

В.С.Барашенков

P-540

НЕУПРУГИЕ ВЗАИМОДЕЙСТВИЯ П-МЕЗОНОВ С НУКЛОНАМИ ПРИ ЭНЕРГИИ Е=6,8 БЭВ Лис, Мир. 1961, 1961, 1, 1, р.М. В.С.Барашенков

НЕУПРУГИЕ ВЗАИМОДЕЙСТВИЯ П-МЕЗОНОВ С НУКЛОНАМИ ПРИ ЭНЕРГИИ Е=6,8 БЭВ

ా

. In t/8 at

Направлено в журнал 'Nucleor Physics'

Объединенный институт плерных исследований БИБЛИОТЕКА P-540

Аннотация

Результаты опытов с Э -мезонами сравниваются с расчетами по статистической теории. Наблюдается хорошее согласие в распределениях звезд по числу лучей и по импульсам рождающихся частиц.

Для объяснения угловых распределений учтены периферические столкновения. Экспериментальные данные возможно согласовать с теорией, если допустить, что сечение периферических столкновений составляет более половины от полного сечения всех неупругих процессов.

Обсуждается резонансное взаимодействие 🛛 🗇 -мезонов.

V.S. Barashenkov

1. Введение

В работах /1/ для объяснения экспериментальных данных по неупругому взаимодействию быстрых Э -мезонов с нуклонами была предложена модель центральных и периферических (ЛП) и (Л/) - взаимодействий. Для сечения неупругих периферических взаимодействий была получена нижняя оценка:

$$\sigma_{p} > (0, 2 \div 0, 3) \sigma_{in}$$

где $\mathcal{T}_{in} \simeq 20 \cdot 10^{-27} \text{ см}^2$ – полное сечение всех неупругих ($\mathcal{T}_{in}N$) – взаимодействий. Неоднозначность в значениях \mathcal{T}_{in} обусловлена в основном тем, что в работе²¹ часть положительно заряженных частиц не была идентифицирована как протоны или \mathcal{T}_{in}^{+} -мезоны. Поэтому экспериментальные значения угловой асимметрии заряженных \mathcal{T}_{in}^{-} -мезонов и протонов могли меняться в широких пределах:

$$A_{\pi} \equiv \vec{n}_{\pi} / \vec{n}_{\pi} = (1,1 \div 1,9)$$
; $A_{p} \equiv \vec{n}_{p} / \vec{n}_{p} = (0 \div 0,5)^{1/2}$

Недавно в Дубне была закончена часть опытов по взаимодействию *Л*-мезонов с фотоэмульсией при энергии E=6,8 Бэв. На основе строгих критериев отбора было выделено и проанализировано 530 случаев взаимодействия *Л*-мезонов с нуклонами. Значения угловой асимметрии $A = \vec{n} / \vec{n}$ для протонов и заряженных *Л*-мезонов удалось при этом определить с большей точностью, чем это было ранее сделано в работе^{/2/}.

В следующих разделах мы подробно рассмотрим результаты, полученные /3/. в работе

2. Сравнение со статистической теорией множественного

рождения

На рис. 1 приведены значения отношения среднего числа наблюдаемых на опыте звезд с различным числом лучей к теоретически рассчитанному:

1/ Далее мы будем использовать те же обозначения, что и в работах /1/. В частности, при принисла протонов, вылетающих в системе центра масс сталкивающихся П-мезона и нуклона соответственно в переднюю и заднюю полусферы /по отношению к вектору скорости первичного П-мезона/; пли пли-то же для заряженных П-мезонов. Систему центра масс сталкивающихся первичного П-мезона и протона для краткости будет обозначать далее как "система (Пр)". $N(n)_{exper.} / N(n)_{theor}$. Как видно, эксперимент и теория согласуются лучше, чем в случае (NN)-столкновений (ср. $^{/4/}$).

Экспериментальные значения среднего числа заряженных частиц, рождающихся в одном акте (ກາງ)- и (ການ) - столкновений при Е=6,8 Бэв

$$\overline{n}(\pi^{-}p) = 2,98 \pm 0,02;$$
 $\overline{n}(\pi^{-}h) = 2,98\pm0,02$

хорошо согласуются с теоретическими значениями

$$\overline{n}(\overline{n}-p) \simeq \overline{n}(\overline{n}-n) = 3^{2}$$

Для среднего числа заряженных \mathcal{N} -мезонов, рождающихся в одном акте ($\mathcal{N} \cdot \mathcal{N}$) - взаимодействия при E = 6,8 Бэв в пузырьковой пропановой камере, получено значение $\mathcal{N}_{\Pi} = 2,5^{-/6/}$, что также хорошо согласуется с значением, рассчитанным по статистической теории.

