

овые иненный инстальной инст

С.И.Аксенов, В.П.Алфименков, В.И.Лушиков, Ю.М.Останевич, Ф.Л.Шапиро, Янь У-гуан

P-617

наблюдение резонансного поглощения **5**-лучей в **In**⁸⁷ мсэтар, 1961, 740, 61, с 88-90.

Дубна 1980 год

С.И.Аксенов^{х)}, В.П.Алфименков, В.И.Лущиков, Ю.М.Останевич, Ф.Л.Шапиро, Янь У-гуан

P-617

наблюдение резонансного поглощения Г-лучей в In⁶⁷

919/9 yr

х) Физический институт им. П.Н.Лебедева АН СССР.

Сбъединенный институр пдерима всследований БИБЛИОТЕКА \mathcal{K} - захватный изотоп Ga^{**} (период полураспада T = 78 часов) испускает \mathcal{F} - кванты с энергией $\mathcal{E}_{\mathcal{F}} = 92$ Кэв, возникающие при переходе ядра \mathcal{I}^{**} из первого возбужденного состояния ($T = 9,3\cdot10^{-6}$ сек, относительная ширина $\mathcal{I}_{\mathcal{E}} = 5,3\cdot10^{-16}$) в основное состояние [1]. Резонансное рассеяние этих квантов на $\mathcal{I}n^{**}$, с использованием эффекта Моссбауэра [2], представляет значительный интерес, например, для изучения гравитационного красного смещения в лабораторных условиях [3,4], так как относительная ширина линии $\mathcal{I}n^{**}$ на 3 порядка меньше относительной ширины \mathcal{F} -линии $\mathcal{F}e^{5*}$, использованной в работах [5,6]. В данной работе излагаются результаты первых экспериментов, предпринятых с целью обнаружения резонансного рассеяния в $\mathcal{I}n^{**}$.

Постановка опыта

Эффект резонансного рассеяния измерялся по увеличению интенсивности фильтрованного излучения при разрушении резонанса. Источник Ga⁴⁷ наносился на одну сторону образца предварительным облучением этой стороны протонами с энергией 6,7 Мэв. Толщина источника не превышала 0,1 мм, остальная часть образца (4-6 мм) служила фильтром (рис. 1). Разрушение резонанса производилось наложением на образец неоднородного магнитного поля с максимальной напряженностью 1500 эрстед. Магнитное поле за счет ядерного Зееман-эффекта вызывало сдвиг линии испускания по отношению к линии поглощения, причем этот сдвиг в десятки раз превосходил естественную ширину линии. Детекторами излучения служили фотоумножители ФЭУ-11Б с кристаллами NaJ толщиной 15 мм.

При описанной плохой геометрии опыта комптоновское и резонансное рассеяние квантов в детектор снижает наблюдаемый эффект в 2-3 раза против эффекта в идеальной геометрии. Мы считали, однако, что этот недостаток искупается двумя преимуществами:

 а) в значительной мере исключается возможность взаимных движений источника и фильтра;

б) уменьшается опасность сдвигов линий испускания и поглощения за счет нетождественности состава и обработки источника и фильтра. Изменение коэффициента усиления умножителя при включении магнитного поля не превышало 10⁻⁵. Для исключения ошибок, вызванных дрейфом регистрирующей аппаратуры, измерения с полем и без поля чередовались каждые 20-40 сек. Интервалы времени задавались генератором частоты с кварцевой стабилизацией. После каждого выключения поля производилось размагничивание, так что остаточное поле не превышало 1 эрстеда.

Основные измерения производились при температуре 4,2°К и 300 °К с поликристаллическим образцом цинка, обогащенного до 33%. Для контроля измерялась также интенсивность излучения 92 Кэв, проходящего через образец естественного цинка (4,1% Zn⁶⁷). В части экспериментов регистрировалась, кроме того, интенсивность фильтрованного излучения 180 и 270 Кэв, которое не должно испытывать резонансного поглощения.

