \left[\mathcal{O}_{t}(\pi^{-}p) + \mathcal{O}_{t}(\pi^{+}p) \right].$

При больших энергиях это сечение очень близко к сечениям взаимодействия заряженных П -мезонов с нуклонами. На основе теоретических соображений о слабой зависимости взаимодействий при больших энергиях от изотопических спинов (см. далее) следует ожидать, что сечения

 $\mathcal{G}_{ee}(\pi^{\circ}p) = \frac{1}{2} \left[\mathcal{G}_{ee}(\pi^{-}p) + \mathcal{G}_{ee}(\pi^{+}p) - \mathcal{G}_{ee}(\pi^{\circ}p) \right]$

Т Мэв		t
180 <u>+</u> 2	$P_{3/2}$	3/2
605 <u>+</u> 6	$\mathbb{D}_{3/2}$	1/2
890 <u>+</u> 9	D 5/2	1/2
1330 <u>+</u> 30	D 3/2	3/2
	\sim	
	$= \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}^{1} \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}^{1} \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}^{1} \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}^{1} \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}^{1} \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}^{1} \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}^{1} \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}^{1} \left\{ \begin{array}{c} 1 \end{array} \right\}^{1} \left\{ \begin{array}{c} 1 \end{array} \right\}^{1} \left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}^{1} \left\{ \begin{array}{c} 1 \end{array} \right\}^{1} \left\{ \left\{ \begin{array}{c} 1 \end{array} \right\}^{1} \left\{ \begin{array}{c} 1 \end{array} \right\}^{1} \left\{ \left\{ \end{array} \right\}^{1} \left\{ \left\{ \begin{array}{c} 1 \end{array} \right\}^{1} \left\{ \left\{ \end{array} \right\}^{1} \left\{ \left\{ \begin{array}{c} 1 \end{array} \right\}^{1} \left\{ \left\{ \end{array} \right\}^{1} \left\{ \left\{ \end{array} \right\}^{1} \left\{ \end{array}\right\}^{1} \left\{ \left\{ $	
	$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} $	
a an		
	ан салаан са Салаан салаан	
		\mathbf{X}
	•	

$\mathcal{G}_{in}(\pi^{\circ}p) = \frac{1}{2} \left[\mathcal{G}_{in}(\pi^{-}p) + \mathcal{G}_{in}(\pi^{+}p) + \mathcal{G}_{ex}(\pi^{\circ}p) \right]^{8}$

также будут близки к соответствующим сечениям для заряженных 🏾 🕅 -мезонов.

2.4. Взаимодействие 👖 -мезонов с гиперонами

Такой вид взаимодействия уже давно рассматривался в теоретических работах при вычислениях взаимодействий гиперонов с нуклонами (см., например, работу^{405]}и обзор^[406], где приведена подробная библиография). Можно ожидать, что при больших энергиях сечения $\mathfrak{S}(\pi\Lambda)$, $\mathfrak{S}(\pi\Sigma)$, $\mathfrak{S}(\pi\Lambda)$ будут близки по величине. Однако, до самого последнего времени здесь полностью отсутствовали какие-либо экспериментальные данные.

В недавних работах $\Pi^{\pm}_{-мезонами \ M}$ из анализа корреляций между $\Pi^{\pm}_{-мезонами \ M}$ Λ -частицей, образовавшимися в реакции $K^{-}+\rho \rightarrow \Lambda + \pi^{+}+\pi^{-}$ при T=740 и 410 Мэв, получено заключение о резонансном $\Pi\Lambda$ -взаимодействии при энергии T_{π} =150±20 Мэв. При этом экспериментальные данные лучше согласуются с предположением, что резонанс происходит в состоянии со спином $P=\frac{3}{2}$, хотя предположение о спине $P=\frac{1}{2}$ также пока еще окончательно нельзя отбросить. Изотопический спин t=1.

На рис. 7 приведена энергетическая зависимость сечения $\mathfrak{S}(\pi\Lambda)$ в области резонанса, вычисленная в работе по экспериментальным данным о $\pi\Lambda$ -резонансе. (Значения сечения $\mathfrak{S}(\pi\Lambda)$ указаны в относительных единицах).

Из соображений симметрии можно ожидать также резонанса и при **TZ** взаимодействии. Экспериментальные данные действительно указывают на существование такого резонанса при **T**_π = 125 M_{эв}^[327]

Как видно, резонансные энергии при взаимодействии π -мезонов с Λ -и **5** -гиперонами близки между собой и не сильно отличаются от резонансной энергии для πN - взаимодействия.

8) В каждое из сечений біл здесь включено сечение перезарядки бех (ср. стр. 7).

2.5. ПП - взаимодействие

В настоящее время становится все более очевидным, что дальнейший прогресс физики элементарных частиц в огромной степени определяется исследованием свойств ПП – взаимодействия. Однако, имеющаяся в нашем распоряжении информация об этих взаимодействиях еще очень бедна и имеет в основном характер оценок и качественных заключений. Основная трудность здесь состоит в том, что сведения о ПП –взаимодействии в настоящее время можно получить лишь из анализа косвенных экспериментальных данных.

Недавно Мандельстаму, Чу и другим на основе двойных дисперсионных соотношений удалось сформулировать систему уравнений, определяющих амплитуду упругого ПП -рассеяния вплоть до энергий в несколько сотен Мэв Однако решения этой системы уравнений еще не получено.

Эти результаты можно иллюстрировать следующими грубо качественными соображениями. Представим сечения неупругих \mathcal{NN} и \mathcal{TN} – взаимодействий в виде

$$\begin{aligned} & \mathcal{G}(\mathcal{N}\mathcal{N}) = 4\pi z_{\mathcal{N}}^{2} \\ & \mathcal{G}(\pi\mathcal{N}) = \pi \left(z_{\mathcal{N}} + z_{\pi} \right)^{2} \end{aligned}$$

Отсюда

$$L_{\rm H} = Z_{\rm W} \left(2 \sqrt{G(\pi N)} / G(NN) - 1 \right).$$

При больших энергиях, когда длина волны взаимодействующих частиц очень мала $\lambda \ll z_{\checkmark}, z_{\pi}$, величины z_{\checkmark} и z_{π} можно рассматривать как эффективные размеры нуклона и мезона. Так как при $T \gtrsim 1$ Бэв

 $G(\pi N)/G(NN) = \frac{2}{3}, \tau_0 Z_{\pi} = 0.7 Z_{N},$

а сечение неупругих 🛛 🎵 -взаимодействий

 $\mathcal{O}(\pi\pi) \simeq 4\pi z_{\pi}^2 \simeq 0.5 \mathcal{O}(NN).$

Конечно, коэффициент 0,5 здесь нельзя принимать всерьез: можно лишь сказать, что б(ПП) ~ б(мм).

Близкими будут и сечения упругого рассеяния $\mathcal{S}_{el} \simeq \mathcal{S}_{d}$. (Напомним, что дифференциальное рассеяние целиком определяется неупругими процессами).

Как отмечено в работе , нижнюю оценку сечения $\pi\pi$ - взаимодействия $5_{in}(\pi\pi) > 5_{ml}$ можно получить, если рассматривать π -мезоны состоящими из точечных ("голых") нуклона и антинуклона. Учет эффективных размеров этих виртуальных частиц увеличивает величину сечения $5_{in}(\pi\pi)$ в несколько раз (ср. (402)).

В последнее время в литературе широко обсуждается вопрос о существовании резонансного ПП -взаимодействия. Такое взаимодействие при энергии T = 400 Мэв в Р -состоянии с изотопическим спином =1 было уже давно предположено Такеда для объяснения опытов по неупругим ПN -взаимодействиям Для этой же цели Дайсон предлагал резонансное взаимодействие в S -состоянии с изотопическим спином $t = 0^{329}$.) (См. также³³⁰). В работах³³¹ гипотеза резонансного ПП -взаимодействия применялась для объяснения опытов по аннигиляции медленных антинуклонов. При этом согласие теории с опытом значительно улучшается.

Изучение электромагнитной структуры нуклонов с помощью дисперсионных соотношений также приводит к заключению о существовании резонансного $\pi\pi$ взаимодействия. Согласие с экспериментальными данными в этом случае значительно улучшается, если $\pi\pi$ - взаимодействие имеет резонанс в P - состоянии с изотопическим спином t=1 при энергии T = (350-840) Мэв. (Это соответствует массе " π -мезонной изобары" $m_{\pi} = 3\rho \div 4\rho$, где ρ - масса π -мезона).

В работах^[397]отмечено, что прямую экспериментальную проверку существования резонанса при взаимодействии П -мезонов можно получить из анализа неупругих взаимодействий электронов с позитронами. Теоретическая интерпретация опытов в этом случае вполне однозначна. Однако, выполнение таких опытов в настоящее время тормозится отсутствием встречных пучков быстрых электронов и позитронов.

Недавно Хэ Цзо-сю и Чжоу Гуан-чжао обратили внимание^[333], что удобным методом для проверки предположения о ПП - резонансе является изучение энергетических спектров реакций:

$$\Pi^{\pm} + \mathcal{H}e^{4} \rightarrow \mathcal{H}e^{4} + \Pi^{\pm} + \Pi^{\circ}$$
$$\Pi^{\pm} + \mathcal{D} \rightarrow \mathcal{D} + \Pi^{\pm} + \Pi^{\circ}$$

 $P + P \rightarrow \mathfrak{D} + \mathfrak{h}^+ + \mathfrak{T}^\circ$. В начальном состоянии всех этих реакций изотопический спин t = 1. Поэтому в конечном состоянии пара \mathfrak{T} -мезонов также имеет t = 1 и находится в состоянии с нечетным орбитальным моментом. В области низких энергий эти \mathfrak{T} мезоны находятся в основном в P -состоянии. Наличие $\mathfrak{T}\mathfrak{T}$ -резонанса в P -состоянии приведет к резкому максимуму в энергетических спектрах ядер $\mathcal{H}e^4$ и \mathfrak{D} . Если же такого резонанса не существует, то спектры $\mathcal{H}e^4$ и \mathfrak{D} меняются плавно и определяются в основном статистическими фазовыми множителя-

ми. В работе^[334] приведены экспериментальные результаты аналогичного исследования реакций ($\mu^3 + \pi^+$

$$+ \mathfrak{D} \rightarrow \mathcal{I} He^{3} + \overline{n}^{+} + \overline{n}^{\circ}$$

Оказалось, что в спектре ядер *He²* действительно наблюдается максимум, однако, его положение не согласуется с теоретическими предсказаниями. Возможно, что этот максимум обусловлен причинами. не связанными с *ПП* -взаимодействием, так как в работе⁽³³⁴⁾ получены лишь первые результаты, то какие-либо заключения представляются пока еще преждевременными.

Совсем недавно на основе анализа экспериментальных данных по τ -распадам с помощью двойных дисперсионных соотношений Вольф и Целлнер пришли к заключению о возможности резонансного $\pi\pi$ -взаимодействия в S -состоянии при τ = 2. При этом не исключается, что существует также резонанс и в p - состоянии

2.6. Взаимодействие К-мезонов с нуклонами

В таблицах XVI-XXII и на рис. 8 и 9 приведены экспериментальные значения сечений для взаимодействия заряженных К-мезонов с нуклонами.

Во многих случаях приведенные сечения являются усредненными по большим энергетическим интервалам. В таблицах указана величина этих интервалов (если она была указана в оригинальных работах) и соответствующие средние энергии.

В области малых энергий часть сечений была получена из обработки данных по взаимодействию К-мезонов с ядрами фотоэмульсии. Подробности о способах такой обработки можно найти, например, в работе

Часть сечений взаимодействия К¹-мезонов с нейтронами получена разностным методом из опытов с водородом и дейтерием:

$\mathfrak{S}_{t}(\mathsf{K}^{\pm}\mathsf{n}) = \mathfrak{S}_{t}(\mathsf{K}^{\pm}\mathsf{d}) - \mathfrak{S}_{t}(\mathsf{K}^{\pm}p) + \mathbf{I}(\mathsf{K}^{\pm}\mathsf{d}).$

В таблицах приведены значения сечений с учетом поправок на экранировку нуклонов в ядре дейтона $I(K^{t}d)$, вычисленных по методу Глаубера (см.приложение 1). Полученные таким образом сечения отмечены значком t.

Так как экспериментальные данные известны с большими ошибками, то кривые на рис. 8 и 9 следует рассматривать лишь как ориентировочные.

В работе ⁽³³⁸⁾ в области энергий около 2 Бэв обнаружено значительное снижение величины сечентя $\mathcal{O}_{L}(K^+p)$. До самого последнего времени оставалось совершенно неясным, насколько это снижение является достоверным. В работе ⁽⁸⁹⁾ в частности, отмечалось, что в экспериментальных данных из ⁽³³⁸⁾ не внесена поправка на дифракционное рассеяние, учет которого может сделать сечение приблизительно постоянным в области T > 1 Бэв. Недавние измерения в Дубне дали значения $\mathcal{O}_{L}(K^+p)$ согласующиеся вблизи энергии T=2 Бэв с данными рабо-1538 и возрастающие при увеличении энергии $\mathcal{O}_{L}(K^+p)$ в районе около 800 Мэв. Данные работ (89,452) не исключают также максимума в сечении $\mathcal{O}_{L}(K^+p)$ в районе 5 Бэв.

[452] являются последними и, по-видимому, наиболее точными. Однако мы не решаемся утверждать, что ситуация здесь является вполне ясной.

Максимум в сечении **Се (к-р)** при малых энергиях также является пока еще не вполне достоверным.

		and the second	+ · · · · · · · · · · · · · · · · · · ·		•	
T	метод	0t mb	Time	метод	Of mb.	
Ниже пор Т ≼ 22 5	ога рождения Мэв сечение	$\mathcal{T} - Me \text{ sohob}$ $\mathcal{T}_{e\ell} = \mathcal{T}_{\ell} \text{ I } \mathcal{T}_{in} = \mathcal{O}.$			ter a Are Area a	
0 M3B	*)	14,3 <u>+</u> 2,4	100	φ ³⁷¹	14 <u>+</u> 3	
10 (0+20)	Q-NK ³⁶³	4,6 <u>+</u> 4,0	(90+190) 100 (40+160)	ф ³⁷² 1	4,6 <u>+</u> 3,3	
30 (20+40)	Ħ	5,8 <u>+</u> 3,3	(40+150)	φ ³⁸⁰	12 ± 4	
50 (20+40)		10,4 <u>+</u> 3,3	120 (60+180)	Φ ³⁸¹ 1	4,5 <u>+</u> 2,2	
50 (30+65)	φ ³⁶⁴	~ 15	(30+150) 120 (80+150)	ф ³⁸⁴ 1	5,5 ± 2,3	
55 (20+90)	n -nx ³⁶³	9,4 <u>+</u> 1,7	125	ф ³⁶⁹	15	
55 (0+110)	φ ²⁷⁸	23 ± 7	150 (100+200)	φ ^{365,367} 1	4,2 <u>+</u> 2,6	
60 (20+100)	ф ³⁰⁷	13,5 <u>+</u> 2,8	175	c ³⁶⁸ 1	6,3 <u>+</u> 1,7	
60 (20+100)	³⁶⁵ ዋ	13,5 <u>+</u> 2,8	175	c ³⁶² 1 383	6,4 <u>+</u> 1,4	
60 (40+80)	φ ³⁸⁴	15,5 ± 2,3	(140+218)	ф " ³⁸² ,	12 ± 0	
65 (0+130)	φ ³⁷⁵	6 <u>+</u> 4	225	c ³⁶⁸ 1	5,2 ± 1,3	
70 (60+80)	N-NK ³⁶³	12,8 ± 3,0	225 227	c ³⁶² 1 ტ ³⁶⁶ 1	4,6 <u>+</u> 1,2	
80 (50+110)	ф ³⁷⁶	27 <u>+</u> 8	250 (200 + 300)	φ ³⁶⁷ 1	8,0 ± 3,5	
80 (60+100)	φ ³⁷⁰	14 ± 3	261 (200+350)	φ ^{373,378}	$24 + \frac{8}{-7}$	
85 (80+90)	n-AK ³⁶³	11,0 <u>+</u> 3,3	270 (240+300)	ф ³⁷⁴	17	
93	ф ³⁶⁶	14,7 ± 1,7	270 (200+350)	φ ³⁷⁷ ²	1,3 <u>+</u> 4,5	

Таблица X/I

ктр - взаимодействие

T	метод	JE MB	
270 (200+350)	φ ³⁶⁵	21,3 <u>+</u> 4,5	
275	c ³⁶⁸	16,3 ± 1,7	
275	c ³⁶²	15,6 <u>+</u> 1,4	
304	φ ³⁷⁹	21,6 <u>+</u> 6,5	
456	n-n x ³⁸⁵	16, 0 <u>+</u> 1,4	
600	c ³³⁸	17,5 <u>+</u> 1,5	
700	c ³³⁸	19,6 <u>+</u> 1,2	9
960	c ³³⁸	18,8 ± 0,8	
1,1 Бэв	¹¹	16,4 ± 0,7	
1,23	na an a	18,3 <u>+</u> 0,8	
1,45	¹⁷	15,7 ± 0,7	
1,6	ана (1916) Стала (1916) Стала (1916)	15,5 <u>+</u> 1,1,1	
1,95		13 <u>+</u> 1	
2,3	c ⁴⁵²	$15,0 \pm 2,1$	•
2,45	c ³⁵⁹	23,8 ± 2,5	
2,45	c ⁴⁵²	17,4 ± 1,7	
2,9		18,6 <u>+</u> 1,6	
3,09	c ³⁵⁹	23,2 <u>+</u> 2,0	
3,24	C 311	$21 \pm 4,3$	
3,26	c ⁴⁵²	20,5 ± 1,6	
4,28	C ³¹¹	21,3 <u>+</u> 4,6	
4,33	C ⁴⁵²	25,8 <u>+</u> 2,7	
4,43	^{59ر} c	19,7 <u>+</u> 1,4	
7,42	_H_	19,4 ± 0,8	

ж) Вычислено по экспериментальным значениям длин рассеяния /см.§ 3.1/.

