14

H-62

В.А. Никитин, В.А. Свиридов, К.Д. Толстов

P-677

ЗАБРОС ПУЧКА НА МИШЕНИ В НЕРАБОЧЕЙ ОБЛАСТИ КАМЕРЫ СИНХРОФАЗОТРОНА И ОЦЕНКА ПОЛЯРИЗАЦИИ В Р-Р-РАССЕЯНИИ ПРИ ЭНЕРГИИ 9 БЭВ В.А. Никитин, В.А. Свиридов, К.Д.Толстов

P-677

ЗАБРОС ПУЧКА НА МИШЕНИ В НЕРАБОЧЕЙ ОБЛАСТИ КАМЕРЫ СИНХРОФАЗОТРОНА И ОЦЕНКА ПОЛЯРИЗАЦИИ В Р-Р-РАССЕЯНИИ ПРИ ЭНЕРГИИ 9 БЭВ

Объеденевный виституз ядерных вссяедований Библиотена

985/9 mg

Описывается заброс пучка протонов энергии 9 Бэв на мишени, отстоящие на ~ 70 см от центра камеры синхрофазотрона. (Размер камеры по горизонтали 200 см, по вертикали - 40 см).

Сделана попытка оценить с помощью водородной мишени поляризацию в упругом р-р-рассеянии. Для У с.ц.м. = (15,4+2,0) поляризация P=0,34 <u>+</u>0,36. Большая ошибка обусловлена малой статистикой.

1. Заброс пучка на мишень

Облучение протонами синхрофазотрона мишеней, которые должны быть расположены в нерабочей области камеры ускорителя, отличается от облучения подвижных (роторных или плунжирующих) мишеней, расположенных в рабочей области. В наших опытах использовалась жидководородцая мишень, которая не была рассчитана (чтобы не чрезмерно усложнять ее конструкцию) на быстрое движение в рабочую область: она была расположена на расстоянии 90 см от оси камеры внутрь кольца (, 2710 см). Вывести пучок без потерь на этот радиус нельзя, так как здесь показатель спада магнитного поля ル = -21 и, следовательно, фокусировка пучка по вертикали отсутствует. Поэтому необходимо забрасывать его на мишень, возбуждая в конце ускорения сильные радиальные колебания. Для этой цели применялась, так называемая мишень - "забрасыватель", которая с помощью плунжирующей мишени вводится в пучок. В "забрасывателе" частицы испытывают ионизационные потери, и их равновесная орбита смещается к внутренней стенке камеры ускорителя, а сами частицы совершают колебания вокруг этой орбиты. Амплитуда колебаний определяется величиной ионизационных потерь и углом многократного рассеяния частицы в "забрасывателе". Этими же величинами задается период колебаний: в нашем случае колебания негармонические, и период сильно зависит от амплитуды.

Ниже приводятся основные элементы расчета толщины "забрасывателя" и его радиальной и азимутальной координаты относительно использованной на опыте водородной мишени. Результаты могут быть применены и к любой другой мишени, по тем или иным причинам, расположенной в нерабочей области камеры ускорителя.

Уравнение радиального движения после прохождения "забрасывателя" можно записать в ви де

 $m \frac{d^2 g}{Jfa} + \mathcal{F}(g) = 0$ $\mathcal{F}(\rho) = \mathcal{F}_{q} - \mathcal{F}_{n} = \frac{mv^{2}}{c} - \frac{e}{c} \mathcal{H}v$ (1)

Здесь \mathcal{V} - скорость частицы после прохождения "забрасывателя"; $\mathcal{P} = \mathcal{R} - \mathcal{R}_{o}$ -отклонение от равновесной орбиты \mathcal{R}_{o} ; \mathcal{F}_{u} и \mathcal{F}_{o} - центробежная и Лоренцова силы, соответственно, $\mathcal{H} = \mathcal{H}_{o}f(\mathcal{R})$ - магнитное поле ускорителя. Для \mathcal{E}_{KOMM} = 9 Бэв $\mathcal{H}_{o}\approx$ 11500 гаусс. $f(\mathcal{R})$ - известная функция от \mathcal{R} .

Преобразуем уравнение (1):

$$m\frac{d^{2}p}{dt^{2}} + \frac{e \mathcal{H}v}{c} \left[\frac{mvc}{e \mathcal{H}_{o}} \cdot \frac{1}{\mathcal{R}} - f(\mathcal{R}) \right] = 0$$

Переменную t

удобно заменить на азимутальную переменную

Тогда

 $\frac{d^{2}p}{d\rho_{R}} + \mathcal{R}_{o}\left[\frac{mvc}{e\mathcal{R}}\cdot\frac{1}{\mathcal{R}} - f(\mathcal{R})\right] = 0$

(т.е. после выбора МУ).

