ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

493

H-76

Лаборатория ядерных проблем

P-493

новые изотопы *Тт*, *J*² и *Pt*

Содержание

- Абдуразаков А.А., Громов К.Я., Далхсурен Б., Джелепов Б.С., Левенберг И.Ю., Мурин А.Н., Норсеев Ю.В., Покровский В.Н., Чумин В.Г., Ютландов И.А. "Цепочка распада Уб" 50" Е."
- 2. Баранов В.И., Громов К.Я., Джелепов Б.С., Зыонг Чонг Бай, Малышева Г.В., Хотин Б., Чумин В.Г. "Новые изотопы Эс

H Pt"

А.А.Абдуразаков, К.Я.Громов, Б.Далхсурен, Б.С.Джелепов, И.Ю.Левенберг, А.Н.Мурин, Ю.В.Норсеев, В.Н.Покровский, В.Г.Чумин, И.А.Ютландов

ఫ

618/10 m.

101 3

ЦЕПОЧКА РАСПАДА

Ув °64 — Тт °64 — Ег °64

ر. د .

Объединенный институт пдерных исследований БИБЛИОТЕКА

P-493

Среди продуктов реакции расщепления T_{CI} установлено существование изотопа \mathcal{YB}^{164} / $\mathcal{T}_{1/2}$ = 75 ± 2 мин/, при распаде которого образуется неизвестный ранее изотоп T_m^{164} / $\mathcal{T}_{1/2}$ = 2±0,5 мин/. \mathcal{T}_m^{164} превращается в стабильный \mathcal{E}_{c}^{164} с испусканием позитронов с граничной энергией 2940±20 Кэв и \mathcal{Y} - лучей 91,5 ±0,1 Кэв и 211 ± 2 Кэв.

В 1955 году Нервик и Сиборг^{/1/} среди продуктов реакции расщепления T_{a} протонами энергии 340 Мэв обнаружили изотоп \mathcal{YB} , обладающий позитронной / $\mathcal{E}_{s^+} = 2.4$ Мэв/ активностью с $T_{i/2} = 75$ мин. Позднее аналогичные результаты / $T_{i/2} = 75$ мин, $\mathcal{E}_{s^+} = 2.9$ Мэв/ получили Калямин и др.^{/2/}. В этих опытах не удалось достоверно установить массовое число указанного изотопа \mathcal{YB} . Используя косвенные соображения, Нервик и Сиборг^{/1/} предположили, что массовое число обсуждаемого изотопа A = 167, тогда как Калямин и др.^{/2/} склонились к предположению, что A = 161.

Мы попытались получить более детальные сведения о распаде Ув /75мин/. Препарат Ув получался как продукт реакции расщепления Та при облучении протонами энергии 680 Мэв. Танталовая мишень весом ~5 г облучалась на внутреннем пучке синхроциклотрона Объединенного института ядерных исследований /Дубна/ в течение 15-20 мин. Сумма редкоземельных элементов отделялась от Ta и продуктов расщепления и деления путем соосаждения с малым количеством / ~1 мг/ фторида лантана. Осадок фторидов растворялся в смеси борной и азотной кислот, после чего с помощью аммиака осаждались гидроокиси редкоземельных элементов. Гидроокиси растворялись в одной капле соляной кислоты 1 : 4. Из полученного раствора редкоземельные элементы сорбировались небольшим количеством катионита Dower-50. Разделение их производилось хроматографически /3,4/ на колонке, заполненной катионитом **Dowex-50**, при температуре 85, С. Длина колонки 10 см, диаметр - 2 мм; размер зерен смолы 10-15 µ . В качестве элюента использовался лактат аммония при рН =4,5. При разделении всей группы редкоземельных элементов равномерность вымывания различных фракций обеспечивалась непрерывным изменением концентрации элюента. Длительность химических операций /с конца облучения до момента выделения 96/ составляла

ι.

около 2 часов. Источники для *в*- и *у*-спектрометров приготовлялись путем испарения капель элюента, содержащих *Ув*, на алюминиевой фольге.

Метод получения препаратов \mathcal{YB} неизбежно приводил к тому, что в исследуемом образце, наряду с \mathcal{YB} /75 мин/, присутствовали и другие изотопы \mathcal{YB}^{167} /18 мин/, \mathcal{YB}^{166} /58 час./, \mathcal{YB}^{169} /30,6 дн./ и их дочерние изотопы Tm^{167} /9,6 дн/ и Tm^{166} /7,7 час /. Это обстоятельство, естественно, затрудняло изучение спектров \mathcal{YB} /75 мин/.