При Т = 280 Мав из взаимодействия с ядрами фото мульсии получена оценка О_{in} (к+м) ≃ 0,15 me⁽³⁸⁹⁾ / сечение усреднено по протонам и нейтронам/.

	Ктр – взаимодействие				
	Метод	Tel mb	Jex mb	0't mb	
ОМэв	*)	3,2 <u>+</u> 1,0	4 ,1 <u>+</u> 1,1	7,3 ± 1,4	
50 (30+60)	φ ³⁶⁴	8,5 <u>+</u> 4,2	2,3 ± 0,6	10,8 <u>+</u> 4,8	
50	φ ³⁸⁶	· · ·	0,8 <u>+</u> 0,7	-	
50	ቀ ³⁸⁰	10 <u>+</u> 7	$2,5 \pm 1,0$	12,5 <u>+</u> 8,1	
52	д- በк ³⁸⁵	-	0,9 + 0,7 - 0,3	-	
54	ቀ ³⁸⁷	9,2 <u>+</u> 7,3	1,2 <u>+</u> 0,5	10,4 <u>+</u> 7,8	
60 (40+80)	ቀ ³⁸⁴	-		11 <u>+</u> 5	
60	φ ³⁸⁶	- · · · ·	1,0 + 0,5		
65	ቀ ³⁷⁵	4,1 <u>+</u> 3,8	3,4 <u>+</u> 1,0	7,5 <u>+</u> 4,8	
(0 +130)	201	an a	277 1	•	
70	ф 286	-	1,0 <u>+</u> 0,8	-	
70	φ ³⁸⁰	9,7 ± 4,5	4,4 <u>+</u> 1,1	14,1 + 5,6	
80 (40+120)	φ ³⁷⁵		-	2 <u>+</u> 2	
90	Φ ³⁸⁶		0.8 + 0.7	_	
93	ф ³⁶⁶	7,9 + 3,1	5.6 + 1.6	13.5 + 3.6	
95	φ ³⁸⁷	-	2.7 + 1.3	0.4 + 5.2	
95	φ ³⁸⁰	11,8+ 3,8	4,0 + 1,0	15.4 + 4.8	
100	Д- ¶К ³⁸⁵	-	2,8 + 0,5		
100 (40+160)	φ ³⁷²		2,0 <u>+</u> *0,6	0,4 <u>+</u> 2,8	
110	Φ ³⁸⁰	15,2+ 3,8	3,9 + 1,0	19.1 + 4.8	
110	φ ³⁸⁶	· _ ·	1.2 + 0.7	-	
117	φ ³⁸⁶		1.5 + 0.5	—	
120	φ ³⁸⁴			9 + 3	
120 (60+180)	φ ³⁸¹	5,8 <u>+</u> 3,1	4,0 <u>+</u> 0,8	9,8 ± 3,0	
120 (80+150)	φ ³⁸⁰	5,7 <u>+</u> 1,9	5,7 <u>+</u> 1,9	ll,4 <u>+</u> 2,8	
125 (100+150)	φ ³⁸⁸	2,3 <u>+</u> 4,4	5,2 <u>+</u> 4,0	13,5 <u>+</u> 3,6	
125	ф 389	5.3 + 3.8	2.2 + 1.0	7.5 + 4-8	
127	1-11 x ³⁸⁵		$-,- \pm -,-$		
130	φ 380	12.1 + 3.7	5.4 + 1.1	17.5 + 4.8	
• .	•		· · · · · · · · · · · · · · · · · · ·	107 <u>1</u> 77	

Таблица ХУП

- 55

.

(

and T r	метод	Tel mb	Jex mb	O't mb		
140	ዋ ³⁸⁷	10,6 <u>+</u> 4,9	4,3 ± 1,2	14,9 ± 6,1		
155	ቀ ³⁸⁶		$3,0 \pm 1,0$	-		
165 (118 +196)	ቀ ³⁸⁹	12,1 ± 1,6	4,6 <u>+</u> 1,2			
175 (150+200)	ቀ ³⁸⁸	1,9 ± 4,3	7,5 ± 4,0	7,0 <u>+</u> 2,5		
175 (100+250)	H	1,7 ± 2,5	7,7 <u>+</u> 2,2	9,4 <u>+</u> 1,9		
180 (140+218)	φ ³⁸³			10,3 <u>+</u> 3,5		
192	Φ ³⁸²	-	3,7	7,5 ± 2,1		
195	ф ³⁸⁶	· · · · · · · · ·	6,0 ± 1,8	-		
225 (200+250)	ф ³⁸⁸	0 ± 4,3	9,8 <u>+</u> 4,0	10,2 <u>+</u> 2,5		
227	ф 366	9,1 <u>+</u> 3,2	7,3 ± 1,7	16,4 ± 3,8		
230	1nx ³⁸⁵	-	5,8 ± 0,6	-		
233 (196+271)	φ ³⁸⁹	10,5 <u>+</u> 1,8	9,3 ± 2,2			
255	φ ³⁸⁶	-	6,0 ± 1,0			
265	_"_	-	11,0 <u>+</u> 2,0			
270	ф ³⁸⁶		8,2 ± 1,8	. – 11		
285	n _	_	9,0 ± 1,6	-		
315	ቧ~ ባස ³⁸⁵	-	6,7 ± 0,6	-		
315 (271+359)	ф ³⁸⁹	8,0 <u>+</u> 1,5	10,3 <u>+</u> 2,4	-		
330	ф ³⁸⁶	-	16,0 ± 3,0			
600	c ³³⁸	-		15,6 <u>+</u> 4,9 †		
710	_"_	-	-	20,0 ± 2,7 t		
900	^H	. 	_	17,7 ± 2,2 t		
1,2 Бэв		- ·	-	18,0 ± 4,0†		
1,4	H	_	-	19,3 ± 4,2 †		
1,9	#	-	-	13,1 ± 3,7†		

*). Вычислено по экспериментальным значениям длин рассеяния /см.§ 3.1/.

Таблица ХУШ

к-р-взаимодействие

				ور برو بروی به مد حد به مرد به مد مد مد او	
	метод	O't mb			•••
84 Мэв	8-1K ³⁵⁵	90			
89	_Н 360	94.6 + 9.0			
140	_н 360	88,6 + 8,0			
140	8-11K ³⁵⁵	87			
223	в-9к ³⁶¹	48 + 4			
238 (150+300)	Φ ³⁴¹	10 7 ± 45		. I	
314	8-11×361	38 <u>+</u> 3		• •	
412	_"_	- 40 <u>+</u> 2	• •		
530	c ³⁴⁰	52 <u>+</u> 9			· •
600	c ³⁵⁸	47,1 <u>+</u> 1,2			
710	_#_	43,6 <u>+</u> 1,6			
770	B-NK 457	48 <u>+</u> 5			a teta
830	c ³⁵⁸	33,8 <u>+</u> 0,9			-
940	_"-	31,2 ± 0,9			
960	c ³³⁸	36 <u>+</u> 5			1 a.
1,07 Бэв	c ³⁵⁸	32,5 <u>+</u> 0,8	•		
1,18	_n_ :	32,5 ± 0,8		•	
1,23	c ³³⁸	44 <u>+</u> 5		·	ст.,
1,31	c ³⁵⁸	32,5 ± 0,6			1 A.
1,52	c ³⁵⁸	30,5 ± 0,4	на страна на селото н Посто селото на селото		
2,04	¹⁷	26,9 ± 0,5			
2,35	c ³⁶⁰	20 <u>+</u> 5			• •
2,52	c ³⁵⁸	25,3 <u>+</u> 0,4	en e		
3,52	_"_	25,4 <u>+</u> 0,7			
3,68	c ³⁵⁹	29,6 <u>+</u> 3,1	•		1994 1
4,43		26,7 ± 1,4			
7,42	_"_	24,3 <u>+</u> 1,4			
and the second second					

Т	метод	Jel mb	ter ter	метод	Tel mb
5 Mob	φ ⁴³²	187 + 153 - 47	40	φ ⁴³²	68 + 22 - 18
5 (0+10)	ቀ ³³⁵	58,5 ± 33,8	40 (30+50)	φ ³³⁵	56,0 <u>+</u> 8,65
6 (2,5+10)	B-NK,337	70 <u>+</u> 22	45 (40+50)	H	48,0 ± 10,7
6 (2,5+10)	B-N K ³⁵⁴	36 <u>+</u> 15	47 (40+55)	B-NK ³³⁷	51 <u>+</u> 13
10	φ ⁴³²	105 + 61 - 31	47 (40 + 55)	в-пк ³⁵⁴	38 ± 9
11	H ³⁶⁰	88 <u>+</u> 17	47 (30+60)	ф ³⁴⁶	41 + 17 - 12
15 (5+25)	φ	57 <u>+</u> 24	49	H ³⁶⁰	56 <u>+</u> 8
15 (10+20)	ቀ ³³⁵	59,4 <u>+</u> 18,8	52	φ ⁴³²	50 + 20 - 10
17 (10+23)	B-11K 337	92 <u>+</u> 15	55 (45 + 60)	ቀ ³⁶⁰	40 ± 10
17 (10+23)	B-NK ³⁵⁴	66 <u>+</u> 11	- 55 (50+60)	φ ³³⁵	41,2 <u>+</u> 9,1
20 (10+30)	φ ³⁵²	77 <u>+</u> 15	58 (0+82)	ቀ ³⁴⁴	33 + 13 = 9
20 (10+30)	ቀ ³³⁵	56,1 <u>+</u> 11,6	58 (0+82)	φ ³⁴⁶	37 <mark>+ 9</mark> - 8
21 (0+30)	φ ³⁴⁶	49 + 32 - 19	60 (50+60)	ቀ ³³⁵	42,4 <u>+</u> 6,4
22	φ ⁴³²	108 <u>+</u> 40	60 (50+70)	ቀ ³⁵²	48 ± 8
25 (20+30)	φ ³³⁵	53,9 <u>+</u> 14,7	60 (10+100)	φ 351	45 <u>+</u> 5
29	н ³⁶⁰	79 <u>+</u> 10	60	φ ⁵⁵³	50 <u>+</u> 5
30 (23+40)	8-N K ³³⁷	86 <u>+</u> 11	(10+140) 65 (30+100)	φ ³⁴⁷	50 ± 5
30 (23 + 40)	B-11 K ³⁵⁴		(50+100) 65	ф ^{.335}	43,6 <u>+</u> 9,9
30	в-п к ³⁴³	45 <u>+</u> 30	(00+70)	JA 341	26 . 7
35 (25 + 45)	ቀ ³⁵⁰	56 <u>+</u> 16	72 (60, 02)	ው 4 ³⁴⁶	30 ± 7 30 ± 13 -10
35	φ 341	76 <u>+</u> 13	(60+82)	_ 341	26 . 0
35 (30 + 40)	φ ³³⁵	66,0 <u>+</u> 14,1	75 (70-00)	φ ³³⁵	44,9 <u>+</u> 10
38 (5+60)	ې ³⁴⁸	60 <u>+</u> 11	(70+80) 75	φ ³⁵⁰	43 <u>+</u> 12
40	ф ³⁵²	63 <u>+</u> 10	(62+82) 76 (5+130)	φ ³⁴⁸	46 <u>+</u> 6

		30
Ţ	метод	Tel mb
80 (70 + 90)	φ ³⁵²	38 <u>+</u> 10
80 (70+90)	φ ³³⁵	44,7 <u>+</u> 9,5
83 (80 +9 0)	в-я к ³³⁷	52 <u>+</u> 7
84	в-пк ³⁵⁵	52
85 (80 + 90)	ቀ ³³⁵	44,2 <u>+</u> 31,3
89	H ³⁶⁰	62,8 <u>+</u> 8
90	ቀ ³⁴⁹	48,4 + 15
90	н ³⁶⁰	31,5 <u>+</u> 13
90	Φ ³⁴¹	33 ± 12
90 (60+110)	ቀ ³⁴⁸	$34 + \frac{8}{-6}$
95 (85+105)	ቀ ³⁵⁰	$13 + \frac{30}{5}$
115 (105+125)	_n_	33 <u>+</u> 33 <u>-</u> 11
125 (100+150)	ቀ ³⁴²	44 <u>+</u> 14
140	н ³⁶⁰	50 <u>+</u> 6
140	B-N K ³⁵⁵	43 ± 5
150 (140+160)	B-NK ³³⁷	43 <u>+</u> 5
238 (150+300)	φ ³⁴⁵	40
238 (150+300)	ф ³⁴¹	35 <u>+</u> 16
770	B-NK ³⁵⁷	24,2 + 4,6
1500	c ³⁵⁸	8,0 ± 1,5

		К р – взаимодеиствие
T	метод	Jex mb
∠8 Мэв		0
18	B-11 K ³³⁹	11 <u>+</u> 4
20 (10+30)	φ ³⁵²	15 ± 7
25	B-0K ³³⁶	15
34	6-11 K ³³⁹	17 ± 4
49	-"-	7 ± 3
69	- [#] -	5 <u>+</u> 3
84	в- п к ³⁵⁵	2,5
89	B-NK ³³⁹	4 ± 3
89	н ³⁶⁰	$4,1 \pm 2,3$
140	B-NK ³⁵⁵	5 ± 3
140	н ³⁶⁰	5,1 <u>+</u> 2,5 *
148	B-NK ³³⁶	4
148	B-NK ³³⁹	4 <u>+</u> 2
238 (150+300)	φ ³⁴¹	5
606	C C	9,0 ± 1,9
606		12,9 ± 2,6 †
770	6- N K ³⁵⁷	6,8 ± 1,1
1,055 Бэв	c ³⁵⁸	3,2 ± 0,7
1,055	_#_	8,0 <u>+</u> 1,9 †
2	-"- ·	1,7 <u>+</u> 0,6
2	_11_	1,9 <u>+</u> 0,3 t
3,49	_"_	5,4 <u>+</u> 0,9
3,49		1,2 <u>+</u> 0,6 †

<u>Таблица XX</u> К⁻ р – взаимодействие

	Τa	аблица	XXI	
K- P		взаимо	лей	ствие*)

· · ·		
Τ	метод	Jin mb
60 Мэв	φ ³⁵³	20 <u>+</u> 5
84	B-1K ³⁵⁵	35 ± 5
89	H360	28,4 <u>+</u> 10,9
140	_"_	33,5 ± 9,7
140	в-п к ³⁵⁵	39
238 (150 + 300)	ቀ ³⁴¹	67 <u>+</u> 29
770	ይ-በ	17 <u>+</u> 3
	یند است. است است کار است کار از این این از این	

*)

Неупругое к-р-взаимодействие не имеет пороговой энергии.

	K ⁻ n	<u>Таблица XXII</u> L — взаимодейс	гвие	e e f	·.
Т	n an	метод			σ_{t} mb
600 Мэв		c ³⁵⁸			31,2 ± 1,6 †
830		→" →			29,4 <u>+</u> 1,1 †
1,07		→ ¹¹ →			26,4 <u>+</u> 1,0 †
1,31		_11_			24,3 <u>+</u> 0,8 †
1,52	н А. А. А	<u>_</u> 11_			22,7 <u>+</u> 0,9 †
2,04					22,6 <u>+</u> 0,9 †
2,52		_ "_			22,4 <u>+</u> 0,7 †
3,52	•	''			20,5 <u>+</u> 0,9 †

M5 ิด 25 20 15 о G_t(к+р) 10 $G_t(K^+n)$ ▲ G_d(к+п) × G (К+п) 5 10 Ber T 10 Hev lber 100 Nev Рис. 8. Сечения взаимодействий К -мезонов с протонами и нейтронами. $G_{t}(K^{t}n) \cong G_{ex}(K^{t}n).$ Пунктирные кривые относятся к сечениям Значения 🕤 даны в единицах 10⁻²⁷см².