Способ определения Ro иллюстрируется рис. 1, на котором изображены функции f(R) и MIC , , причем последняя проведена так, что площа-ди S, и S, равны. Каждая из этих площадей пропорциональна энергии радиальных колебаний, и поэтому равенство 🍂 = 🖍 есть условие того, что частица, начав движение с радиуса "забрасывателя" \mathcal{R}_3 , достигнет радиуса мишени \mathcal{R}_4

Точка пересечения графиков функций f(R) 1 K 7 указывает искомый радиус равновесной орбиты 🎜 . В нашем случае он оказался равным 2731 см. Теперь из рис. 1 легко получить график функции **Зур).** Аналитически она довольно хорошо аппроксимируется выражением

 $\tilde{g}(\rho) = 10^{-3} [3,4/e^{-0,1262\rho} - 1) - 0,1655\rho$

Таким образом, задача свелась к решению нелинейного уравнения второго порядка. Оно допускает решение в квадратурах. Интегралы взяты приближенным методом. Результат представлен на рис. 2. Имея траектории забрасываемых частиц, легко вычислить радиальное распределение пучка, попавшего на водородную мишень, а также оценить его угловой разброс. Расчетные характеристики, в основном, совпали с данными эксперимента (рис. 3,4,5).

Вычисление толщины забрасывателя достаточно точно можно сделать по формуле

$$\frac{\Delta \mathcal{E}}{\mathcal{E}} = \frac{\Delta \mathcal{R}}{\mathcal{R}} (1-\mathcal{N}); \quad \mathcal{N} = \mathcal{O}_{\mathcal{H}}; \quad \Delta \mathcal{R} = \mathcal{R}_{g} - \mathcal{R}_{o}$$

В нашем случае ионизационные потери в забрасывателе были 100 Мъв. Эффективность заброса, т.е. величину $f = \frac{поток протонов на водородной мишени$ поток ускоренных протоновможно вычислить, если решить уравнение вертикального движения забрасываемыхчастиц для различных углов многократного рассеяния в "забрасывателе"

$$\mathcal{Z}'' + \frac{\ell \mathcal{R}_0}{pc} \cdot \frac{n(\mathcal{R})f(\mathcal{R})}{\mathcal{R}} \mathcal{Z} = 0$$
$$\mathcal{Z}'' = \frac{d^2 \mathcal{Z}}{d\ell^2}$$

и - элемент радиальной траектории частицы, *N(R)* - показатель спада поля (см. таблица 1)^{x)}. Уравнение решается приближенно (метод Штермера). Показано, что на площадь 100 см² забрасывается около 10% частиц, что согласуется с экспериментом.

х) Функция *N(A)* получена из магнитных измерений на синхрофазотроне (частное сообщение А.Журавлева).

11. Оценка поляризации

Известно, что асимметрия \mathcal{E} в двойном рассеянии связана с поляризациями в первом (P₂) и втором (P₂) рассеяниях (если оба рассеяния лежат в одной плоскости) соотношением $\mathcal{E} = P \cdot P_2$. В качестве первого рассеяния было выбрано рассеяние на водороде на угол *Улас.* = 3,3°. По ряду причин удобнее искать второе рассеяние не рассеянного протона, а протона отдачи. Рассеивателем служили ядра эмульсии. В [1] изучалась поляризация протойов аналогичной энергии (~ 135 Мвв) при рассеянии на ядрах эмульсии, и значение P₂ в формуле $\mathcal{E} = P \cdot P_2$ известно. Следовательно, измерив \mathcal{E} и взяв из [1] значение P₂, можно вычислить P₂.

Схема эксперимента приведена на рис. 6. Пучок протонов, циркулирующий в камере ускорителя, с помощью плунжирующей мишени Т забрасывается на жидководородную мишень Н. Протоны отдачи через окно (0,3 мм *й*) в стенке камеры ускорителя попадают на эмульсионную стопку С, частично закрытую от основного потока фоновых частиц свинцовой защитой.

Конструкция внутрикамерной жидководородной мишени проста: благодаря высокому вакууму в камере ускорителя мишень представляет собой тонкостенный сосуд из нержавеющей стали (толщина окна 0,1 мм), герметически изолированный от пространства камеры и соединенный газоотводящими трубками с атмосферой. Диаметр сосуда 150 мм.