Были изучены *у*-, *β*⁺ и *e*⁻ - спектры. Для этого были использованы *β*-спектрометр с однородным магнитным полем / разрешающая способность на К-линии перехода 661 Кэв *Cs*¹³⁷ 0,8%/, *β* - спектрограф с постоянным магнитным полем и фотографической регистрацией и сцинтилляционный *у* спектрометр с многоканальным анализатором /число каналов - 128, среднее мертвое время ~ 80 *мсек*, запоминающее устройство на потенциалоскопе/.

Экспериментальные результаты изучения цепочки распада, начинающейся с Ув/75 мин/, представлены в таблице 1.

В спектре конверсионных электронов были обнаружены линии переходов 91,5 Кэв и 211 Кэв, в У-спектре - линия 90 Кэв и очень слабая линия

Энергия Кэв	Интенси тронов	$E_{\gamma} = 2,94$	енсивность комп Мэв принята	оненты пози- за 100/
	8	K	L	м
У -переходов 91,5 ±0,1	8 <u>+</u> 3	-	$14 \pm 3^{x/}$	5+_1
211 <u>+</u> 2	слаб.	0,2	0,1	слаб.
позитронов		· · · · · · · · · · · · · · · · · · ·		
2940 <u>+ 20</u> 1 300 4 00		100		

Таблица 1.

 X^{\prime} Отношение $(L_{r} + L_{I}): L_{Q}$

равно 1,08.

- 4 -

210 Кэв. Энергия перехода 91,5 Кэв и относительные интенсивности
(L_I+L_I): L_I определены на β-спектрографе с постоянным магнитным полем. Линии перехода 211 Кэв на нем зарегистрировать не удалось.
Использованные приборы, к сожалению, не позволяли уверенно зарегистрировать
К-линию перехода 91,5 Кэв.

Интенсивность β^{*} -спектра на всех участках спадала с $T'_{/2} = 75\pm 2$ мин Анализ методом Ферми показывает, что граничная энергия позитронов составляет 2940 ± 20 Кэв и на участке спектра выше 1300 Кэв нет отклонений от формы разрешенных β -спектров. Такие отклонения существуют при меньших энергиях и если предположить, что они связаны с наличием второй компоненты в β^{*} -спектре, то ее граничная энергия равна 1300 ± 100 Кэв, а ее интенсивность составляет около 4% от интенсивности жесткой компоненты β^{*} -спектра /рис. 1/.

Сравнивая соответствующие интенсивности, мы получили коэффициент конверсии на *L*-оболочке для перехода 91,5 Кэв *Lsu,s* = 1,75<u>+</u>1. Это эначение удовлетворительно согласуется с теоретическим ^{/5/} значением 2,16 для перехода мультипольности Е2 и сильно расходится с другими наиболее близкими значениями 0,054 /E1/ и 0,45 /M1/. Отношение ($L_1 + L_2$): L_2 также хорошо совпадает с теоретическим значением 1,05 для перехода мультипольности Е2. Далее, отношение /2.3/ энергий двух обнаруженных

У - переходов хорошо совпадает с теоретическим значением /2.33/ для переходов между первыми возбужденными уровнями ротационной полосы основного состояния четно-четных ядер.

Таким образом, и мультипольность, и отношение энергий переходов говорили в пользу предположения о том, что мы наблюдаем переходы между уровнями четно-четного ядра $/\mathcal{E}z^{164}$ или $\mathcal{E}z^{162}/.$ Энергия перехода 91,5 Кэв в пределах погрешности совпадает с энергией перехода 91,3 Кэв, обнаруженного в $\mathcal{E}z^{164}$ при β -распаде $Ho^{164}/6/.$ Предположение A = 164 согласуется и с полуэмпирическими данными о массах ядер $^{/7,8/}$, если отнести позитронное излучение к распаду Tm^{164} . Согласно упомянутым таблицам, разность масс $\frac{96}{2}^{164}$ и Tm^{164} составляет 1232 Кэв и 1301 Кэв, а разность масс Tm^{164} и $\mathcal{E}z^{164}$ – 3785 Кэв и 3097 Кэв, соответственно.