Из соображений зарядовой симметрии и инвариантности по отношению к зарядовому сопряжению полные сечения, а также сечения упругих и неупругих взаимодействий должны быть равны⁵⁾:

$$\begin{split} & \overline{\sigma}(\kappa^{+}p) = \overline{\sigma}(\kappa^{\circ}n) = \overline{\sigma}(\kappa\bar{p}) = \overline{\sigma}(\kappa\bar{p}) = \overline{\sigma}(\kappa\bar{p}) \\ & \overline{\sigma}(\kappa^{+}n) = \overline{\sigma}(\kappa^{\circ}p) = \overline{\sigma}(\kappa\bar{p}) = \overline{\sigma}(\kappa\bar{p}) = \overline{\sigma}(\kappa\bar{p}) \\ & \overline{\sigma}(\kappa\bar{p}) = \overline{\sigma}(\kappa\bar{p}) = \overline{\sigma}(\kappa\bar{p}) = \overline{\sigma}(\kappa\bar{p}), \\ & \overline{\sigma}(\kappa\bar{p}) = \overline{\sigma}(\kappa\bar{p}) = \overline{\sigma}(\kappa\bar{p}), \end{split}$$

кроме того,

$\overline{\mathcal{G}}_{ex}(K^{\dagger}n) = \overline{\mathcal{G}}_{ex}(K^{\circ}p) = \overline{\mathcal{G}}_{ex}(K^{\circ}n) = \overline{\mathcal{G}}_{ex}(\overline{K}_{\circ}p).$

При больших энергиях зарядовая симметрия и инвариантность при зарядовом сопряжении для К-мезонов экспериментально еще не проверены, однако, представляются очень вероятными.

Из приведенных экспериментальных данных видно, что различие между сечениями взаимодействия К-мезонов с протонами и нейтронами с ростом энергии уменьшается. Это говорит об ослаблении изотопической зависимости взаимодействий. При больших энергиях становятся близкими также сечения взаимодействия К⁺ и К⁻мезонов. Значения сечений при этом приблизительно в два раза меньше сечений *NN* - взаимодействий.

2.7. Взаимодействие К-мезонов с П-и К-мезонами

В настоящее время имеется ряд экспериментальных данных, которые указывают на существование заметного Кт – взаимодействия. Наиболее важными из них являются следующие:

 Анализ корреляций К- и П-мезонов, рождающихся в П⁻рстолкновениях при Т = 7 Бэв, приводит к заключению о резонансном КП взаимодействии при Т=190 Мэв⁻ (Масса "КП- изобары" М^{*} ≈0,8 Бэв⁻ (390).
Л - гипероны, рождающиеся в П⁻р-столкновениях, вылетают в системе центра масс преимущественно в направлении навстречу первичному П⁻- мезону, а К-мезоны имеют приблизительно симметричное распределение (несколько вытянутое вперед, см., например, ^[391]). Такой характер угловых распределений странных частиц, рождающихся при больших энергиях, можно понять, если учесть периферические столкновения первичного π -мезона с К-мезонным облаком нуклона (Ср. § 5 в ^[392]). Расчет в одномезонном приближении дает для сечения $K\pi$ - взаимодействия оценку $\mathfrak{O}(\kappa\pi) \sim \mathfrak{O}(\pi \mathcal{N})$. (Численные результаты зависят от того, предполагается К-мезон скалярным или псевдоскалярным. Последний случай, по-видимому, является более предпочтительным).

Следует также отметить, что " D - образные" случаи ПN - взаимодействий, наблюдавшиеся в Дубне и в других лабораториях, могут быть также истолкованы как результат взаимодействия К - и П -мезонов.

В работах [403] и [404] показано, что учет взаимодействия вида

$\mathcal{H}_{int} = \mathcal{L} \left(\bar{\mathbf{K}}^{\dagger} \mathbf{K}^{\dagger} + \bar{\mathbf{K}}^{\circ} \mathbf{K}^{\circ} \right) \left(\pi^{\dagger} \pi^{-} + \pi^{-} \pi^{+} + \pi^{\circ} \pi^{\circ} \right),$

где **Т**, **К**, **К** – операторы полей соответствующих частиц, а стоянная связи, дает возможность объяснить ряд экспериментальных фактов о взаимодействии **К** -мезонов с нуклонами и с ядрами при низких энергиях,

Можно показать, что реакция перезарядки $\Pi^{\circ} + K^{+} \rightarrow \pi^{+} + K^{\circ}$ при этом оказывается запрещенной Поэтому запрещена в одномезонном приближении и реакция $K^{+} + p \rightarrow p + K^{\circ} + \pi^{+}$ (см.рис. 10). Представляет большой интерес экспериментальная проверка этого заключения.

Если K^+ и K° - мезоны имеют различную четность, то, в принципе, возможно тройное взаимодействие вида $H_{int} = \lambda \bar{K} \pi K \cdot$

Как видно, сведения о КП - взаимодействии еще более бедны чем о взаимодействии П -мезонов. В области энергий, не превышающих ческольких сотен Мэв, Исаев и Сэвэрыньский на основе двойных дисперсионных соотношений недавно получили уравнения для амплитуды КП - взаимодействий ^[395]. Аналогичные уравнения были получены также Б.Ли^[396]. Однако решение этих уравнений пока еще не найдено. С теоретической точки зрения можно ожидать заметное взаимодействие К-мезонов с К-мезонами. (Возможно, $\mathfrak{S}(\mathsf{K}\mathsf{K}) \sim \mathfrak{S}(\mathsf{K}\pi) \sim \mathfrak{S}(\pi \mathcal{N})$). Однако, каких-либо экспериментальных данных о таком взаимодействии в настояшее время еще не имеется. Сведения о $\mathsf{K}\mathsf{K}$ -взаимодействии можно было бы в частности, получить из изучения угловых и энергетических распределений странных частиц, рождающихся в реакциях

$K+N \rightarrow K+K+\Lambda(\Sigma)+n\pi (n=0,1,...).$

Такие взаимодействия можно рассматривать как периферические столкновения налетающего К-мезона с К-мезонной оболочкой нуклона.

111. Теоретическая интерпретация экспериментальных данных

Из приведенных экспериментальных данных видно, что поведение сечений взаимодействия имеет очень сложный вид. Сколь-нибудь подробное теоретическое рассмотрение этого вопроса потребовало бы написания большой монографии и вывело бы нас далеко за рамки журнального обзора. Поэтому мы ограничимся рассмотрением лишь предельных случаев очень малых ($T \leq 10$ Мэв) и больших ($T \geq 1$ Бэв) энергий. В этих областях имеется ряд интересных особенностей, которые являются общими для взаимодействия частиц различных сортов.

Рис. 10.

3.1. О поведении сечений при очень малых энергиях

Для описания взаимодействия частиц при малых энергиях существует хорошо /381,407,412/ разработанная теория эффективного радиуса

В частном случае взаимодействия медленных нейтронов с протонами сечение взаимодействия имеет вид:

 $G'(T) = \frac{3\pi}{k^{2} + (\frac{1}{a_{\perp}} - \frac{k^{2}}{2})^{2}} + \frac{1}{k^{2} + (\frac{1}{a_{s}} - \frac{k^{2}}{2})^{2}}$

где $K^2 = \frac{1}{2} (T_M) / L_w$, $T_M - кинетическая энергия нейтрона в еди$ ницах его массы <math>M, $\lambda_N = h_M c$;

$$a_{t} = (5,415 \pm 0,012) \cdot 10^{-13} c_{n}; \ \mathcal{P}_{t} = 1,70 (1 \pm 0,017) \cdot 10^{-13} c_{n}$$
$$a_{s} = -(23,806 \pm 0,028) \cdot 10^{-13} c_{n}; \ \mathcal{P}_{s} = 2,50 (1 \pm 0,1) \cdot 10^{-13} c_{n}$$

Значения этих параметров определены из сравнения с экспериментальными сечениями **G** (т)^[408]. Как видно из рис. 1, эксперимент и теория хорошо согласуются вплоть до энергий порядка нескольких десятков Мэв. При больших энергиях становится важной форма ядерного потенциала и необходимо более детальное рассмотрение.

В случае PP -рассеяния существенную роль играют кулоновские силы. Однако, теория эффективного радиуса и в этом случае дает возможность выделить из экспериментальных данных сечение чисто ядерного рассеяния:

$$\vec{O}(T) = \frac{\|}{\kappa^2 + (\frac{L}{a_s} - \frac{\kappa^2}{2} P_s)^2},$$

где снова $k^2 = \frac{1}{2} \begin{pmatrix} T_{M} \end{pmatrix} \begin{pmatrix} 1/2 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix}$. Значения параметров a_s и p_s определенные из сравнения с опытом, хорошо согласуются с соответствующими значениями для p_{M} -рассеяния, как и следовало ожидать из соображений зарядовой независимости

Теория эффективного радиуса в принципе применима также к м -взаимодействиям. Однако, известных экспериментальных данных в этом случае оказывается недостаточно для однозначного определения параметров в формулах для сечений, тем более, что вследствие беспороговых процессов эначения этих параметров становятся комплексными.

При рассеянии **П** -мезонов на нуклонах большую роль играет *P* -рассеяние. Поэтому число параметров возрастает, и формулы для сечений имеют более сложный вид, чем для взаимодействия нуклонов, в пределе Т →0, когда взаимодействие происходит в **S** -состоянии,

9) Чтобы полная волновая функция была антисимметричной, система рр может иметь лишь синглетные спиновые состояния для четных орбитальных моментов. Поэтому при малых энергиях, когда рассеяние происходит в *S*-состоянии, система pp может находиться лишь в ⁴S-состояниях.

 $G(\pi^+ p) = 4\pi a_1^2$ $G_{el}(\pi^{-}p) = \frac{4\pi}{4}(2a_1 + a_3)^2$ $\mathcal{O}_{ex}(\pi^{-}p) = \frac{\delta\pi}{9}(a_2 - a_1)^2$

По-видимому, наиболее точные значения длин рассеяния в состояниях с изотопическими спинами $t = \frac{1}{2}$ и $t = \frac{3}{2}$

 $\alpha_{1} = (0,249 \pm 0,007) \cdot 10^{-13} c_{n}; \alpha_{3} = -(0,129 \pm 0,007) \cdot 10^{-13} c_{n}.$

получены в работе

Имеются ряд работ, в которых теория эффективного радиуса применяется к Взаимодействию К -мезонов с нуклонами (см., например, '381,410,411/ , где указана библиография). Эта теория оказывается весьма сложной, так как, например, в случае Кр - взаимодействия возможны беспороговые неупругие реакции, и длины рассеяния становятся комплексными ^[411]. Отсылая за подробностями к литературе, приведем лишь значения длин рассеяния для К⁺ Л -взаимодействия

$$\begin{split} & \mathcal{G}(K^{+}p) = 4\pi a_{i}^{2} \\ & \mathcal{G}_{ee}(K^{+}n) = \pi (a_{i} + a_{o})^{2} \\ & \mathcal{G}_{ex}(K^{+}n) = \pi (a_{i} - a_{o})^{2} \\ & \mathcal{G}_{t}(K^{+}n) = 2\pi (a_{o}^{2} + a_{i}^{2}), \end{split}$$

где $Q_{,=} - (Q,336 \pm Q,028) \cdot 10^{-13}_{c-}$; $Q_{,=} - (Q,020 \pm Q,042) \cdot 10^{-13}_{c-}$ длины рассеяния в триплетном и синглетном изотопических состояниях. Соответствующие значения сечений при T=0 указаны в таблицах предыдущего раздела. 3.2. О постоянстве сечений взаимодействия при больших энергиях

Из приведенных выше экспериментальных данных видно, что сечения б_t, б_i, б_{el} при больших энергиях становятся постоянными. Однако данные, полученные в области очень больших энергий из опытов с космическими лучами, содержат большие ошибки и, строго говоря, можно лишь утверждать, что при этих энергиях нет значительных изменений в величине сечений взаимодействия.

В настоящее время еще нет строгой теории, объясняющей поведение сечений даже при тех больших энергиях, которые доступны современному эксперименту. Более того, постоянство сечений взаимодействия при $T \ge 1$ Бэв кажется противоречащим современной теории поля, где при вычислении многих физических величин (массы частиц, магнитные моменты и т.д.) приходится вводить форм-факторы для подавления взаимодействий при больших энергиях. Можно, однако, привести примеры (см. § 3.3), когда даже очень слабые взаимодействия при возрастании энергии приводят к большим значениям сечений. Подавление взаимодействий с помощью форм-факторов в этом случае может скомпенсировать возрастание сечений и сделать их постоянными. Возможно, аналогичное положение имеет место и в общем случае.

В работах для энергетической зависимости сечений взаимодействия *Т*мезонов с нуклонами из анализа свойств функций распространения в локальной теории поля получены граничные оценки:

Const < Gt (T) < T. Const.

что не противоречит экспериментальным данным. Более определенные заключения об асимптотическом поведении сечений получены в недавно опубликованных работах [414][415]. В этих работах из рассмотрения неупругих периферических взаимодействий при больших энергиях в одномезонном приближении получено заключение об уменьшении сечений с ростом энергии:

6 5 Const you T -> 00.

Аналогичное заключение получено в работе^[416] методом дисперсионных соотношений. Так как сечения убывают очень медленно (при возрастации энергии от 1 Бэв до 10 Бэв сечение уменьшается, приблизительно, на 10%^[416], то это не противоречит известным экспериментальным данным.

Однако, выводы работ ⁽⁴¹⁴⁻⁴¹⁶⁾ основаны на целом ряде предположений и не являются в настоящее время достаточно убедительными. В частности, в работ тах ⁽⁴¹⁴⁾ взаимодействие, при котором одна из взаимодействующих частиц является виртуальной, заменяется взаимодействием <u>реальных</u> частиц. Возможно, что такая замена справедлива лишь с точностью до сравнительно медленно меняющихся логарифмических членов, которые как раз и компенсируют логарифмическое уменьшение сечений. Можно привести математические примеры, когда подобная ситуация имеет место. Во всяком случае, этот вопрос требует специального рассмотрения ¹⁰⁷. В настоящее время можно лишь сказать, что интересные результаты, полученные в работах ⁽⁴¹⁴⁻⁴¹⁶⁾, указывают на необходимость большой осторожности при экстраполяции современных методов расчета в область предельно больших энергий.

3.3. Равенство сечений взаимодействия частиц и античастиц

Предположив, что полные сечения pp- и pp-взаимодействий постоянны при больших энергиях, можно показать равенство этих сечений. Аналогичное заключение верно для полных сечений взаимодействия π^+ и π^- -мезонов с протонами; полных сечений K^-p - и K^+p - взаимодействий и т.д. в общем случае для взаимодействий, в которых один раз участвует частица, в другой раз - соответствующая ей античастица ⁽⁴¹⁷⁾.

Чтобы доказать эту теорему, рассмотрим дисперсионное соотношение для амплитуды упругого рассеяния A(E) на угол $\theta = 0$

Re A(E) = $\left(\frac{E-E_{\bullet}}{4\pi^{2}}\right)^{2}$ P $\int \frac{dE'}{\chi'} \left[\frac{\overline{G_{\bullet}(E')}}{(E'-E)(E'+E_{\bullet})^{2}} + \frac{\overline{G_{\bullet}(E')}}{(E'+E)(E'+E_{\bullet})^{2}}\right] + \alpha + \beta E$,

10/ Мы благодарны Д.И.Блохинцеву за подробное обсуждение этих вопросов.