Для оценки вклада фоновых протонов в пучок протонов отдачи проведен контрольный опыт с незаполненной водородом мишенью, На рисунках 7а,6 представлены импульсные спектры протонов для $\partial_{1} = 72^{\circ}$ (∂_{2} - угол вылета протона отдач:) для рабочей стопки и контрольной. На рис. 7-в приведено распределение по импульсам протонов на рабочей стопке после вычитания фона. Импульсы протонов определялись по их пробегам в эмульсии. На рис. 8 построены импульсные распределения протонов для $\partial_{2} = 75^{\circ}$ и $\partial_{4} = 73^{\circ}$. Сме щение максимумов в распределении соответствует кинематике упругого рассеяния. Рис. 7а и 7в показывают, что пих протонов отдачи выделяется надежно. Вклад фоновых протонов составляет (17 + 5,4)%. Для измерения поляризации были выбраны протоны отдачи соответствующие рассеянию первичного протона в с.ц.м. на угол *У* с.ц.м. = (15,4 <u>+</u>2⁰). Эта точка является оптимальной по двум причинам:

1) Уменьшить \mathscr{Y} с.ц.м. нельзя, так как с уменьшением угла \mathscr{Y} уменьшается энергия протонов отдачи и, соответственно, $P_2 \rightarrow 0$;

2) Для углов *у* с.ц.м. > 15⁰ сечение упругого рассеяния мало и, следовательно, возрастают трудности с набором статистики и отделением фона.

Просмотром вдоль следа отобрано 99 рассеяний с углами $4^{\circ} \leq 4^{\circ} \leq 24^{\circ}$ и с азимутальными углами $4^{\circ} \leq 4^{\circ} \leq 24^{\circ}$ ний), лежащими в интервалах $4^{\circ} \leq (24^{\circ}) \leq 24^{\circ} \leq 24^{\circ}$

Асимметрия равна \mathcal{E} =0,09 ±0,1. Из результатов работы [1] легко получить усредненное значение $\widetilde{\mathcal{P}_{a}}$

$$\overline{P_{2}} = \frac{\int_{0}^{24^{\circ}} P(\psi_{2}) \frac{d}{d\psi_{2}} d\psi_{2}}{\int_{0}^{24^{\circ}} \frac{d}{d\psi_{2}} d\psi_{2}} = 0.38 \pm 0.06$$

Здесь $\frac{d}{d} \frac{d}{4} \frac{d}{4} \frac{d}{4} \frac{d}{4} -$ распределение рассеяний протона отдачи на ядрах эмульсии по углу рассеяния $\frac{d}{4} \frac{d}{2}$. Учтя \overline{P}_{2} , вклад фоновых протонов и величину интервала $\Delta \frac{d}{4}$, нетрудно получить значение поляризации в первом рассеянии

$$P = 0,34 + 0,36$$

1. B.T. Feld and B.C. Maglic. Phys. Rev. Lett. 1, 10, (1958).

Рукопись поступила в издательский отдел 17 февраля 1961 года.

7

Рис. 1. График к решению уравнения (1).

Рис. 2. Траектории движения частицы, прошедшей через забрасыватель: <u>I</u> - угол рассеяния $\checkmark = 0^{\circ}$, <u>II - III</u> - угол рассеяния $\checkmark = \pm 4 \sqrt{\overline{\varkappa}^2}$, O_{uu} - азимут водородной мишени.

Рис. 3. Радиальное распределение заброшенного пучка как функция вертикальной координаты (для медианной плоскости 🖉 = 0 см).

Рис. 4. Полуширина углового распределения в радиальной плоскости как функция радиальной координаты.

Рис. 5. Угловое распределение протонов в вертикальнои плоскости для 🔏 = 2713 см,

Рис. 6. Схема эксперимента

Рис. 7в. Распределение протонов по импульсам, вылетающих под углом $\theta_{p} = 72^{\circ}$, в p-p-взаимодействии (получено вычитанием кривых на рис. 2а и 26).

Рис. 8. Распределение протонов по импульсам на рабочей стопке для $\theta_1 = 75^\circ$ и $\theta_1 = 73^\circ$.

12

13

Таблица 1

n_1	n,	7
73 0.67	<u>+</u>	1
70	t	
67 0,65	0.67	j
64		
61 0,63	0.63	
59		
57 0,62	0.59	n, u
57		n _l - none
6 0,64	0.53	C KONTENCOUVEN
63		
61 0,65	0,45	
47		
20 0,44	0.3/	пз – поле без
12		Компенсации
4 - 9.08	-0.11	
68		
23		TOTAL DOANDA
16		44/ During / 2-
5		me skupanomyeu.

	r_{12} r_{13} r_{12} r_{13} r_{14} r_{15} r_{16} r_{1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$