- 5 -

Итак, наши результаты позволяли предположить существование цепочки распада $\mathcal{Y6}^{164}$ /75 мин/ \mathcal{Tm}^{164} \mathcal{Ee}^{164} . Такая идентификация согласовывалась и с попытками обнаружения конверсионных линий возможных дочерних активностей $\mathcal{Y6}$ /75 мин/. Для этого спустя 1,5 - 2 часа после выделения фракции $\mathcal{Y6}$ /3а это время $\mathcal{Y6}^{167}$ распадался нацело/ из нее выделялся \mathcal{Tm} . В очищенном препарате $\mathcal{Y6}$ искались наиболее заметные и удобные для наблюдения линии $\mathcal{Tm}^{167, 166, 165, 163, 161}$. Результаты поисков позволяют практически полностью отвергнуть возможности A = 167, 166, 165, 163 или 161.

Для получения прямых доказательств существования T_m^{164} мы прежде всего попытались с помощью сцинтилляционного **%**-спектрометра обнаружить присущую ему активность в дочернем T_m , выделенном из $\mathcal{Y}_{\mathcal{B}}$. Эти поиски не дали достоверных результатов, что было истолковано как следствие малости периода полураспада T_m^{164} /с момента появления $\mathcal{Y}_{\mathcal{B}}$ в хромотограмме до начала измерения дочернего T_m проходило не менее 15 мин/. Попытки более быстрого разделения $\mathcal{Y}_{\mathcal{B}}$ и T_m также не привели к успеху, так как в этом случае разделение было неполным.

Поэтому мы перешли к установлению накопления Tm^{164} в 98. Для этой цели с переднего фронта 98 пика хроматограммы разделения 98 и Tm бралась капля 98 и прослеживалось изменение интенсивности 3^{--} -линии 510 Кэв /пика аннигиляционного излучения/ в зависимости от времени. То же самое делалось в другой серии опытов с 3^{-} - линией 90 Кэв. Измерения начинались в обоих случаях спустя 2-3 минуты после выхода капли из колонки.

При измерении у 510 Кэв благоприятствующими обстоятельствами являлись отсутствие заметного β^+ -излучения у других изотопов \mathcal{YB} , присутствующих во фракции / \mathcal{YB}^{166} , \mathcal{YB}^{169} , \mathcal{YB}^{167} , последний к тому же распадался к моменту разделения \mathcal{YB} и T_m / и большая интенсивность

γ 510 Кэв в спектре 96. При измерении γ 90 Кэв приходилось учитывать накопление γ 80 Кэв, принадлежащей 96¹⁶⁶ и 7m¹⁶⁶, поскольку γ 80 Кэв и γ 90 Кэв сцинтиляционным спектрометром не разрешаются.

х⁷ С помощью сцинтиляционного у спектрометра эту задачу решить трудно из-за наличия *Тт*¹⁶⁶, обладающего сложным спектром.

- 7.-

Накопление у 80 Кэв было исследовано ранее ^{/9/} и проконтролировано в наших опытах. Результаты, полученные для у 90 Кэв, хорошо совпадают с результатами для у 510 Кэв.

Рис. 2. Начальный участок кривой изменения интенсивности У-линии 510 Кэв. По оси абсцисс - время с момента разделения Ув и Тт. По оси ординат-логарифм интенсивности линии. — экспериментальная кривая /правая шкала/. х—х - результат вычитания /левая шкала/.

На рис. 2 изображен результат одного из опытов по измерению накопления у 510 Кэв. Изображен только начальный участок /измерения длились 5-7 часов/, так что период 75 мин. прослеживался хорошо/. Отчетливо видно накопление; период дочернего Tm^{164} , получаемый отсюда, равен 2 мин.

- 8

- 9 -

Среднее /более чем из 10 определений/ значение периода полураспада Tm¹⁶⁴ составляет 2,0±0,5 мин. По нашим данным мы могли судить также о наличии позитронного излучения у Ус 164. Оказалось, что /если оно вообще существует/ его интенсивность не превышает 10% от общей интенсивности позитронного излучения. Сравнительно невысокая точность этой оценки объясняется невозможностью точно указать момент разделения Ув и Тт в хроматографической колонке. Помимо у-линий 91,5 и 211 Кэв, в наших опытах не было замечено интенсивных / > 10% интенсивности позитронного излучения/ линий, которые могли бы относиться к Ув 164 или Тт 164. Интенсивность перехода 91,5 Кэв /Е2/ составляет не более 40% числа позитронов, испускае-*Tm* ¹⁶⁴. Все это, видимо, говорит о том, что весьма знамых при распаде чительная часть распадов Ув¹⁶⁴ и Тт¹⁶⁴ идет на основные состояния /см.рис. 3/. Оценивая величины 42 для этих переходов, получим для каждого из них lg ft ≤ 5 , что явно указывает на разрешенный характер переходов.