где а и в - постоянные коэффициенты^[418] χ - длина волны нуклона, Е=Т+М, Е. - произвольно выбранное значение энергии 11/. Существенно, что в дисперсионный интеграл всегда входит как сечение взаимодействия частиц б_t, так и античастиц б_t. При Е→∞ получим, сохраняя лишь наибольшие члены:

Re
$$A(E) \sim E^2 p \int_{\mathcal{E}} \frac{dE'}{E'} \left[\frac{G'_t(\infty)}{E'-E} + \frac{\overline{G'_t}(\infty)}{E'+E} \right]$$

где значение энергии 🗧 выбрано таким образом, что 🛛 ᢄ 🌫 С и при

После вычисления интеграла

Re
$$A(E) \sim E \ln E \left[\overline{G}_{t}(\infty) - G_{t}(\infty) \right].$$
 (1)

Однако, амплитуда упругого рассеяния А(Е) не может возрастать как Е С Е. Действительно, при больших энергиях, когда основную роль играют гармоники с **l ≫1**

 $|A(E)| = |\frac{1}{2} \sum_{e=0}^{\infty} (2l+1)(1-e^{2i\frac{1}{2}e})| \le \frac{1}{3} \int p dp |(1-e^{2i\frac{1}{2}(p(x))})| \le \frac{1}{3}$ < E. Const

Для простоты мы не будем учитывать спиновую и изотопическую зависимости в амплитуде А(Е). Все рассуждения легко повторить и в общем случае. Мы не будем также рассматривать электромагнитные взаимодействия, учет которых вносит лишь малые поправки.

так как $\frac{1}{2} \sim E$; $\frac{1}{2} \simeq 0$ при S > R, где R - радиус действия ядерных сил; и $|(4 - e^{2i\xi(S/x)})| \leq 2$. (Ср. (Ср. Очевидно, соотношения (1) и (2) не противоречивы, лишь если

$$G_{t}(\infty) = \overline{G}_{t}(\infty) . \qquad (3)$$

В работе [419] показано, что разность сечений б_ℓ (E) - б_ℓ (E) при E→∞ убывает во всяком случае не медленнее чем ¹/ел. Е. Еще более сильное соотношение получено в работе :

$$\overline{G}_{t}(E) - \overline{\widetilde{G}}_{t}(E) \leq \frac{Const}{E}$$
 (4)

Иногда утверждается, что рассмотренные предельные соотношения для сечений являются следствием лишь свойств дисперсионных соотношений. Однако, на примере приведенного выше вывода соотношения (3) видно, что все они получены на основе <u>эквивалентного</u> предположения о постоянстве сечений взаимодействия при $T - \infty$. Наоборот, если соотношение (3) или (4) рассматривать как основное, то из дисперсионных соотношений получим, что сечения постоянны при $T \rightarrow \infty$.

Если отклонения от постоянных значений сечений, например, медленное убыва-[414-416], будет происходить лишь при экстремально больших энергиях $T \gg (100-1000)$ Бэв, то в области меньших энер гий это даст лишь малые поправки к дисперсионным соотношениям и все приведенные выше рассуждения и, в частности, равенство (3), останутся при энергиях $T \leq (100-1000)$ Бэв приближенно справедливыми.

12) Это соотношение получено из асимптотического разложения по степеням Е дисперсионного соотношения для квадрата амплитуды. При этом предполагалась, ReA(E)+ReA(E)→const при E→∞.

3.4. Зависимость взаимодействий от изотопических спинов

При энергиях Т ≤ 1 Бэв взаимодействия частиц существенно зависят от их изотопических спинов. Это видно из приведенных выше экспериментальных данных. На рис. 11 и 12 в качестве примера представлена энергетическая зависимость экспериментальных сечений взаимодействия П -мезонов и нуклонов для состояний с определенными значениями изотопического спина.

Однако, с ростом энергии быстро возрастает число возможных каналов неупругих реакций, в то время как полное сечение неупругих реакций \mathcal{S}_{in} -> Coust или, во всяком случае, не возрастает. Сечение каждого из неупругих каналов, в том числе и канала рассеяния с перезарядкой \mathcal{S}_{ex} , становится при этом все более и более малым:

Би бес > 13). Другими словами, вклад взаимодействий, связанных с переориентацией изотопических спинов сталкивающихся частиц, становится пренебрежимо малым. Это приводит к тому, что сечения при больших энергиях становятся независящими от изотопических спинов.

Поясним эти соображения на примере рассеяния π -мезонов и нуклонов на нуклонах [422] если F_1 и F_3 - амплитуды рассеяния π -мезонов на протоне в состояниях с изотопическим спином $t = \frac{1}{2}$ и $t = \frac{3}{2}$, то дифференциальные сечения рассеяния π -мезонов запишутся в виде:

$$\begin{aligned} \vec{\sigma}_{1} &= \vec{\sigma} (\pi^{+} p \rightarrow \pi^{+} p) = |F_{3}|^{2} \\ \vec{\sigma}_{2} &= \vec{\sigma} (\pi^{\circ} p \rightarrow \pi^{\circ} p) = \frac{1}{9} |2F_{3} + F_{1}|^{2} \\ \vec{\sigma}_{3} &= \vec{\sigma} (\pi^{\circ} p \rightarrow \pi^{+} n) = \frac{2}{9} |F_{3} - F_{1}|^{2} \\ \vec{\sigma}_{4} &= \vec{\sigma} (\pi^{-} p \rightarrow \pi^{-} p) = \frac{1}{9} |F_{3} + 2F_{1}|^{2} \end{aligned}$$

При этом, конечно, предполагается, что сечение перезарядки не имеет резонансного характера при больших энергиях. Это согласуется с современными представлениями о механизме взаимодействия частиц при энергиях Т ⇒ 1 Бэв
$\mathfrak{S}_{s} = \mathfrak{S}(\mathfrak{T}_{P} \to \mathfrak{T}^{n}) = \mathfrak{S}_{3}.$

Из условия обращения в нуль сечений перезарядки $\mathfrak{S}_3 = \mathfrak{S}_5 = \mathcal{O}$ следует, что $F_1 = F_3$, т.е.

$$\mathcal{O}_{1} = \mathcal{O}_{2} = \mathcal{O}_{4}$$
 (5)

Как видно, из рис. 5 и 6, в пределах экспериментальных ошибок сечения становятся независящими от изотопических спинов уже при энергиях (3 - 4) Бэв.

Так как при больших энергиях равенство (5) выполняется для любого угла рассеяния Θ , то равными оказываются и соответствующие фазы 2ϵ амплитуды рассеяния

 $A(\theta) = \frac{1}{2i} \sum_{\ell=0}^{\infty} (2\ell+1)(1-e^{2i\ell\epsilon}) P_{\ell}(G_{0}\theta).$

Отсюда, в частности, следует равенство сечений біл и б

В случае рассеяния протонов на нуклонах дифференциальные сечения можно записать в виде:

$$\begin{aligned} \vec{O}_{1} &\equiv \vec{O} (pp \rightarrow pp) = |F_{1}|^{2} \\ \vec{O}_{2} &\equiv \vec{O} (pn \rightarrow pn) = \frac{1}{4} |F_{1} + F_{0}|^{2} \\ \vec{O}_{3} &\equiv \vec{O} (pn \rightarrow np) = \frac{1}{4} |F_{1} - F_{0}|^{2}, \end{aligned}$$

14) В этом легко убедиться, если равенство (5) переписать для амплитуд рассеянил, помножить его на полином Лежандра и проинтегрировать по всем значениям Сере от - 1 до +1.

Строго говоря, приведенные выше статистические рассуждения о равенстве нулю сечений перезарядки не применимы в области очень малых углов $\theta \sim O$, где дают вклад далекие периферические столкновения с малой передачей энергии и число неупругих каналов невелико. Однако, с ростом энергии вклад таких взаимо действий быстро уменьшается.

в единицах 10

где F, и F. - амплитуды рассеяния в состояниях с изотопическим спином t=1 и t=0.

Из условия $\mathfrak{G}_3 = \mathfrak{O}$ следует, что $F_o \simeq F_i$, т.е. $\mathfrak{G}_i \simeq \mathfrak{G}_2$. Равными становятся также фазы амплитуды упругого рассеяния \mathfrak{Z}_4 , сечения \mathfrak{G}_{in} и \mathfrak{G}_+ .

Из рис. 2 и 3 видно, что при **T >** 5-6 Бэв в пределах точности опытов сечения взаимодействия очень слабо зависят от изотопических спинов.

Аналогично можно рассмотреть и взаимодействие частиц других сортов. Во всех случаях сечения при больших энергиях очень слабо зависят от изотопического спина.

3.5. Зависимость взаимодействий от спинов сталкивающихся частиц

При больших энергиях, когда главную роль играют орбитальные числа $\ell \gg 4$ фаза амплитуды упругого рассеяния зависит лишь от энергии и от суммарного спина сталкивающихся частиц **S**, так как

 $J = |\ell - s|, ... |\ell + s| = \ell \quad \ell' = |J - s|, ... |J + s| = J = \ell$ $2\mu'^{(E,J,s)} = 2\ell^{(E,s)}.$

Как показали недавние опыты, в области энергий $\mathcal{T} \sim 1$ Бэв наблюдается еще заметная спиновая зависимость взаимодействий ⁽⁴³⁸⁾. Это видно, например, из рис. 13 и 14, где нанесены экспериментальные значения максимальной величины поляризации в нуклон-нуклонных и нуклон-ядерных взаимодействиях при различных энергиях. При больших энергиях у нас нет прямой экспериментальной информации о зависимости взаимодействий быстрых частиц от их спинов. Однако, можно ожидать, что спиновая зависимость взаимодействий при энергиях $\mathcal{T} \gg 1$ Бэв будет несущественной ¹⁵⁾. В случае взаимодействия частиц различных сортов

15) Предварительные результаты фотоэмульсионных измерений при Т=9 Бэв дали величину поляризации в (pp)-взаимодействии p=0,34 ±0,36 для угла Ø = 15,4⁹±2[°] в системе центра масс⁹⁴.

(например, π или К-мезонов с нуклонами) это можно пояснить теми же соображениями, что и для изотопических спинов. Сечение рассеяния с переворотом спина **б**₅ в этом случае будет быстро уменьшаться с ростом энергии.

Подобные рассуждения не применимы к взаимодействию нуклонов, где нет переходов между синглетным и триплетным состояниями и \mathfrak{S}_{s}^{16} . Однако, с точки зрения современных представлений о механизме неупругих взаимодействий при больших энергиях (модель компаунд-частицы), статистическая теория центральных и периферических столкновений (401) (421) можно ожидать, что и в этом случае $\chi_{e}(E,s) = \chi_{e}(E)$. (Напомним, что при T > 1 Бэв $\mathfrak{S}_{ee} \simeq \mathfrak{S}_{d}$ и целиком определяется неупругими процессами). Для периферических столкновений, дающих вклад в области малых углов $\Theta \sim O$, независимость упругих взаимодействий от спинов сталкивающихся частиц можно показать с помощью двойных дисперсионных соотношений по передаче импульса (448).

Понятно, что все рассуждения о спиновой и изотопической зависимостях применимы также и для взаимодействия с ядрами.

Из рис. 13 и 14 видно, что при больших энергиях экспериментальные значения поляризации уменьшаются с ростом **Т**, причем это уменьшение является более быстрым в случае нуклон-ядерных взаимодействий.

3.6. Слабые взаимодействия при больших энергиях

В последнее время внимание многих физиков привлекают возможные опыты с нейтрино больших энергий. (См., например, сборник^[7], где указана библиография). При обычных условиях взаимодействия с нейтрино являются слабыми, сечения таких взаимодействий намного меньше сечений электромагнитных и ядерных взаимодействий. Однако, еще несколько лет назад Д.И.Блохинцев отметил, что

¹⁶⁾ В случае РР – взаимодействий (как и вообще, в случае взаимодействия двух любых тождественных частиц) \mathfrak{S}_{s} =0 в силу закона сохранения четности в системе тождественных частиц; в случае р*m* – взаимодействий \mathfrak{S}_{s} =0 в силу зарядовой симметрии.

при больших энергиях сечения "слабых взаимодействий" быстро возрастают Это обстоятельство подчеркивал также М.А. Марков

После запуска больших протонных ускорителей создались реальные условия для постановки опытов с нейтрино высоких энергий. Нейтрино в этом случае возникают при распаде заряженных Π -мезонов, образовавшихся при столкновениях быстрых нуклонов. (См. рис. 15). Оценки показали, что при потоке 10^{11} протонов с энергией T=10 Бэв в секунду можно получить на расстоянии 50 м от мишени поток нейтрино с энергиями T > 1 Бэв $\sim 10^3$ /см² [426][427]. При увеличении расстояния от мишени вдвое, поток нейтрино увеличивается почти в три раза. (Эти данные относятся к области малых углов $\Theta \sim 0^{\circ}; 3^{\circ}$).

Рис. 15. Генерация нейтрино пучком быстрых протонов. Как показали расчеты (см., например, ^[426]) сечения взаимодействия нейтрино с нуклонами и электронами при энергиях Т ≥ 1 Бэв равны:

$$\begin{split} & \Theta(\nu + n \Rightarrow e + p) = 1,4 \left(\frac{T}{M}\right) \cdot 10^{-38} c_{n}^{2}. \\ & \Theta(\bar{\nu} + p \Rightarrow \bar{e} + n) = 4,8 \left(\frac{T}{M}\right) \cdot 10^{-39} c_{n}^{2}. \\ & \Theta(\nu + e \Rightarrow \nu + e) = 7,8 \left(\frac{T}{M}\right) \cdot 10^{-42} c_{n}^{2}. \\ & \Theta(\bar{\nu} + e \Rightarrow \bar{\nu} + e) = 2,6 \left(\frac{T}{M}\right) \cdot 10^{-42} c_{n}^{2}. \\ & \Theta(\bar{\nu} + e \Rightarrow n + p) = 2,6 \left(\frac{T}{M}\right) \cdot 10^{-42} c_{n}^{2}. \end{split}$$

81

где (\mathcal{M}) - энергия нейтрино (антинейтрино) в единицах массы нуклона \mathbb{M} ; $\overline{\nabla}$ - антинейтрино; $\overline{\mathcal{E}}$ - позитрон. Эти значения получены с помощью теорни возмущений, которая справедлива до энергий $\mathbb{T} \sim 10^{13}$ Бэв. При таких гигантских энергиях сечения взаимодействия нейтрино с нуклонами $\mathfrak{S} \sim 10^{-26}$ см², т.е. такой же величины, как и ядерные $\pi \mathcal{N}$ и $\mathcal{N} \mathcal{N}$ -сечения. Однако, при больших энергиях сечения $\mathcal{V}\mathcal{N}$ - взаимодействий существенно модифицируются форм-факторами, учитывающими пространственные размеры нуклонов. (Применение в сущности не совсем законной экстраполяции хофштадтеровского форм-фактора в области очень больших энергий приводит к постоянному сечению $\mathfrak{S} \sim 10^{-38}$ см^{2[427]} To же самое можно сказать и о $\mathcal{V}\mathcal{E}$ -взаимодействиях (можно ожидать, что электрон имеет геометрические размеры $\sim 10^{-16}$ см^[429].

Для экспериментальной проверки теории в области энергий $T \sim 10^{13}$ Бэв необходимы встречные пучки частиц с энергией $T \sim 100$ Бэв. Недавно М.А. Марков обратил внимание на интересную возможность использовать космические нейтрино очень больших энергий

1у. Заключительные замечания

Из приведенных экспериментальных и теоретических данных следует довольнс ясная качественная картина поведения сечений взаимодействия нуклонов, антинуклонов, К-и П-мезонов с нуклонами в области энергий до нескольких десятков Бэв. Однако количественные данные во многих случаях еще недостаточны. Особенно это относится к взаимодействию антинуклонов и К-мезонов с нуклонами. При больших энергиях плохо исследовано взаимодействие частиц с нейтронами; белым пятном является взаимодействие поляризованных частиц. Более точные измерения здесь представляют самостоятельный интерес, а также важны для количественной проверки теоретических схем и моделей. Понятно, что огромный интерес представляет любая информация, касающаяся ПП -взаимодействия, взаимодействий П- и К -мезонов, взаимодействия гиперонов.

По-видимому, качественная картина останется той же и далее в интервале еще нескольких сотен Бэв.

Можно указать во всяком случае два вопроса, исследование которых при больших энергиях представляет принципиальный интерес. Это, во-первых, исследование насколько далеко при **T** > • остаются постоянными сечения **G**_t, **G**_s, **G**_s, **G**_s, **G**_s, **G**_s, Ecnu это постоянство, как и подсказывает сейчас опыт, сохранится до очень больших энергий, то при столкновении сверхэнергичных частиц могут образоваться ливни, где масса вновь родившихся частиц может достигнуть макроскопической величины. Образно выражаясь, в этом случае могут рождаться звезды не в смысле, как их понимают сейчас в фотоэмульсионной лаборатории, а в том смысле, [431]. Если же окажется, что при больших энергиях сечения взаимодействий уменьшаются и стремятся к нулю, то это будет означать серьезные трудности для исследования очень малых пространственно-временных интервалов. При больших энергиях частицы в этом случае будут "прозрачными".

Трудно сказать, какая из двух возможностей является более интересной.