На рис. 2 и 3 приведены импульсные спектры заряженных \mathcal{T} -мезонов и протонов, рождающихся в (\mathcal{T} р) - столкновениях. Как экспериментальные, так и теоретические спектры частии, рождающихся в (\mathcal{T} -n) - столкновениях, практически не отличаются от соответствующих спектров для (\mathcal{T} -р)-столкновений.

Из приведенных данных видно, что в пределах ошибок опыта экспериментальные и теоретические импульсные спектры *П*-мезонов очень близки. Теоретическое значение среднего импульса $\overline{P_n} = 0,55$ Бэв/с хорошо согласуется с экспериментальным значением $\overline{P_n} = (0,53\pm0,03)$ Бэв/с.

Экспериментальный импульсный спектр протонов, рождающихся в неупругих (𝔐‑ℕ)-столкновениях, как видно из рис. 3, оказывается несколько более жестким, чем теоретический. Экспериментальное значение среднего импульса протонов

Р =(0,89+0,035) Бэв/с, соответствующее теоретическое значение равно 0,8Бэв/с

Как показали расчеты, импульсы частиц в звездах с двумя лучами в среднем всего лишь на 15% больше импульсов частиц в четырехлучевых звездах, что согласуется с экспериментальными данными работы^{/3/}.

^{2/} Это значение $n(\pi p)$ приблизительно на 2% выше чем значение, указанное на графике в работе /5/, что обусловлено тем, что в /5/ учтены (πp)события лишь с двумя и четырьмя лучами. Однако, если наблюдаемые на опыте распределения звезд по числу лучей и импульсам рождающихся частиц близки к рассчитанным по статистической теории множественного рождения, угловые распределения рождающихся частиц резко противоречат этой теории.

Так же, как и при меньших энергиях, угловые распределения вторичных частиц при энергии E=6,8 Бэв оказываются асимметричными относительно угла $\Theta = 1/2$, в системе (JIP). При этом экспериментальные значения угловой асимметрии заряженных JI -мезонов и протонов равны:

$$A_{\pi} \equiv \vec{n}_{\pi} / \vec{n}_{\pi} = 1,56 \pm 0,1;$$
$$A_{p} \equiv \vec{n}_{p} / \vec{n} \le 0,1 \pm 0,1$$

(эти значения близки к <u>средним</u> значениям, полученным при энергии 5 Бэв: A = 1,47; A_D =0,23).

Учитывая закон сохранения момента количества движения, в статистической теорни Ферми можно получить анизотропные угловые распределения рождающихся частиц; однако, неизвестно, каким образом в рамках этой теории можно объяснить асимметрию угловых распределений.

3. Учет периферических столкновений

Как и в работе /1/, для объяснения угловых распределений рождающихся частиц рассмотрим периферические ($\Im \pi$) и ($\Im \lambda$) - столкновения.

На рис. 4 приведены значения угловой асимметрии протонов A_p , вычисленные для различных значений параметра $\xi = \sigma_p / \sigma_{in}$ (σ_{in} - полное сечение всех неупругих ($\pi^- p$)-взаимодействий). Для каждого значения ξ возможен целый интервал значений A_p в зависимости от выбора значений коэффициентов ξ_i и ξ_2 , определяющих соответственно сечения периферических ($\pi\pi$) и (πN)-взаимодействий (см.¹¹). Заштрихованные области соответствуют всем возможным значениям коэффициентов ξ_i и ξ_2 . Для фиксированного значения ξ величина A_p возрастает с ростом ξ_i для варианта без изобары и уменьшается – для варианта с изобарой. (При $\xi = O$ оба варианта совпадают). Из сравнения с эколериментальным значением Ар следует, что 50,55 или 5 р > 0,655 в зависимости от того, рассматривается вариант с изобарой или вариант без изобары.

Следует отметить, что авторы¹³¹ считают значение 0,2 крайним верхним значением A_p . Истинное значение A_p , по их мнению, не превышает 0,1³¹ Вычисление угловой асимметрии \mathcal{J}_{I} -мезонов A_{II} является значительно более сложной задачей, так как величина этой асимметрии определяется параметрами, точная величина которых в настоящее время неизвестна. Расчеты показали, что, выбирая соответствующим образом значения этих параметров, экспериментальную величину A_{II} можно объяснить при тех же значениях сечения \mathcal{J}_{P} , что и для нуклонов. При этом множественность рождающихся частиц и их энергетические распределения оказываются близ кими к экспериментальным, а использованные при расчетах значениях параметров остаются в области разумных значений (ср. ¹¹¹). Для более определенных заключений необходимо значительно более детальное рассмотрение.

В связи с большой величиной сечения периферических взаимодействий при (ΠN)-столкновениях можно думать, что и в случае (NN)-столкновений сечение O_p в действительности окажется выше нижней оценки $O_p > 0.2 \sigma_{in}^{(1)}$, которая следует из экспериментальных данных $^{/8/}$. В этом случае требуется уточнение экспериментальных данных.