Это, казалось бы, находится в противоречии с возможными значениями спина $_{gg}Tm \frac{164}{95}$. Действительно, согласно теоретическим правилам $^{/10,11/}$, обычно хорошо выполняющимся, спин нечетно-нечетного ядра $_{gg}Tm \frac{164}{95}$ должен быть равен $/\Omega\rho \pm \Omega_n/$, где $\Omega\rho$ и Ω_n - спины нечетного протона и нейтрона, соответственно. Согласно схеме Нильсона $^{/12/}$ $\Omega_P = \frac{1}{2}$ + и $\Omega_n = \frac{5}{2}$ - , так что спин $Tm \frac{164}{164}$ может составлять 2- или 3-. Выбор между этими значениями на основании правила Галлахера и Мошковского $^{/13/}$ приводит к значению 3-. Ни одно из этих значений не согласуется с разрешенным характером переходов.

Однако, известно, что для 95 нейтрона осуществляется состояние 5/2+, расположенное вблизи состояния 5/2- /для \mathcal{D}_{g5}^{161} и \mathcal{E}_{2}^{163} , см. (14,15//. Известно, далее /14,15/, что для $\mathcal{Z} = 69$ реализуется состояние 1/2+, но по мере уменьшения числа нейтронов к нему все ближе подходит состояние 7/2+. Так, для $T_{m} \frac{171}{102}$ энергетическое расстояние между основным состояние 7/2+. 1/2- и возбужденным 7/2+ составляет 636 Кэв, для \mathcal{D}_{g5}^{169} - 316 Кэв, для \mathcal{D}_{g5}^{169} - 179 Кэв. Таким образом, не исключена возможность, что в $T_{m} \frac{164}{164}$ последний протон находится в состояние 7/2+. Тогда $/\mathfrak{L}_{\rho} \pm \mathfrak{L}_{n}/\mathfrak{L}_{00}$

- 10 -

может составлять 1+ или 6+, а по /13/ следует выбрать 1+. Значение 1+ хорошо согласуется с разрешенностью переходов.

Вопрос нуждается, естественно, в дополнительном исследовании. В частности, в настоящее время нами проводятся поиски более слабых у -переходов, принадлежащих Ув¹⁶⁴ или Tm¹⁶⁴.

Литература

1. Nervik W.E., Seaborg G.T. Phys. Rev., 97, 1092. (1955).

- 2. Калямин А.В., Левенберг И.Ю., Яковлев В.А., Атомная энергия, <u>5</u>, 582 /1959/.
- 3. Mayer Z.W., Freiling E.C. Journ. Amer. Chem. Soc., 75, 5647, (1953).
- Преображенский Б.К., Лилова О.М., Добронравова А.М., Тетерин Е. Журнал неорганической химии, <u>1</u>, 2294 /1956/.
- 5. Слив Л.А., Банд И.М. "Таблицы коэффициентов внутренней конверсии учизлучения, ч. 1 К-оболочка, АН СССР, 1957, ч. 2 L -оболочка, АН СССР, 1958.
- 6. Mihelich J.W., Harmatz B., Handley T.H. Phys. Rev., 108, 989, (1957).
- 7. Riddel J. 'A table of Levy's empirical atomic masses', Chalk River, Ontario, CRP-654, (1957).

8. Cameron A.G.W. 'A revised semi-empirical atomic mass formula' Chalk River, Ontario, CRP-690,(1957).

9. Барановский В.И., Покровский В.Н., Изв. АН СССР, сер.физ., 23,819,/1959/

10. Bohr A., Mottelson B.R., Kgl. Danske Vidensk. Selsk. Medd., 27, n. 16, /1953/.

11. Пекер Л.К. Изв.АН СССР, сер.физ. 21, 1029 /1957/.

12. Nilsson S.G., Kgl. Danske Vidensk. Selsk., Mat.-Fys. Medd., <u>29</u>, n. 16, (1955).

13. Callagher C.J., Moszkowski S.A., Phys. Rev., 111, 1282, (1958).

14. Harmatz B., Handley T.H., Mihelich J.W. Phys. Rev., <u>114</u>, 1082, (1959).

15. Mottelson B.R., Nilsson S.G., Mat.-Fys. Scr., Dan. Vid. Selskab, I. n 8 (1959).

- 11 -

P-493

В.И. Баранов, К.Я. Громов, Б.С. Джелепов, Зыонг Чонг Бай, Т.В. Малышева, В.А. Морозов, Б.А. Хотин, В.Г. Чумин

ó

новые изотопы Jz¹⁸⁴ "Pt¹⁸⁷

Иридий 184

С помощью *β* -спектрометра типа Даниша изучался спектр конверсионных электронов фракции иридия, образующейся в реакции глубокого расщепления при бомбардировке золота протонами с энергией 660 Мэв. Из облученной золотой пластинки, весом 1-2 г, выделялся иридий без носителя в радиохимически чистом виде /1/.