В области очень больших энергий сведения о сечении \mathfrak{S}_t можно получить из анализа средних свободных пробегов космических частиц в фотоэмульсии. (См. Приложение 11). Значение энергии первичных частиц в этом случае можно оценить по угловым распределениям вторичных частиц с помощью хорошо известной формулы Констаньоли. При достаточной статистике можно получить заключения о величине \mathfrak{S}_t в узких энергетических интервалах.

Вторым принципиальным вопросом является исследование возможных нарушений равенства сечений взаимодействия частиц и античастиц $\mathfrak{S} = \overline{\mathfrak{S}}$. При условии, что сечения взаимодействий остаются постоянными при больших энергиях, такие нарушения указывали бы на несправедливость дисперсионных соотношений и положенных в их основу принципов, в первую очередь - принципа причинности в малых областях пространства-времени.

Единственным источником информации о взаимодействии сверхэнергичных частиц являются в настоящее время и, по-видимому, останутся в ближайшем будущем опыты с космическими лучами. Большие надежды возлагаются на ускорители с встречными пучками. Два встречных пучка частиц с энергией **Т**, дают возможность исследовать взаимодействия при энергиях **Т**².

Приложение 1

Экранировка нуклонов в ядре дейтерия

Во многих случаях сечения взаимодействия частиц различных сортов с нейтронами определяются разностным методом из опытов с водородом и дейтерием. Однако, вследствие взаимной экранировки нуклонов в ядре дейтерия сечение взаимодействия с дейтоном не равно сумме сечений взаимодействия с протоном и нейтроном: $\mathcal{S}_{d} \neq \mathcal{S}_{p} + \mathcal{S}_{n}$. Поэтому при анализе экспериментальных данных необходимо вводить соответствующую поправку на экранировку. Эта поправка очень мала при малых энергиях, когда велика дебройлевская длина волны падающих частиц и тени практически не образуется вследствие дифракционного рассеяния этих частиц. При больших энергиях, наоборот, применимо приближение геометрической оптики и эффект экранировки проявляется очень четко (см. рис. 16). При этом экранировка сказывается тем сильнее, чем больше сечение неупругого взаимодействия \mathcal{O}_{in} .

В работе^[13] Глаубер показал, что с учетом экранировки мнимую часть амплитуды упругого рассеяния на нулевой угол можно записать в виде:

$$Im F_{d}(0) = Im F_{p}(0) + Im F_{n}(0) + \chi Re[F_{p}(0)F_{n}(0)] < z^{-2} >_{d}, \quad (1)$$

где **F**_d, **F**_p и **F**_n - соответствующие амплитуды упругого рассеяния частиц на дейтоне, протоне и нейтроне; $\langle \mathcal{I}^2 \rangle_d$ - средняя величина обратного квадрата расстояния между протоном и нейтроном в дейтоне; X - длина волны рассеивающейся частицы. Используя оптическую теорему, соотношение (1) можно записать в виде:

$$G_{d} = G_{p} + G_{n} + \frac{1}{4\pi} \left\{ (4\pi \lambda)^{2} Re F_{p}(o) \cdot Re F_{n}(o) - G_{p} \cdot G_{n} \right\} (\tau^{2})$$

где ба. бри бл - полные сечения взаимодействия падающей частицы с дейтоном, протоном и нейтроном¹³.

Если пренебречь действительными частями амплитуд **F_p(o)** и **F_n(o)** по сравнению с их мнимыми частями, то (2) можно записать в удобном для расчетов виде:

(3)

$$\begin{split} \widetilde{\sigma}_{n} &= \frac{1}{2} \left(\widetilde{\sigma}_{d} - \widetilde{\sigma}_{p} \right) \\ \chi &= \left[1 - \frac{\langle \overline{\tau}^{2} \rangle_{d} \widetilde{\sigma}_{p}}{4\pi} \right]^{-1} \end{split}$$

Рис. 16. Эффект экранировки в ядре дейтерия.

- а) Случай малых энергий. Среднее расстояние между нукленами Д больше размеров области тени: L > R/X
 - б) Случай больших энергий. Среднее расстояние между нуклонами меньше размеров области тени: 1 < R/X. R = 10⁻¹³ см - эффективные размеры нуклона; Для простоты рассматривается случай черного (абсолютно поглощающего) нуклона.

Пренебрежение действительными частями амплитуд F_p и F_n является хорошим приближением при $T \gtrsim 1$ Бэв 401/444. Для меньших энергий – это очень грубое приближение. Ниже порога неупругих реакций мнимые части амплитуд вообще обращаются в нуль и $F \equiv Re F$. Однако, как это видно из формулы (2), при малых энергиях сам эффект экранировки мал. Кроме того, в большинстве случаев значения $Re F_p(o)$ и $Re F_n(o)$ при T < 1 Бэв нам все равно неизвестны

Значение $\langle \overline{\mathcal{Z}}^2 \rangle_d$ можно определить, если из независимых измерений при одной и той же энергии известны значения сечений \mathcal{O}_d , \mathcal{O}_p , \mathcal{O}_n . Величину $\langle \overline{\mathcal{Z}}^2 \rangle_d$ можно вычислить также чисто теоретически, если известна волновая функция дейтона. Результаты расчетов при этом несколько меняются в зависимости от того или иного конкретного выбора этой функции. В среднем

$$\langle \tau^2 \rangle_d \simeq 4, 6 \cdot 10^{25} c^2$$
.

При больших энергиях сечения очень слабо зависят от энергии в этом случае корреляционный множитель 2 становится постоянным и равен приблизительно 0,1-0,2. Соответствующая поправка к сечению $5_n = 5_d - 5_p$ составляет около 20% или меньше. Ниже порога неупругих реакций $2 \simeq 1$ и $5_n = 5_d - 5_p$. В промежуточной области расчет поправок на экранировку является сложной задачей. Приближенно можно считать, что в этой области 2 меняется линейно с энергией [72]

Как видно, поправки на экранировку вычисляются очень приближенно. При более точных расчетах следует, в частности, учитывать двойное рассеяние в ядре дейтерия. Однако, в пределах экспериментальных ошибок ±86 такой подход является вполне удовлетворительным при практических расчетах сечений G_n . Полученные таким образом сечения S_n удовлетворительно согласуются со значениями, полученными из непосредственных измерений в пучке нейтронов.

<u>Приложение II</u>

Средний свободный пробег быстрых частиц в фотоэмульсии

Обычно при анализе следов быстрых частиц в фотоэмульсии не фиксируются случаи упругого рассеяния этих частиц на ядрах. Упругое рассеяние при больших энергиях является почти целиком дифракционным и происходит на очень малые углы, которые тем меньше, чем больше размер ядра. Нужна специальная методика, чтобы фиксировать малое искривление треков при упругом ядерном рассеянии.

Во всех случаях взаимодействия нуклонов и Для которых в таблицах XI и XIX приведены значения среднего пробега, кроме неупругих взаимодействий учитывалось лишь происходящее на сравнительно большие углы упругое рассеяние на водороде¹⁷. Средний свободный пробег в этих случаях равен:

$$\mathcal{L} = \left[\sum_{i} \mathcal{N}_{i} \mathcal{G}_{in}^{i} + \mathcal{N}_{\mu} \mathcal{G}_{\ell} \right]^{-1}, \qquad (1)$$

где \mathcal{N}_{μ} - число ядер водорода в 1 см³ фотоэмульсии; \mathcal{N}_{t} - число ядер других элементов в 1 см³ фотоэмульсии (см. таблицу XX111); \mathcal{D}_{t} - полное сечение взаимодействия первичной частицы с водородом; \mathcal{D}_{t} - сечения неупругих взаимодействий этой частицы с другими ядрами.

При больших энергиях, когда длина волны частиц, взаимодействующих с фото /401,435/ эмульсией, много меньше размеров ядер, хорошо применима оптическая модель

(2)

$$\overline{o}_{in}^{i} = 2\pi \int_{\infty}^{\infty} \left[1 - e^{-2\kappa_{i} \cdot \int_{\infty}^{\infty} \widehat{P}_{i} \left(\sqrt{z^{2} + s^{2}} \right) ds} \right] dz.$$

Здесь

$$P_{i}(z) = \left\{ 1 + \exp\left[\frac{(z-c_{i})}{z_{i}} \right] \right\}^{-1}$$

- распределение вещества в ядре с -го сорта; коэффициенты Сі и Z; определены в опытах с рассеянием быстрых электронов на ядрах . Коэффициент поглощения К:=d:б, где d: = A:/sp:(z)d³x

17) Конечно, те случаи упругого рассеяния на водороде, когда частицы разлетаются под очень малыми углами, тоже не фиксируются. При энергиях
 Т≥ 10-15) Бэв в (1) надо заменить, строго говоря, б на б. Однако, как показывают оценки, вклад таких неучтенных взаимодействий не может заметно изменить величины среднего свободного пробега.

Средняя плотность нуклонов в ядре с атомным номером А; (см. таблицу XX111). Формула (2) верна при энергиях Т > 1 Бэв. С ростом энергии применимость этой формулы улучшается.

На рис. 17 приведены вычисленные значения 🖌 в зависимости от величины сечения 6. Как показали расчеты, различие пробегов $L(6_t)$ в фотоэмульсиях G-5 и НИКФИ-Р ничтожны Кривая 2(6) на рис.17 Ilford типа б_t, приведенные в табприменима для обоих типов эмульсии. Значения сечений лицах VI и XIV, получены с помощью этой кривой.

	** BERKER
	XXX
TOOMME	

1,36

3,37

Ilford G-5

 $N_i \cdot 10^{-22}$ Состав эмульсии /число ядер в I см элемент С 0 Br Ħ N Ag мульсия никои-Р 1,39 1,02 2,93 0,37 1,06 1,02

0,29

1,02

1,02

1,02

Литература

1. L. Beretta, C. Villi, R. Ferrari. Suppl. Nuv.Cim. 12, 499 (1954). 2.В.И.Гольданский, А.Л.Любимов, Б.В.Медведев. УФН, <u>48</u>, 531 (1952); УФН, 49, 3 (1953). 3. W.N. Hess. Rev.Mod.Phys. 30, 368 (1958). 4. Н.П. Клепиков, В.А. Мещеряков, С.Н. Соколов. Препринт ОИЯИ Д-584 (1960). 5. В.С. Барашенков. УФН, <u>72</u>, 53 (1960). 6. В.С.Барашенков. Препринт ОИЯИ Д-630 (1961). (Дополнение к обзору⁵). 7. "К физике нейтрино высоких энергий". Сборник статей под редакцией М.А.Маркова. Препринт ОИЯИ Д-577 (1960). 8. В.Г. Гришин, В.А.Никитин, М.И.Подгорецкий. Препринт ОИЯИ Р-480 (1960). 9. В.А.Никитин, Э.Н.Цыганов. Препринт ОИЯИ Д-625 (1960). 10. В.С.Барашенков, В.М.Мальцев. "Угловые распределения упругого рассеяния частиц". Сборник экспериментальных данных (подготовлено к печати). 11. W.E. Crandall, G.P. Millburn, R.V. Pyll. Phys. Rev. 101, 329 (1956); 12. A.H. Rosenfeld, R.A. Swanson, S.D. Warshaw. Phys. Rev. 103, 413 (1956). 13. R.I. Glauber. Phys. Rev. 100, 242 (1955). 14. H.R. Wothington, I.N. McCruer, D.E. Findley. Phys. Rev. 90, 899 (1953). 15. J. Rouvina. Phys. Rev. 81, 593 (1951). 16. R.E. Meagher. Phys. Rev. 78, 667 (1950). 17. K.B. Mather. Phys. Rev. 82, 133 (1951). 18. R.O. Bondelid, C.H. Braden, M.E. Battat, P. Bohlman. Phys. Rev. 87, 699 (1952). 19. E.J. Zimmerman, P.G. Kruger. Phys. Rev. 83, 218 (1951). 20. R.O. Kerman, W.E. Kreger, P.G. Kruger. Phys. Rev. 89, 908 (1953). 21. E.J. Zimmerman, R. O. Kerman, S. Singer, P.G. Kruger, W. Jetschke. Phys. Rev. 96, 1322 (1954). 22. J.H. Dearnley, C.L. Oxley, J.E. Perry. Phys. Rev. 73, 1290 (1948). 23. R.R. Wilson, C.E. Creutz. Phys. Rev. 71, 339 (1947). 24. L.H. Johnston, Yong Su Tsai. Phys. Rev. 115, 1293 (1959). 25. G. Cvijanovich, B. Dayton, P. Egli, B. Klaiber et al. Preprint CERN (1960).

26. L.H. Johnston, D.E. Young. Phys. Rev. 116, 989 (1959).

27. D.E. Young, L.H. Johnston. Bull.Amer.Phys.Soc. 4, 252 (1959).

90

- 28. B. Cork, W. Hortsough. Phys. Rev. 94, 1300 (1954).
- 29. R.R. Wilson. Phys. Rev. 71, 384 (1947).
- 30. F. Faris, B. Wright. Phys. Rev. 79, 577 (1950).
- 31. S. Kikuchi, J. Sanada, S. Suwa, J. Hayashi, K. Nisimura, K. Fukunaga, J. Phys. Soc. of Japan,

15, 9 (1960).

32. R.R. Wilson, E.J. Lofgren, J.R. Richardson, B.T. Wright, R.S. Shankland. Phys. Rev. 71, 560 (1947); 72, 1131 (1947).

- 33. I.L. Yntema, M.G. White. Phys.Rev. 95, 1226 (1954).
- 34. B. Cork. Phys.Rev. 80, 321 (1950).
- 35. I.W. Burking, I.R. Richardson, G.E. Schrank, Phys.Rev. 113, 290 (1959).
- 36. T.H. Jeong, L.H. Johnston, G.W. Waddell, D.E. Young. Phys. Rev. 118, 1080 (1959).
- 37. Yung Su Tsai, L.H. Johnston. Bull. Amer. Phys.Soc. 3, 204 (1958).
- 38. W.K.H. Panofsky, F.L. Fillmore. Phys. Rev. 79, 57 (1950).
- 39. F.L. Fillmore. Phys. Rev. 83, 1252 (1951).
- 40. B. Cork, L.H. Johnston, C. Richman. Phys. Rev. 79, 71 (1950).
- 41. L.H. Johnston, D.A. Swenson. Phys. Rev. 111, 212 (1958).
- 42. V.E. Kruge, J.M. Teem, N.F. Ramsey. Phys. Rev. 94, 1795 (1954); 101, 1079 (1956).
- 43. R.H. Hildebrand, C. Leith. Phys. Rev. 80, 842 (1950).
- 44. I.N. Palmieri, A.M. Cormack, N.F. Ramsey, R. Wilson. Ann. Phys. 5, 299 (1958).
- 45. D.E. Young, L.H. Johnston. Phys. Rev. 119, 313 (1960).
- 46. B.W. Birge, U.E. Kruse, N.F. Ramsey. Phys. Rev. 83, 274 (1951).
- 47. L.I. Cook, E.M. McMillan, I.M. Peterson, D.C. Sewell. Phys. Rev. 75, 7 (1949).

48. V. Culler, R.W. Waniek. Phys. Rev. 95, 585 (1954); 99, 740 (1955).

- 49. J. de Juren, N. Knable. Phys.Rev. 77, 606 (1950).
- 50. A.E. Teylor, E. Wood, L. Bird. Nucl. Phys 16, 320 (1960).
- 51. R. Alphonce, A. Johansson, A.E. Taylor, G. Tibell. Phil.Mag. 46, 295 (1955).
- 52. O. Chamberlain, E. Segre, C. Wiegand. Phys. Rev. 81, 284 (1951); 83, 923 (1951).
- 53. J. Marshall, L. Marshall, V.A. Nedzel. Phys. Rev. 92, 834 (1953).
- 54. J. Cassels, G.H. Stafford, T.G. Pickavance. Nature 168, 468 (1951).
- 55. J.M. Cassels, T.G. Pickavance, G.H. Stafford. Proc. Roy. Soc. 214, 262 (1952).
- 56. A.E. Taylor, T.G. Pickavance J.M. Cassels, T.C. Randle. Phil.Mag. 42, 751 (951).
- 57. C. Caverzasio, A. Michalowicz. J. de Phys. et le Rad. 21, 314 (1960).