Кроме металлического In были исследованы упорядоченный сплав меди и естественного цинка (B' - латунь, 50% Cu, 50% In) и сплав Cu =1,5% In, обогашенного до 71% In. Латунь и сплав Cu - In в пределах статистической точности измерений, составляющей соответственно 2,2.10⁻²% и 7,5.10,² эффекта резонансного поглощения не обнаружили.

Результаты измерений с металлическим цинком приведены в таблице 1.

Обсуждение результатов

Как видно из таблицы, интенсивность излучения с $E_{\mathbf{r}}=92$ Кэв, фильтрованного через обогащенный цинк, при температуре 4,2°К возрастает при наложении магнитного поля на величину $\delta = (2,58\pm0,84)\cdot10^{-2}$ %. Знак изменения соответствует наличию эффекта Моссбауэра в цинке, а его величина в 3 раза превосходит среднеквадратичную случайную ошибку измерений. В то же время ни в одном из 7 контрольных измерений δ не выходит за среднеквадратичную ошибку.

При расчете эффекта Моссбауэра в цинке нельзя пользоваться приближением Дебая, так как дебаевская температура цинка сильно зависит от абсолютной температуры **С77**. М.В.Казарновский, исходя из экспериментальных данных о теплоемкости **Zn**, нашел, что для явления Моссбауэра эффективная дебаевская температура цинка равна 213° К [8]. Используя эту цифру, учитывая квадрупольное расщеп-

4

ление уровней 2n в гексагональной кристаллической решетке 2n и вводя фактор 1/2 – 1/3 на "разбавление" эффекта из-за плохой геометрии опыта, получаем ожидаемую величину эффекта δ ожид. = $(6-9) \cdot 10^{-2}$ %. δ ожид. в несколько раз больше наблюденной величины δ , что может объясняться уширением или сдвигом линии Моссбауэра или неправильным положением части атомов Ga^{67} в решетке цинка.

Недавно Паунд и Ребка сообщили о неудачной попытке обнаружения резонансного поглощения в естественном **In** в пределах точности измерения 0,1% [9]. Очевидно, этот результат согласуется с нашими данными, поскольку даже в обогащенном цинке эффект в 4 раза меньше погрешности опытов [9].

Малая величина эффекта резонансного поглощения в 2n затрудняет его дальнейшее исследование или использование по методу пропускания. В настоящее время готовятся эксперименты по регистрации рассеянного резонансного излучения $2n^{67}$, причем для лучшего отделения от нерезонансного фона предполагается использ овать детекторы с лучшим энергетическим разрешением (пропорциональные ксеноновые счетчики) и применить модуляцию падающего на рассеиватель пучка 5 - квантов с помощью вращающегося прерывателя. Такая модуляция технически осуществима ввиду сравнительно большого среднего времени жизни изомерного $уровня <math>2n^{67}$.

Наряду с этим следует рассмотреть возможность увеличения относительного выхода линии Моссбауэра за счет введения Zn⁶⁷ в вещества с большим атомным весом. Используя классическую теорию эффекта Моссбауэра [10], можно усмотреть, что в случае малой примеси относительная площадь линии Моссбауэра определяется не массой атома излучателя, а массой атома растворителя и, конечно, дебаевской температурой растворителя.

В заключение авторы благодарят И.Я.Барита, А.Г.Зельдовича, Я.Б.Зельдовича и М.И.Подгорецкого за полезные обсуждения, Е.Я.Пикельнер, В.А.Отрощенко и А.И.Секирина за помощь в измерениях. Облучение образцов производилось на циклотроне НИИЯФ МГУ. Авторы пользуются случаем выразить глубокую благодарность С.С.Васильеву, Г.В.Кошеляеву, А.Ф.Тулинову и персоналу циклотрона.

> Рукопись поступила в издательский отдел 29 сентября 1960 года.