4. О резонансном (ЭПТ)) - взаимодействии

В ряде работ (см., например, $^{9/-/12/}$) обсуждается влияние на расчеты по статистической теории возможного резонансного ($\Im \pi$) – взаимодействия. С теоретической точки зрения идея такого взаимодействия представляется очень привлекательной и весьма правдоподобной. Однако, вплоть до E = 7 Бэв все известные в настоящее время экспериментальные данные по множественности рождающихся частиц и их энергетическим спектрам возможно объяснить и без учета резонансного ($\Im \pi$)-взаимодействия $^{13/}$. В рамках статистической теории Ферми

³⁷ Я благодарен В.В.Глаголеву и К.Д.Толстову за многократные обсуждения экспериментальных данных работы /3/.

учет такого взаимодействия значительно усложняет расчеты и не дает лучшего согласия с опытом. Например, в (π - ρ)-столкновении при E = 5 Бэв в среднем рождается 4,3±0,1 частиц²² (заряженных и нейтральных), что хорошо согласуется с рассчитанным по статистической теории значением 4,2. Учет резонансного ($\pi\pi$)-взаимодействия дает значения 4,7 и 5,1 соответственно для вариантов Дайсона и Такеда.(Macca π -мезонной изобары в обоих случаях считалась равной 0,47 массы нуклона). Аналогичная ситуация имеет место при E=7 Бэв.

Не улучшает согласия с опытом учет резонансного (🔊 Г)-взаимодействия и в случае (NN)-столкновений.

В работе^{/11/} высказывается предположение, что такие выводы обусловлены грубостью статистической теории. Но это как раз и означает, что в пределах точности современной теории нет необходимости учитывать резонансное ($\Im \pi$)-взаимодействие при анализе ($\Im N$) - и (NN)-столкновений. Это относится особенно к области энергий вблизи 1 Бэв, где статистическая теория применима с большими оговорками.

Однако, по-новому ставит вопрос о роли резонансного взаимодействия мезонов учет периферических взаимодействий. При периферических столкновениях рождается несколько меньше число частии, чем при центральных столкновениях (ср. таблицу 11 из^{/1/}). Возможно, это скомпенсирует увеличение множественности вызванное учетом резонансного ($\Im n$)-взаимодействия. Ответ можно получить после того как будут закончены подробные численные расчеты.

> Рукопись поступила в издательский отдел 17 мая 1960 года,

<u>Литература</u>

8

2. G. Maenchen, W.B. Fowler, W.H. Powell, R.W. Wright, Phys.Rev. 108, 850 (1957).

 В.А.Беляков, Ван Шу-фень, В.В.Глаголев, Н.Далхажав, Р.М.Лебедев, Н.Н.Мельникова, В.А.Никитин, В.Петржилка, В.А.Свиридов, М.Сук, К.Д.Толстов. ЖЭТФ (будет опубликовано).

4. V.S. Barashenkov, V.M. Maltsev, E.K. Mihul, Nucl. Phys. 13, 583 (1959).

5. V.S. Barashenkov, Nuovo Cimento 14, 657 (1959).

6. Ван Ган-чан и др. (будет опубликовано).

- 7. Н.П.Богачев, С.А.Бунятов, И.М.Граменицкий, Ю.П.Мереков, В.М.Свиридов, В.А.Ярба. ЖЭТФ (в печати).
- 8. Н.П.Богачев, С.А.Вунятов, И.М.Граменицкий, В.Б.Любимов, Ю.П.Мереков, М.И.Подгорецкий, В.М.Свиридов, Д.Тувдендорж. ЖЭТФ, <u>37</u>, 1225 (1959).

9. E. Eborle, Nuovo Cimento, 8, 610 (1958).

10. В.С.Барашенков, В.М.Мальцев. ЖЭТФ, <u>37</u>, 884 (1959).

11. В.И.Рускин, П.А.Усик. ЖЭТФ, <u>38</u>, 929 (1960).

12. R. Hagendorn, Nuovo Cimento, 15, 246 (1960).

13. V.S. Barashenkov, Nuovo Cimento, 14, 656 (1959).

В.С.Барашенков. "Неупругие взаимодействия быстрых частиц", доклад на 2-й всесоюзной конференции по теории поля и элементарным частицам в Ужгороде, май 1960 г. /будет опубликовано в материалах конференции/.

Рис. 1. Отношение наблюдаемого на опыте числа звезд с *n* -лучами к рассчитанному по статистической теории. Нечетное число лучей - (*T*-*p*)-столкновение; четное число лучей - (*T*-*n*) - столкновение. Приведены ошибки экспериментальных данных.

Рис. 4. Угловая асимметрия протонов $A_p = \tilde{h}_p / \tilde{h}_p$ в системе центра масс сталкивающегося \tilde{J} -мезона и протона. Штриховкой отмечена область возможных значений A_p . Горизонтальная штриховка - вариант с изобарой, вертикальная штриховка - вариант без изобары.