- 58. E. Lohrman, M. Teucher, M. Schein. Phys. Rev. Lett. 6, 209 (1961).
- 59. A.E. Taylor. Phys. Rev. 92, 1071 (1953).
- 60. O. Chamberlain, I.D. Garrison. Phys. Rev. 95, 1349 (1954); 103, 1860 (1956).
- 61. II.G. de Carvalho. Phys. Rev. 96, 398 (1954).
- 62. O. Chamberlain, G. Pettengill, E. Segre, C. Wiegand. Phys. Rev. 93, 1424 (1953).
- 63. C.L. Oxley, R.D. Schamberger. Phys. Rev. 85, 416 (1952).
- 64. O.A. Towler. Phys. Rev. 84, 1262 (1951); 85, 1024 (1952).
- 65. J. de Juren. Phys. Rev. 80, 27 (1950).
- 66. R. Fox, C. Leith, L. Wouters, K.R. MacKenzie. Phys. Rev. 80, 23 (1950).
- 67. A. Ashmore, R.G. Jarvis, D.S. Mather, S.K. Sen. Proc. Phys. Soc. 70, 745 (1957).
- 68. В.П.Джелепов, В.И.Сатаров, Б.М.Головин. ДАН <u>104</u>, 717 (1955).
- 69. I.R. Holt, I.C. Kluyver, I.A. Moore. Proc. Phys. Soc. 71, 770 (1958); 71, 781 (1958).
- 70. I. Marshall, L. Marshall, A.V. Nedzel. Phys. Rev. 91, 767 (1953).
- 71. V.A. Nedzel. Phys.Rev. 94, 174 (1954).
- 72. F.F. Chen, C.P. Leavitt, A.M. Shapiro. Phys. Rev. 103, 211 (1956); 95, 663 (1954).
- 73. Э.П.Джелепов, В.И.Москалев, С.В.Медведь. ДАН, <u>104</u>, 380 (1955).
- 74. L.W. Smith, A.W. McReynolds, G. Snow. Phys. Rev. 97, 1186 (1955).
- 75. Н.П.Богачев, И.К.Взоров. ДАН, <u>99</u>, 931 (1954).
- 76. М.Г.Мещеряков, Н.П.Богачев, Б.С.Неганов. Изв. АН СССР, <u>19.</u>548 (1955).
- 77. M.J. Longo, I.A Helland, W.N. Hess, B.I. Moyer, V. Perez-Mendez. Phys. Rev. Lett. 3, 568 (1959).
- 78. N.E. Booth, G.W. Hutchinson, B. Ledley. Proc. Phys. Soc. 71, 293 (1958).
- 79. T.W. Morris, E.C. Fowler, I.D. Garrison. Phys. Rev. 103, 1472 (1956).
- 80. W.B. Fowler, R.P. Shutt, A.M. Thorndike et al. Phys. Rev. 103, 1489 (1956).
- 81. F.F. Chen, C.P. Leavitt, A.M. Shapiro. Phys. Rev. 103, 211 (1956).
- 82. M.E. Low, G.W. Hutchinson, D.H. White. Nucl. Phys. 9, 600 (1958/59).
- 83. P.I. Duce, W.O. Look, P.V. March et al. Phil. Mag. 2, 204 (1957).
- 84. T. Elioff, L. Agnew. et al . Phys. Rev. Lett. 3, 285 (1959).
- 85. T. Coor, D.A. Hill, W.F. Hornyak, L.W. Smith, G. Snow. Phys. Rev. 98, 1369 (1955).
- 86. B. Cork, W.A. Wentzel, C.W. Causey. Phys. Rev. 107, 859 (1957).
- 87. R. Cester, T.F. Hoang, A. Kernan. Phys. Rev. 103, 1443 (1956).
- 88. W.M. Preston, R. Wilson, I.C. Strut. (сообщение W.M. Preston в письме Цыганову).
- 89. G. von Dardel, D.H. Frisch et al. Proc. of the 10-th International Conference on High Energy Phys. Rochester, 1960. отчет CERN ; июль 1960.

91. R.Kalbach, I.Lord, T.Tsao. Phys. Rev. 113, 325, 330 (1959).

- 92. Н.П.Богачев, С.А.Бунятов, И.М. Граменицкий и др. ЖЭТФ, 37, 1225 (1959).
- 93. A.Ashmore, G.Cocconi, A.N.Diddens, A.M.Wethirell. Phys. Rev. Lett. 5, 576 (1960).
- 94. В.А.Никитин, В.А.Свиридов, К.Д.Толстов. Препринт ОИЯИ Р-677 (1961).
- 95. I.Marshall, L.Marshall, V.A.Nedzel. Phys. Rev. 98, 1513 (1955).
- 96. S.K.Kao, H.Horstman, G.W.Hinman. Phys. Rev. 119, 381 (1960).
- 97. R.B.Sutton, T.H.Fields, I.G.Fox, I.A.Kane, W.E.Mott, R.A.Stallwood, Phys. Rev. 97, 783 (1955).
- 98. L.O.Roellig, D.A.Glaser. Phys. Rev. 116, 1001 (1959).
- 99. A.P.Batson, B.B.Culwick, L.Riddiford, Walker. CERN, Symposium, Geneva, 2, 340 (1956)
- 100- I.D. Dowell, W.R. Frisken, G. Martelli, B. Musgrave. Prog. Phys. Soc. 74, 625 (1959).
- 101. A.P. Batson, B.B. Culwick, I.G. Hill, L. Riddiford. Proc. Roy. 251, 218 (1959).
- 102. A.P. Batson, B.B. Gulwick, I.G. Hill, L. Riddiford. Proc. Roy. Soc. 251, 233 (1959).
- 103. I.D. Dowell, W.R. Frisken, et al. Nuovo Cim., 18, 818 (1960).
- 104. I.D. Dowell, W.R. Frisken et al. Proc. of the 10-th International Conference on High Energy Phys., Rochester, 1960.
- 105. W.B. Fowler, R.P. Shutt, A.M. Thorndike, W.L. Whittemore. Phys. Rev. 103, 1479 (1956).
 106. R.C. Whitten, M.M. Block. Phys. Rev. 111, 1676 (1958).
- 107. M.M. Block, E.M. Harth, V.T. Cocconi et al. Phys. Rev. 103, 1484 (1956).
- 108. С.А.Азимов, Г.Г.Арушанов, А.А.Юлдашев. Доклады АН Уз.ССР (в печати).
- 109. G. Smith, H. Courant, E. Fowler, H. Kraybill, J. Sandwiss, H. Taft. Proc. of the 10-th Inter. Conf. on High Energy Phys. Rochester, 1960.
- 110. R.E. Cavananch, D.M.Haskin, M. Schein. Phys. Rev. 100, 1263 (1955).
 - M. Schein, D.M. Haskin, R.G.Glasser. Nuv.Cim. 3, 131 (1956).
- 111. G. Wentzel. CERN, Symposium, 1958.
- 112. П.К.Марков, Э.Н.Цыганов, М.Г.Шафранова, Б.А.Шахбазян. ЖЭТФ, <u>38</u>, 1471 (1960).
- 113. А.Ф.Дунайцев, Ю.Д. Прокошкин. ЖЭТФ, <u>36</u>, 1656 (1959).
- 114. A.H.Rosenfeld. Phys.Rev. 96, 139 (1954).
- 115.F.S.Crawford, I.Stevenson. Phys.Rev. 91, 468 (1953).
- 116. R. Durbin, H.Loar, I.Steinberger. Phys. Rev. 84, 581 (1951).
- 117. T.H.Fields, I.G. Fox, I.A. Kane, R.A. Stallwood, R.B.Sutton. Phys. Rev. 109, 1704, 1713, 1716 (1958).

- 118. Б.С. Неганов, О.В. Савченко. ЖЭТФ, <u>32</u>, 1285 (1957).
- 119. H.L. Stadler. Phys. Rev. 96, 496 (1954).
- 120. М.Г.Мещеряков, Б.С.Неганов. ДАН, 100, 677 (1955).
- 121. T.H. Fields, I.G. Fox, I.A. Kane, R.A. Stallwood, R.B. Sutton. Phys. Rev. 95, 638 (1954).
- 122. H. Winzeler, B.Klaiber, W. Koch, M. Nicolic, M. Schneeberger. Nuov. Cim. 17, 8 (1960).
- 123. E. Melkonian. Phys. Rev. 76, 1744, 1750 (1949).
- 124. R.E. Fields, R.L. Becker, R.K. Adair. Phys. Rev. 94, 389 (1954).
- 125. C.L. Storrs, D.H. Frisch. Phys. Rev. 95, 1252 (1954).
- 126. E.M. Hafner, W.F. Hornyak, C.E.Falk, G.Show, T.Coor. Phys. Rev. 89, 204 (1953).
- 127. A.Bratenahl, I.M. Peterson, I.P. Stoering. Phys. Rev. 110, 927, 1958.
- 128. W. Sleator. Phys. Rev. 72, 207 (1947).
- 129. M. Ageno, E. Amaldi, D. Bocciarelli, G.C. Trabacchi. Phys. Rev. 71, 20 (1947).
- 130. A.H. Lasday. Phys. Rev. 81, 139 (1951).
- 131. E.O. Salant, N.F. Ramsey. Phys. Rev. 57, 1075 (1940).
- 132. L.S. Goodman. Phys. Rev. 88, 686 (1952).
- 133. H.L. Poss, E.O. Salant, G.A. Snow, Luke C.L. Yuan. Phys. Rev. 87, 11 (1952).
- 134. I.H. Coon, E.R. Graves, H.H. Barschall. Phys. Rev. 88, 562 (1952).
- 135. R.B. Day, R.L. Mills, I.E. Perry, Jr. and F. Scherb. Phys. Rev. 114, 209 (1959); 98, 279 (1955).
- 136. R.B. Day, R.L. Henkel. Phys. Rev. 92, 358 (1953) .
- 137. R. Sherr. Phys. Rev. 68, 240 (1945).
- 138. I.E. Brolley, I.H. Coon, I.L. Fowler. Phys. Rev. 82, 190 (1951).
- 139. A.E. Taylor, E. Wood. Phil.Mag. 44, 95 (1953); 42, 751 (1951).
- 140. E.A. Taylor, T.G. Pickavance, J.M. Cassels, T.C. Randle. Phil. Mag. 42, 328 (1951).
- 141. R.H. Hildebrand, C. Leith. Phys. Rev. 80, 842 (1950).
- 142. I.Hadley, K. Kelly, C. Leith, E. Segre, C. Wiegand, H. York. Phys. Rev. 75, 351 (1949).
- 143. P. Hillman, R.H. Stahl, N.F. Ramsey. Phys. Rev. 96, 115 (1954).
- 144. L.I. Cook, E.M. McMillan, I.M. Peterson, D.C. Sewell. Phys. Rev. 75, 7 (1949).
- 145. Chung Ying Chih, W.M. Powell. Phys. Rev. 106, 539 (1957).
- 146. V. Culler, R.W. Waniek. Phys. Rev. 99, 740 (1955).
- 147. I. DeJuren, N. Knable. Phys. Rev. 77, 606 (1950).
- 148. G.R. Mott, G.L. Guernsey, B.K. Nelson. Phys. Rev. 88, 9 (1952).
- 149. I. De Juren, B.I. Moyer. Phys. Rev. 81, 919 (1951).
- 150. A.E. Taylor. Phys. Rev. 92, 1071 (1953).

- 151. H.G. de Carvalho. Phys. Rev. 96, 398 (1954).
- 152. E. Kelly, C. Leith, E. Segre, C. Wiegand. Phys. Rev. 79, 96 (1950).

153. J. de Juren. Phys. Rev. 80, 27 (1950).

- 154. R. Fox, C. Leith, L. Wouters, K.R. MacKenzie. Phys. Rev. 80, 23 (1950).
- 155. A. Ashmore, R.G. Jarvis, D.S. Mather, S.K. Sen. Proc. Phys. Soc. 70, 745 (1957).
- 156. В.П.Джелепов, Ю.М. Казаринов, Б.М.Головин, В.Б.Флягин, В.И.Сатаров. Изв. АН СССР, <u>19</u>, 573 (1955); ДАН,<u>104</u>, 717 (1955); В.П.Джелепов, Ю.М.Казаринов. ДАН, <u>99</u>, 939 (1954).
- 157. F.F. Chen, C.P. Leavitt, A.M. Shapiro. Phys. Rev. 103, 211 (1956) ; 95, 663 (1954).
- 158. I. Marshall, L. Marshall, V.A. Nedzel. Phys.Rev. 91, 767 (1953).
- 159. V.A. Nedzel. Phys. Rev. 94, 174 (1954).
- 160. N.E. Booth, G.W. Hutchinson, B. Ledley. Proc. Phys. Soc. 71, 293 (1958).
- 161. V. Perez-Mendez, I.H. Atkinson, W.N. Hess, R.W. Wallace. Bull. Amer. Phys. Soc. 4, 253 (1959).
- 162. I. de Pangher. Phys. Rev. 99, 1447 (1955).
- 163. G.B. Yodh. Phys. Rev. 98, 1330 (1955).
- 164. А.Ф. Дунайцев, Ю. Д. Прокошкин. ЖЭТФ, <u>38</u> 747 (1960).
- 165. А.Ф.Дунайцев, Ю.Д.Прокошкин. ЖЭТФ, <u>36</u>, 1656 (1959). Б.С.Неганов, О.В.Савченко. ЖЭТФ, <u>32</u>, 1256 (1957).
- 166. В.П.Джелепов, В.С.Киселев, К.О.Оганесян, В.Б. Флягин. Материалы Х-й Международной конференции по физике высоких энергий. Рочестер, 1960.
- 167. E.M. Baldwin. Phys. Rev. 83, 495 (1951).
- 168. I.H. Atkinson, W.N. Hess, V. Perez-Mendez, R.W. Wallace. Phys. Rev. Lett.. 2. 168 (1959).
- 169. W.Y. Pajopadhue. Phil. Mag. 5, 537 (1960).
- 170. M.V.K. Appa Rao, R.R. Daniel, K.A. Neelakantan. Proc.Ind.Acad. of SC. 18, 181 (1956).
- 171. R. Daniel, N. Kamesware Rao, P. Mathotza, Y. Tsuzuki. Материалы 1Х-й Международной конференции по физике высоких энергий. Киев, 1959 г.
- 172. G. Williams, Master's Thesis, University of Washington, 1958. (цитируется по [171])
- 173. Ван Шу-фень, Т.Вишки, И.М.Граменицкий и др. Препринт ОИЯИ Р-526, 1960 г. М.И.Подгорецкий (частное сообщение).
- 174. К.И.Алексеев, Н.А.Григоров. ДАН, 117, 593 (1957).
- 175. Р.Б.Бегжанов. ЖЭТФ, <u>34</u>, 775 (1958).
- 176. L.E. Brenner, R.W. Williams. Phys. Rev. 106, 1020 (1957).
- 177. M.W. Teucher, E. Lohrmann. Bull. Amer. Phys. Soc. Ser. II, 5, 24 (1960).

- 178. N. Horwitz, D. Miller, I. Murray, R. Tripp. Phys. Rev. 115, 472 (1959).
- 179. L.E. Agnew, I.T. Elioff et al. Phys.Rev. 118, 1371 (1960).
- 180. L. Agnew, T. Elioff et al. Phys. Rev. 110, 994 (1958).
- 181. C.A. Coombes, B. Cork, W. Galbraith, G.R. Lambertson, W.A. Wenzel. Phys. Rev. 112, 1303

(1958).

- 182. A. Engler, P.B. Jones, I.H. Mulvey. Proc. Roy. Soc. 254A, 425 (1960).
- 183. A.G. Ekspong, B.E. Ronne. Nuov.Cim. 13, 27 (1959).
- 184. G. Baroni, G. Bellettini et al. Nuov.Cim. 12, 564 (1959).
- 185. G. Goldhaber, K. Kalageropoulos, R. Siller. Phys. Rev. 110, 1474 (1958).
- 186. E. Amaldi, G. Baroni et al. Nuov.Cim. 14, 977 (1959).
- 187. B. Cork, G.R. Lambertson, O.Piccioni, W. Wenzel. Phys. Rev. 107, 248 (1957).
- 188. I. Button, T. Elioff, E. Segre et al. Phys. Rev. 108, 1557 (1957).
- 189. O. Chamberlain, D.V. Keller, R. Mermod et al. Phys. Rev. 108, 1553 (1957).
- 190. T. Elioff, O. Chamberlain, H.M. Steiner, C. Wiegand, T. Ypsilantis. Proc. of the 10-th Intern. Conf. on High Energy Phys., Rochester, 1960.
- 191. T. Elioff, L. Agnew et al. Phys.Rev.Lett. 3, 285 (1959).
- 192. R. Armenteros, C.A. Coombes, B. Cork, G.A. Lambertson, W.A. Wenzel. Phys. Rev. 119, 2068 (1960).
- 193. T. Elioff. Proc. of the 10-th Intern. Conf. on High Energy Phys. Rochester, 1960.
- 194. R. Armenteros, C.A. Coombes, B. Cork, G.A. Lambertson, W.A. Wenzel. UCRL-8851 (1960).
- 195. I.C. Brisson, I.F. Detoenf, P. Falk-Vairant, L. van Rossum, G. Valladas, L.C.L. Yuang. Phys.