			Кав		98	98	6	
		4	=I80		36±0,	36±0,		
		K	Er=	tanan di Periodak	0	0		nde ji si Nga si
		ННЫЙ	ЭВ	.61	83	, 79		na godina Tangan
Жени		CTBC	92 K	74+I	10+02	26+0		
нал о		есте			ਂਿੰ	Ĵ.		
	- 		B (97	97		
Б	300 ⁰ 1	2	о Кэ		8 + 0,	0 - 1		
луче		K	-=I8		0°	-0		
с и с		енны	B EI	0	34	22		
IHO7 IIO2		огащ(2 Kai	- − - + +	<u>10,5</u>	1 +0		
• T Dobai		00(r =9;	0,84	0,6	0 , 6		
		~	_{ЭВ} Е		m	- 		
иф ила и поля		Ř	30 Ka		L, I	Т, Т		
6 ИОСЛ ИОГО		йннй	r =18		⁻ 60,0	-F60 (-
Т а сисин		TBEI	∋B É	ភ ជ) ମୁ	Ц Ц		A
инте Mai		CTEC	2 Ke	9-1-8 1-1.8		0 .		
НИС		Ψ	r =9	I,36 0,75	.I, 35	0,55		
имене			B E		, т.,	~ .		
96 10	4 ⁰ H	ME	30 Ka		I, 32	.T, 32		
		ый	r =18		FL9'(, 67 <u>4</u>		
		щенн	E			<u>э</u>		
Ο.		ÓOFA	Кэв	6 9	, 04	,84		
		0	r=92	48 <u>+</u> 2 74+I	22 <u>+</u> I	58 + 0		•
	И	ий –	Ē	5,4	N.	້		
	ери					днее		· · .
	ગુન્ગ	MEN		ΗЩ		c pe		

Рис. 1. Схема экспериментальной установки.

1. Образец из обогащенного an. 2. Образец из естественного an.

3. Сторона обогащенного образца, облученная на циклотроне.

4. Экран при t° = 80°K с полюсными наконечниками из железа "Армко".

5. Магнитный экран, железо. 6. Полюса электромагнита.

7. Свинцовые коллиматоры.

Образцы 1 и - 2 припаяны ко дну сосуда с жидким гелием. Фотоумножители окружены экраном из пермаллоя толщиной 5 мм.

8

- Б.С.Джелепов и Л.К.Пекер "Схемы распада радиоактивных ядер", 1958г. Издательство Академии наук СССР.
- 2. R.L.Mossbauer. Zs.Phys. 151, 124 (1958). Zs. Naturforsh. 14a, 211 (1959)
- 3. И.Я.Барит, М.И.Подгорецкий, Ф.Л.Шапиро. ЖЭТФ, 38, 301 (1960).
- 4. R.V.Pound, G.A.Rebka, Jr. Phys.Rev.Lett. 3, 439 (1959).
- 5. R.V.Pound, G.A.Rebka. Jr.Phys.Rev.Lett. 4, 337 (1960).
- 6. T.E.Cranshaw, I.P.Schiffer, A.B.Whitehead. Phys.Rev.Lett. 4,163 (1960).
- 7. Handbuch der Phys. v.7 / 1956/.
- 8. М.В.Казарновский. ЖЭТФ, 38, 1652 (1960).
- 9. R.V.Pound, G.A.Rebka. Jr. Phys.Rev.Lett. 4, 397 (1960).
- Ф.Л.Шапиро "Элементарная теория эффекта Моссбауэра". Издание ФИАН им. П.Н.Лебедева, Москва, 1960 г.
- 11. P.P.Craig, D.E.Nagle. D.R.Cochran, Jr. Phys.Rev.Lett. 4, 561 (1960).
- 12. D.E.Nagle, P.P.Craig, W.E.Keller, Nature 186, 707 (1960).

Примечание при корректуре.

В недавно появившихся работах [11, 12] сообщается о наблюдении резонансного поглощения у -лучей 92 Кэв Zn⁶⁷ с источником и фильтром в виде окиси цинка