Rev. Lett. 3, 561 (1959).

- I.C. Brisson, I.F. Detoeuf, P. Falk-Vairant, L. van Rossum, G. Valladas, preprint Saclay 1960.
- В этом препринте уточнены и исправлены данные предыдущей публикации.
- 196. H.C. Burrowes, D.O. Caldwell et al. Phys.Rev.Lett. 2, 119 (1959).
- 197. M.C. Rinehart, R.C. Rogers, L.M. Lederman. Phys. Rev. 100, 883 (1955).
- 198. D.E. Nagle, D.H. Hildebrand, R.I. Plano. Phys. Rev. 105, 718 (1957).
- 199. W. Spry. Phys. Rev. 95, 1295 (1954).
- 200. J. Orear, W. Slater, I.I. Lord, S.L. Eilenberger, A.B. Weaver. Phys. Rev. 96, 174 (1954).
- 201. A. Roberts, I. Tinlot. Phys. Rev. 90, 951 (1953).
- 202. C.E. Angell, I.P. Perry. Phys. Rev. 92, 835 (1953).
- 203. I. Tinlot, A. Roberts. Phys. Rev. 95, 137 (1954).

- 204. S. Barnes, R. Rose, G. Giacomelli et al. Nuov. Cim. 10, 734 (1958).
- 205. P. Isaacs, A. Sachs, I. Steinberger. Phys. Rev. 85, 803 (1953).
- 206. D. Bodansky, A. Sachs, I. Steinberger. Phys. Rev. 93, 1367 (1954).
- 207. C.M. York, W.I. Kernan, E.L. Garwin. Phys. Rev. 119, 1096 (1960).
- 208. H.L. Anderson, E.Fermi, D.A. Nagle, G.B. Yodh. Phys. Rev. 86, 413 (1952).
- 209. G. Goldhaber. Phys. Rev. 89, 1187 (1953).
- 210. C. Chedester, P. Isaacs, A. Sacks, I. Steinberger. Phys. Rev. 82, 958 (1951).
- 211. H.L. Anderson, E. Fermi, D.A. Nagle, G.B. Yodh. Phys. Rev. 86, 793 (1952).
- 212. H.L. Anderson, E. Fermi, E.A. Long, R. Martin, D.E. Nagle. Phys. Rev. 85, 934 (1952).
- 213. D.N. Edwards, S.G.F. Frank, I.R. Holt. Proc. Phys.Soc. 73, 856 (1959).
- 214. I. Orear. Phys.Rev. 92, 156 (1953).
- 215. H.L. Anderson, E. Fermi, R. Martin, D.E.Hagle. Phys. Rev. 91, 155 (1953).
- 216. Ю.А.Будагов, С.Виктор, В.П.Джелепов, П.Ф.Ермолов, В.И.Москалев. ЖЭТФ, <u>38</u> 734 (1960).
- 217. E.L. Garwin, W.I. Kernan, C.O. Kim, C.M. York. Phys. Rev. 115, 1295 (1959).
- 218. V.E. Kruse, R.C. Arnold. Phys. Rev. 116, 1008 (1959).
- 219. V.E. Kruse, R.C. Arnold. Proc. of the 9-th Intern. Conf. on High Energy Phys.Kiev, 1959.

45, (1955)

- 220. А.Е.Игнатенко, А.И.Мухин, Е.Б.Озеров, Б.М.Понтекорво. ДАН, 103
- 221. I. Ashkin, I.P. Blaser, F. Feiner, M.O. Stern. Phys. Rev. 101, 1149 (1956).
- 222. W.I. Kernan. Phys. Rev. 119, 1092 (1960).
- 223. I. Ashkin, I.P. Blaser, F. Feiner, I.G. Gorman, M.O. Stern. Phys. Rev. 96, 1104 (1954).
- 224. В.Г.Зинов, А.Д.Конин, С.М.Коренченко, Б.М.Понтекорво. Препринт ОИЯИ-455. (1959).
- 225. H.L. Anderson, M. Glicksman. Phys. Rev. 100, 268 (1955).
- 226, E. Fermi, M. Glicksman, R. Martin, D. Nagle. Phys. Rev. 92, 161 (1953).
- 227. M. Glicksman. Phys. Rev. 95, 1045 (1954).
- 228. M. Glicksman. Phys. Rev. 94, 1335 (1954).
- 229. I. Ashkin, I.P. Blaser, F. Feiner, M.O. Stern. Phys. Rev. 105, 724 (1957).
- 230. I. Deahl, M. Derrick, I. Fetkovich, T. Fields, G.B. Yodh. Proc. of the 10-th Intern. Conf. on. High Energy Phys., Rochester, 1960.
- 231. В.Г.Зинов, С.М.Коренченко. ЖЭТФ, <u>36</u>, 618 (1959).
- 232.В.Г.Зинов, С.М.Коренченко. ЖЭТФ, <u>38</u>, 1399 (1960).
- 233. В.Г. Зинов, С.М.Коренченко. ЖЭТФ, <u>38</u>, 1099 (1960).

235. L.C. Yuan, S.L. Lindenbaum. Phys. Rev. 100, 306 (1955).

236. И.М.Василевский, В.В.Вишияков. ЖЭТФ, 38, 441 (1960).

237. Л.С.Дулькова, И.Б.Соколова, М.Г.Шафранова. ДАН, 111, 992 (1956).

- 238. В.В.Петржилка. Материалы X-й Международной конференции по физике высоких энергий. Рочестер, 1960.
- 239. В.Г.Зинов, С.М.Коренченко. ЖЭТФ, 33, 1308 (1957).

240. В.Г.Зинов, С.М.Коренченко. ЖЭТФ, <u>34</u>, 301 (1958).

241. М.Козодаев, Р.Суляев, А.Филиппов, Ю.Щербаков. ДАН, 107, 236 (1956).

242. В.Г.Зинов, С.М.Коренченко. ЖЭТФ; 33, 1307 (1957).

243. L.K. Goodwin, R.W. Kenney, V. Perez-Mendez. Phys. Rev. Lett. 3, 522 (1959).

244. T.I. Devlin, B.C. Barish, W.W. Hess, V. Perez-Mendez, I. Solomon. Phys. Rev. Lett. 4, 242 (1960).

245. R. Cool, L. Madansky, O. Piccioni. Phys. Rev. 93, 637 (1954).

246. R. Cool, O. Piccioni, D. Clark. Phys. Rev. 103, 1082 (1956).

247. R.R. Crittenden, I.H. Scandrett, W.D. Sherhard, W.D. Walker, I. Ballam. Phys. Rev. Lett. 2, 121

(1959).

248. A.M. Shapiro, C.P. Leavitt, F.F. Chen. Phys. Rev. 92, 1072 (1953).

249. J.I. Shonle. Phys. Rev. Lett. 5, 156 (1960).

250. L. Goodwin, J. Caris. Proc. of the 10-th Intern. Conference on High Energy Phys., Rochester,

(1960). UCRL-9119 (1960) (цитируется по ^{[433}]).

251. Ю.Батусов, С.Бунятов, В.Сидоров, В.Ярба. Материалы Х-й международной конференции по физике высоких энергий. Рочестер, 1960 г.

252. Ю.Батусов, Н.Богачев, С.Бунятов, В.Сидоров, В.Ярба. ДАН, 133, 52 (1960).

253. B. McCormica, L. Baggett. CERN, Symposium, 1958.

254. W.D. Walker, F. Hushfar, W.D. Shephard. Phys. Rev. 104, 526 (1956).

255. S. Bergia, L. Bertocchi et al. Nuov.Cim. 15, 551 (1960).

256. A.R. Erwin, J.K. Kopp. Phys. Rev. 109, 1364 (1958).

257. V. Alles-Borelli, S. Bergia, E. Perez-Ferreira, P.Waloschek. Nuov. Cim. 14, 211 (1959).

258. I. Derado, G. Lutjens, N. Schmitz. Ann. der Phys. 4, 103 (1959).

259. I. Derado, N. Schmitz. Phys. Rev. 118, 309 (1960).

260. M. Chretien, I. Leitner, N. Samies, M. Schwarty, I. Steinberger. Phys. Rev. 108, 383 (1957). CERN,

Symposium, 1958.

261. L.M. Eiaberg, W.G. Fowler et al. Phys. Rev. 97, 797 (1955).

262. R.P. Shutt et al. CERN, Symposium

263. W.D. Walker. Phys. Rev. 108, 872 (1958).

264. N.F. Wikner. UCRL-3659 (1957);

265. K.C. Bandtel, H.A. Bostick, B.J. Moyer, R.W. Wallace, N.F. Wikner. Phys. Rev. 99, 673 (1955).

266. W.B. Fowler, Proc. of the 6-the Intern. Conf. on High Energy Phys., Rochester, 1956.

267. G. Maenchen et al. CERN, Symposium, 1958.

268. G. Maenchen, W.B. Fowler, W.M. Powell, R.W. Wrighth. Phys. Rev. 108, 850 (1957).

269. R.G. Thomas, Jr. Phys. Rev. Lett. 5, 229 (1960). Phys. Rev. 120, 1021 (1960).

270. R.G. Thomas, UCRL-8965 (1959).

271. Ван Ган-чан, Ван Цу-цзен, Дин Да-цао, В.Г.Иванов и др. Препринт ОИЯИ, P-393,1959. 272. Ван Ган-чан,Ван Цу-цзен и др.частное сообщение Е.Кладницкой.

273. D. Radojicic. Частное сообщение (цитируется по работе

P.F. Prierls. Phys.Rev. Lett. 5, 166 (1960).

274. Я.Я.Шаламов, В.А.Шебанов. ЖЭТФ, <u>39</u>, 1232 (1960).

275. J. Bartke, R. Bock, W.A. Cooper et al. Proc. of the 10-th Intern. Conf. on High Energy Phys. Rochester, 1960.

276. G.E. Fischer, E.M. Jenkins. Phys. Rev. 116, 749 (1959).

277. W.H. Evans, CERN, Symposium (1956).

278. J. Orear, Bull. Am. Phys. Soc. 29, N6, 24 (1954).

279. S.L. Whetstone, D.H. Stork. Phys. Rev. 102, 251 (1956).

280. D. Miller, J. Ring Phys. Rev. 117, 582 (1960).

281. W.B. Johnson, M. Camac. Bull. Am. Phys. Soc. 3, 197 (1958).

282. S. Leonard, D.H. Stork. Phys. Rev. 93, 568 (1954).

283. J.P. Perry, C.E. Angell. Phys. Rev. 91, 1289 (1953).

284. S.W. Barnes, B. Rose et al. Phys.Rev. 117, 226 (1960).

285. J. Orear, J.J. Lord, A.B. Weaver. Phys. Rev. 93, 575 (1954).

286. H.L. Anderson, E. Fermi, E.A. Long, D. Nagle. Phys. Rev. 85, 936 (1952).

287. L. Ferretti, G. Quareni,, M. Della Corte, T. Fazzini. Nuov. Cim. 5, 1660 (1957).

288. G. Ferrari, L. Ferretti et al.CERN, Symposium, 2, 230 (1956).

289. R. Gessaroli, G. Quareni. Nuov.Cim. 5, 1658 (1957).

290. J. Orear. Phys. Rev. 96, 1417 (1954).

- . 291. A. Loria, P. Mittner, R. Santengelo, G. Zago, A. Brenner, J.L. Montanet. Proc. of the 9-th Intern. Conf. on High Energy Phys. Kiev, 1959.
 - 292. А.Е.Игнатенко, А.И.Мухин, Е.Б.Озеров, Б.М.Понтекорво. ЖЭТФ, 30, 7(1956).
 - 293. J. Orear, C.H. Tsao, J.J. Lord, A.B. Weaver. Phys. Rev. 95, 624 (1954).
 - 294. S.J. Lindenbaum, L.C.L. Yuan, Phys.Rev. 111, 1380 (1958).
 - 295. S.J. Lindenbaum, L.C.L. Yuan. Proc. Fourth Roch.Conf. High Nucl. Phys. 99, (1954). Rochester.
 - 296. R.A. Grandey, A.F. Clark. Phys. Rev. 97, 791 (1955).
 - 297. G. Homa, G. Goldhaber, L.M. Lederman. Phys. Rev. 93, 554 (1954).
 - 298. А.И.Мухин, Е.Б.Озеров, Б.М.Понтекорво. ЖЭТФ, <u>31</u>, 371 (1956).
 - 299. H.L. Anderson, W.C. Davidon, M. Glicksman, V.E. Kruse. Phys. Rev. 100, 279 (1955).
 - 300. W.B. Fowler, R.M. Lea et al. Phys.Rev. 92, 832 (1953).
 - 301. L.O. Roellig, Doctor dissertation. University of Michigan, 1959.
 - 302. I.D. Crew, R.D. Hill. Phys.Rev. 110, 177 (1958); W.D. Walker, I. Crussard. Phys.Rev. 98, 1416

(1955).

- 303. М.Лихачев, В.Ставинский, Чжан Най-сянь. Материалы 1Х-й Международной конференции по физике высоких энергий. Киев 1959г.
- 304. T.J. Devlin, B.C. Barish, W.N. Hess, V. Perez-Mendez, J. Solomon. Phys. Rev. Lett. 4, 242

(1960).

- 305. W.J. Willis. Phys.Rev. 116, 753 (1959).
- 306. G. Ferrari, E. Manaresi, G. Quareni, Nuov.Cim. 5, 1651 (1957).
- 307. A.M. Sachs, H. Winick, B.A. Wooten. Phys. Rev. 109, 1750 (1958).
- 308. A.M. Sachs, H. Winick, B.A. Wooten. Phys.Rev. 100, 1255 (1955).
- 309. E.C. Fowler, W.B. Fowler et al. Phys. Rev. 86, 1053 (1952).
- 310. H.D. Taft. Phys.Rev. 101, 1116 (1956).
- 311. М.Ф.Лихачев, В.С.Ставинский, Сюй Юйнь-чан, Чжан Най-сэнь. Препринт ОИЯИ Р-659 (1961).
- 312. Предварительные результаты, полученныя в CERN. Адамс. Доклад в. ОИЯИ, Дубна Июль 1960 г.
- 313. M. Derrick, I. Fetkovich, T. Fields, E.G. Pewitt, G.B. Yodh. Proc. of the 10-th Intern.Conf. on High Energy Phys. Rochester, 1960.
- 314. R.E. Cavananch, D.M. Haskin, M.Schein. Phys.Rev. 100, 1263 (1955); M. Schein, D.M. Haskin, R.G.Glasser. Nuovo Cim. 3, 131 (1956).

- 315. I.O. Clarke, S.V. Maior, Phil. Mag. 2, 37 (1957).
- 316. A. Marques, N. Margem, G.A.B. Garnier. Nuovo Cim., 5, 291 (1957).
- 317. D.I. Holthuizer, B. Iongejans. Nuovo Cim. 14, Suppl. 2, 429 (1959).
- 318. В.А.Беляков, Ван Шу-фень, В.В.Глаголев, Н.Далхажав и др. Препринт And the state of the ОИЯИ, Р-530 (1960).
- Still Assessed II deviced II acoustic day to States at the 319. Lanius. Доклад на фотоэмульсионном совещании, Дубна, 1960 г. 320. A. Debenedetti, C.M. Garelli, L. Tallone, M. Vigone. Nuovo Cim. 4, 1442 (1956).
- 12. C.C. BRER, G.E. Vislah, R. Value, Philader 103, 1825 (1 321. Lee Baggett UCRL-8302 (1958); mO. rost. It is fanlicht . R. Street Mal. Con
- 322. W.D. Walker, J. Crussard. Phys. Rev. 98, 1416 (1955).
- 323. Материалы Х-й Международной конференции по физике высоких энергий

(0801) 6801 R and Except In Call 4. O Justices of Included 10 (1) and 324. А.Л.Любимов и др. Материалы Х-й Международной конференции по физике высоких энергий. Рочестер 1960.

13. R. I. Groom, M. Millelle et al. Mary Chr. T. 325. M. Alston, L.W. Alvarez, P. Eberhart, M.L. Good. et al. Phys. Rev. Lett. 5, 520 (1960). 326. M. Ferro-Luzzi, J.P. Berge et al. Bull. Am. Phys. Soc. 5, (N.7) 509 (1960). Hill .U.S. House at the 327. S. Minami 'Exited state in ($\Lambda \pi$)-system and (K P)- Collisions' preprint (1960). 328. Ю.А.Батусов, С.А.Бунятов, В.М.Сидоров, В.А.Ярба, ЖЭТФ, 39, 506 (1960). 329. F. Dyson. Phys. Rev. 99, 1036 (1955); G. Takeda. Phys. Rev. 100, 440 (1955).

330. В.И.Руськин. ЖЭТФ, <u>36</u>, 164 (1959); В.С.Барашенков, В.М. Мальцев. ЖЭТФ, <u>37</u>, 884 (1959). ЖЭТФ, <u>37</u>, 884 (1959). R. Hagedorn. Nuov.Com. 15, 246 (1960); В.И.Руськин, П.А.Усик.ЖЭТФ,<u>38</u>, 929 (1960).

255. B. Gebl. O.L. Basaiviraina D. Fluchalf W. Waarel, Peos. at the 24th Intern. Carl. on Web Leart 331. E. Eberle. Nuov.Cim. 8, 610 (1958); T. Goto. Nuov.Cim. 8, 625 (1958); F. Cerulus. Nuov.Cim.

We was a level weeked by it an that aread and out to work do to bushed? 14, 827 (1959). В.М. Максименко. ЖЭТФ, <u>38</u>, 652 /1960/ В.С.Барашенков. Fortschritte d. Phys.

trized, R. Sound, R.S. Milton, arek Peoel of the 19th Intern. Cast **1** (1961). 332. W.R. Frazer, J.R. Fulco. Phys. Rev. 117, 1609 (1960);

Сянь Дин-чан, Хэ Цзо-сю, В.Целлнер. Препринт ОИЯИ Д-547. sadharo.ph s abunchaynasold XI maas 333. Чжоу Гуан-чжао, Хэ Цзо-сю. ЖЭТФ, <u>39</u>, 1485 (1960). Догодов извести 24186 15 Louisquarka, status II. -02 334. A. Abashian, N.E. Booth, K.M. Crowe. Proc. of the 10-th Intern. Vonf. on High Energy Phys., societion dint de re-Rochester, 1960.

的法的 的复数法律 医磷酸盐 化磷酸盐酸盐 335. W.Alles, N.N. Biswas et al. Nuov.Cim. 11, 771 (1959). Rich W. L. Maryer, M.L. West, B.A. Olivier. 336. P. Nordin, A. Rosenfeld, F. Solmitz, R. Tripp, M.Watson. Bull.Am. Phys. Soc. 4, 24 (1959).

337. P. Nordin, A.H. Rosenfeld, F. T. Solmitz, R.D. Tripp, M.B. Watson. Bull.Am.Phys.Soc. 4, 288 (1959).

338. H.C. Burrowes, D.O. Caldwell et al. Phys. Rev. Lett. 2, 117 (1959).

339. P.Eberhard, A.H. Rosenfeld, F.T. Solmitz, R.D. Tripp, M.B. Watson. Phys. Rev. Lett. 2, 312 (1959).

340. B. Cork, G.R. Lambertson, O. Piccioni, W. Wenzel. Phys. Rev. 106, 167 (1957).

341. S.C. Freden, F.C. Gilbert, R.S. White. Phys. Rev. 118, 564 (1960). Phys. Rev. Lett. 4, 265 (1960).

342. F.C. Gilbert, C.E. Violet, R.C. White. Phys. Rev. 103, 1825 (1956).

343. L.W. Alvarez, H. Bradner et al. Nuov.Cim. 5, 1026 (1957).

344. R.G. Glasser, N. Seeman, G.A. Snow. Nuovo Cim. 7. 142 (1958).

345. R.S. White, S.C. Freden, F.C. Gilbert. Bull.Am. Phys.Soc. 4, 24 (1959).

346. R.G. Glasser, N. Seeman, G.A. Snow. Nuovo Cim. 9, 1085 (1958).

347. W. Alles, N.N. Biswas, M. Ceccarelli, I. Crussard. Nuovo Cimento, 6, 571 (1957).

348. E. Lohrman, M. Nikolić et al. Nuov.Cim. 7, 163 (1958).

349. F.H. Webb, E.L. Iloff et al. Nuov.Cim. 8, 899 (1958).

350. G. Ascoli, R.D. Hill, T.S. Yoon. Nuov. Cim. 9, 813 (1958).

351. D. Evans, F. Hassan, K.K. Nagpaul et al. Nuov. Cim. 15, 873 (1960).

352. H. Göing. Nuov.Cim. 16, 848 (1960).

353. S. Nillson, A. Frisk. Ark. . f. Fys. 14, 277 (1958).

354. P. Nordin. Bull.Am.Phys.Soc. 3, 336 (1958).

355. A.H. Rosenfeld. Bull.Am.Phys.Soc. 3, 363 (1958).

356. B. Cork,, G.R. Lambertson, O. Piccioni, W. Wenzel. Proc. of the 9-th Intern. Conf. on High Energy Phys. Kiev, 1959.

357. L. Alvarez, P. Eberhard et al. Proc. of the **9**-th Intern. Conf. on High Energy Phys. Kiev, 1959.

358. V. Cook, B. Cork, T.F. Hoang, D. Keefe et al. UCRL - 9386, January 1961.

359. G. Van Dardel, D.H. Frisch, R. Mermod, R.H. Milburn, et al. Proc. of the 10-th Intern. Conf. on High Energy Phys. Rochester, 1960.

- 360. Доклад Альвареца. Материалы 1Х Международной конференции по физике высоких энергий. Киев, 1959.
- 361. P. Bastien, O. Dahl et al. Bull. Am. Phys. Soc. 5, 509 (1960).

362. T.F. Kycia, L.T. Kerth, R.G. Baender. Bull.Am. Phys. Soc. 4, 25 (1959).

363. D. I. Meyer, M.L. Perl, D.A. Glaser. Phys.Rev. 107, 279 (19 57).

364. D.F. Hoang, M.F. Kaplon, R. Cester. Phys. Rev. 107, 1698 (1957).

365. Ann. International Conference CERN, Rep. M.F. Kaplon.(1958).

366. E. Helmi, O.R. Price, D. Prouse, D. Stork, H.K. Ticho; (Доклад Альвареца.

Proc. of the 9-th Conf. on High Energy Phys. Kiev, 1959).

367. D. Stork, D. Prowse. (цитируется по . Phys. Rev. 118, 553 (1960)).

368. T.F Kycia, L.T. Kerth, R.G. Baender. Phys. Rev. 118, 553 (1960).

369. J.E. Lannutti, W. Chupp et al. Phys. Rev. 101, 1617 (1956).

370. N.N. Biswas, L. Ceccarelli-Fabbrichesi et al. Nuov.Cim. 5, 123 (1957).

371. G. Cocconi, G. Puppi, G. Quareni, A. Stangellini. Nuovo Cim. 5, 172 (1957).

372. M. Baldo Ceolin, M. Cresti et al. Nuovo Cim. 5, 402 (1957).

373. M. Grilli, L. Guerriero, M.Merlin, Z.O. Friel, G. A. Salandin. Nuovo Cim. 9, 358 (1958).

374. D. Keefe, A. Kernan, A. Montwill. Nuovo Cim. 10, 538 (1958).

375. B. Bhowmik, D. Evans et al. Nuov. Cim. 6, 440 (1957).

376. N.N. Biswas, L. Ceccarelli-Fabbrichesi et al. Nuov.Cim. 3, 1481 (1956).

377. D. Keefe, A. Kernan, et al. Nuov.Cim. 12, 241 (1959).

378. M. Grilli, L. Guerriero, M. Merlin, Z. O. Friel, G. Salandin. Nuov. Cim. 10, 163 (1958).

379. D. Evans, F. Hassan et al. Nuov. Cim. 10, 168 (1958).

380. M. Grilli, L. Guerriero, M. Merlin, G. Salandin . Nuov. Cim. 10, 205 (1958).

381. J.E. Lannutti, S. Goldhaber et al. Rep. Padua-Venice Conf. sess. 3, 1 (1957); Phys. Rev. 109, 2121 (1958).

382. L.T. Kerth, T.F. Kycia, L. van Rossum. Rep. Padua-Venice Conf. sess. 3. 28 (1957).

383. B. Sechi-Zorn, G.T. Zorn. Phys.Rev. 108, 1098 (1957).

384. M. Grilli, L. Guerriero, G.A. Salandin. Padua-Venice Conf. sess. 3, 16 (1957).

385. W. Chinowsky, G. Coldhaber, S. Geldhaber et al. Proc. of the 10-the Intern. Conf. on High Energy Phys. Rochester, 1960.

386. C. Ceolin, N. Dallaporta et al. Nuov. Cim. 13, 818 (1959).

387. M. Widgoff, A. Pevsner et al. Phys. Rev. 107, 1430 (1957).

388. D. Davis, N. Kwak, M. Kaplon. Phys. Rev. 117, 846 (1960).

389. B. Sechi-Zorn, G.T. Zorn. Phys.Rev. 120, 1898 (1960).

390. Ван Ган-чан, А.К.Михул и др. (будет опубликовано).

391. Ван Ган-чан, В.И.Векслер и др. Препринт ОИЯИ Д-594 (1960).

392. V.S. Barashenkov. Nucl. Phys. 15, 486 (1960); 米ヨT中 37, 1464 (1959).

- 393. В.С.Барашенков, Э.К.Михул (будет опубликовано).
- 394. Чжоу Гуан-чжао. ЖЭТФ, <u>38</u>, 1015 (1960).
- 395. П.С.Исаев, М.В.Сэвэрыньский. Препринт ОИЯИ Д-550 (1960).
- 396. B.W. Lee. Ph.D. Thesis; University Pennsylvania; October, 1960.
- 397. G.F. Chew. Preprint (1960); N. Cabbibbo, R. Gatto. Phys. Rev. Lett. 4, 313 (1960); L.M. Brown.

F. Calogero. Phys. Rev. Lett. 4, 315 (1960).

- 398. G.F. Chew, S. Mandelstam. Phys. Rev. 119, 467, 478 (1960).
- 399. В.С.Барашенков. Препринт ОИЯИ Р-368 (1959).
- 400. Z. Koba. Progr. Theor. Phys. 15, 461 (1956).
- 401. Д.И.Блохинцев, В.С.Барашенков, Б.М.Барбашов. УФН, 68, 417 (1959).
- 402. Riazuddin. Phys. Rev. 114, 1184 (1959).
- 403. Y. Yamaguchi. Rep. Padua-Venice Conf. 1957).
- 404. S. Barshay. Phys. Rev. 109, 2160 (1958); 110, 743 (1958).
- 405. M. Gell-Mann. Phys. Rev. 106, 1296 (1957).
- 406. Д.Д.Иваненко, В.А.Люлька, В.А.Филимонов. УФН, <u>68</u>, 663 (1959).
- 407. А.С.Давыдов. Теория атомного ядра. Физматгиз, 1958.
- 408. Handbuch der Physik. 39, (1957).
- 409. Г.А.Бете, А.Ф.Бете. Элементарная теория ядра. И.Л. 1958.
- 410. S.N. Biswas, V. Gupta. Nucl. Phys. 21, 137 (1960).
- 411. R.H. Dalitz, S.F. Tuan. Ann. of Phys. 8, 100 (1959).
- 412. J. Hamilton , W.S. Woolcock. Phys. Rev. 118, 291 (1960).
- 413. К. Symanzik. Nuov. Cim. 5, 659 (1957); R. Arnowitt, G. Feldman. Phys. Rev. 108, 144 (1957). 414 В.Б.Берестецкий, И.Я.Померанчук. ЖЭТФ, <u>39</u>, 1078 (1960).
- 415. F. Salzman, G. Salsman. Phys. Rev. 120, 599 (1960).
- 416. V.N. Gribov. Nucl. Phys. 22, 249 (1961).
- 417. И.Я.Померанчук. ЖЭТФ, <u>34</u>, 725 (1958).
- 418. Н.Н.Боголюбов, Д.В.Ширков. Введение в теорию квантованных полей.
- 419. D. Amati, M. Fierz, V. Glaser. Phys. Rev. Lett. 4. 89 (1960).
- 420. Ю.М.Ломсадзе, В.И.Лендьнл, Б.М.Эрнст. ЖЭТФ, <u>39</u>, 1154 (1960).
- 421. V.S. Barashenkov, V.M. Maltsev, E.K. Mihul. Nucl.Phys. 13, 583 (1959); V.S. Barashenkov,
 V.M. Maltsev. Nucl.Phys. 17, 377 (1960).
- 422. И.Я.Померанчук. ЖЭТФ, <u>30</u>, 423 (1956); Л.Б.Окунь, И.Я.Померанчук. ЖЭТФ, <u>30</u>, 424 (1956); С.З.Беленький. ЖЭТФ, <u>33</u>, 1248 (1957).

423. Д.И.Блохинцев. УФН, 61, 137 (1957).

V.S. Barashenkov, B.M. Barbashov, E.I. Bubelev. Nuov.Cim. 7, Suppl. 1, 117 (1958). 424. Д.И.Блохинцев. УФН, 62, 381 (1957). Д.И.Блохинцев. ЖЭТФ, <u>35</u>, 254 (1958).

- 425. M.A. Markov. Hyperonen and K-mesonen. Verlag der Wissenschaften, Berlin, 1960.
- 426. В.С.Барашенков, Сянь Дин-чан. Атомная энергия, 9, 489 (1960).
- 427. М.А.Марков. Первая статья из сборника.
- 428. И.В.Полубаринов. Сборник, стр. 67 (1960).
- 429. В.П.Силин. ЖЭТФ, 21, 462 (1951).
- 430. M.A. Markov. Proc. of the 10-the Intern. Conf. on High Energy Phys. Rochester. И.М. Железных, М.А. Марков. Сборник⁷³, стр. 17 (1960).
- 431. Д.И.Блохинцев. УФН, <u>69</u>, 3 (1959).
- 432. D.H. Davis, R.D. Hill et al. Phys. Rev. Lett. 6, 132 (1961).
- 433. J.C. Caris, L.K. Goodwin et al. Phys. Rev. Lett. 6, 159 (1961). Phys. Rev. 122, 262 (1961).
- 434. L. Bertanza, R. Carrara et al. Nuovo Cim. 19, 467 (1961).
- 435. В.С.Барашенков, Хуан Нянь-нин. ЖЭТФ, <u>36</u>, 1319 (1959). В.С.Барашенков. Труды Всесоюзной межвузовской конференции по квантовой теории поля и теории элементарных частиц (1958).
- 436. Ro Hofstater. Ann. Rev. Nucl.Sci. 7, 321 (1957).
- 437. В.С.Барашенков, В.М.Мальцев, Э.К.Михул. Препринт ОИЯИ Д-597 (1960).
- 438. L. van Rossum. Proc. of the 10-th Intern. Conf. on High Energy Phys. Rochester, 1960.
- 439. I. Button, P. Eberhard et al. Proc. of the 10-th Intern. Conf. on High Energy Phys. Rochester, 1960.
- 440. C.K. Hinrichs, E.P. Parker et al. Proc. of the 10-th Intern. Conf. on High Energy Phys. Rochester, 1960.
- 441. S. Gartenhaus. Phys. Rev. 100, 900 (1955). P. Signell, A. Marshak. Phys. Rev. 109, 1229 (1958).
- 442. Z. Koba, G. Takeda. Prog. Theor. Phys. 19, 269 (1958).

443. I.S. Ball, G.F. Chew. Phys. Rev. 109, 1385 (1958).

444. В.С.Барашенков, Сянь Дин-чан. ДАН, 134, 65 (1960).

V.S. Barashenkov. Fortschritte d. Phys. 9, 42 (1961). G. Domokos. On the High Energy

Behavior of (ТА) Elastic Scattering Amplitude. (Будет опубликовано).

- 445. W.D. Walker, J. Crussard. Phys. Rev. 98, 1416 (1955).
- 446. Р.Г.Салуквадзе, Д.Нягу. Препринт ОИЯИ, Р-671 (1961).
- 447. J.C. Caris, R.W. Kenney, V. Perez-Mendez, W.A. Perkins. Phys. Rev. 121, 893 (1961).
- 448. В.С.Барашенков, Г.Домокош (будет опубликовано).
- 449. Ю.Вольф, В. Целнер. (Будет опубликовано).
- 450. A. Barkow, B. Chamang et al. Phys. Rev. Lett. 6, 209 (1961).
- 457. S. Goldhaber, G. Goldhaber, W.M. Powell, R. Silberberg. Phys. Rev. 121, 1525 (1961).
- 458. А.С.Вовенко, Б.А.Кулаков, М.Ф.Лихачев и др. Препринт ОИЯИ Д-721 (1961).
- 459. А.С.Вовенко, Б.А.Кулаков, М.Ф.Лихачев и др. (в печати).

Sand da se

1.1.1

With the state of the

Рукопись поступила в издательский отдел 17 апреля 1961 года.