В конверсионном спектре иридия было обнаружено несколько линий, интенсивность которых спадала с периодом полураспада $3,1\pm0,3$ часа. Эти линии идентифицированы как L 120, M-120; K-264 L -264, M-264 и K-391, L -391. Экспериментальные данные об этих линиях сведены в таблице 1. Измеренный спектр иридия /серия 1/ приведен на рис. 1. L, M и N линии g перехода 120 Кэв изучались дополнительно на β -спектрометре с двойной фокусировкой /типа $\pi\sqrt{2}$ /, обладающем лучшим разрешением /2/. Полученные данные помещены в таблице 11. Экспериментальный спектр приведен на рис. 1 /а/.

По разности энергий между \mathcal{L}_{m} - 119,7 и \mathcal{N} -119,7 и между К-264 и М-264 можно заключить, что переходы происходят в ядре осмия. Отношение $\mathcal{K}_{\mathcal{L}}$ для \mathcal{J} -переходов 264 Кэв и 391 Кэв позволяют предположить у этих переходов мультипольность типа Е2. Отношение $\mathcal{L}_{i} + \mathcal{L}_{m} / \mathcal{L}_{m}$

Г-перехода 120 Кэв /таблица 11/ не противоречит приписанию этому переходу мультипольности типа E2 /хотя нельзя исключить и E_3 , E_4 и E_5 /. Если предположить, что **Г**-переходы 264 Кэв и 120 Кэв идут в каскаде, то отношение энергий уровней 384 Кэв и 120 Кэв /3,2/ весьма близко к теоретическому для ротационных уровней основного состояния четно-четных деформированных ядер. Таким образом, полученные данные позволяют предположить, что наблюдаемые **Г**-переходы происходят в четно-четном ядре осмия.

Период полураспада 3,2 часа был обнаружен у $\Im z^{190}$ /3/. Но у $\Im z^{190}$ энергии первых трех у -переходов равны: 186, 356 и 401 Кэв. Конверсионных линий этих переходов мы не обнаружили. Следовательно, найденные нами у -переходы не принадлежат $\Im z^{190}$.

Из графика зависимости энергий первых уровней деформированных четночетных ядер от числа нейтронов /рис. 2/ можно сказать, что первый вращаТаблица I.

Экспериментальние данные о конверсионних линиях, интенсивность которых спадает с периодом полураспада 3,I часа.

		i			- 1	6 -			
Тип	пере- хода				(E ₂)		ļ	(E ₂)	
14	Teop.(E2)				2		1	3,1	
K	Экспер.				I,2-I,8			4 , 3	
Έ	Кэв		C (0-0 (0-1-		264,0 <u>+</u> I			391,2 <u>+</u> 1	
Иденти-	фикация	۲]	M	K)	7	M	K	۲ ۲	
T_ //	4AC.	3, I <u>+</u> 0, 3	3, I+0,4	3, I+0, 3	3, 3+0, 5	ŧ	3,3±0,7	t	
OTHOCHT.	интенсивн.	4,2±0,35	I,8 <u>+</u> 0,2	I,0 %	0,7 <u>+</u> 0,I5	0,25	0,26	0,06	
Ec	Кэв	I07,4	117,4	I89,8±0,4	252,2±0,5	261,3±0,4	317,3 <u>+</u> I	378,8 <u>+</u> I	
Нр	rayċc.cm.	II62	I220	I600	I68I	I932	2175	2430	

Таблица П.

Экспериментальные данные о Ц, М и N линиях 8 -перехода 120 кэв, полученные на /3 -спектрометре с двойной фокусировкой. 1

_	Ч	H,	OTHOCHT.	Идентиф	N- H	414	# //m	Тип
	raycc.cw	KaB	интенсивн.	Кация	gen Ka	эксперии.	reoper.(E2)	перехо- да.
	II60,8	I07,2	I,I5 <u>+</u> 0,25	L, +L	'n		•	•
	II70,3	I08,8	I,0	Ъш	TTO 740 3	0.9-1.4	I.3	(E2)
	1218,I	117 , 05	0,7+0,15	R	-60-60++) • •	
	1230,0	119 , 13	0,25 <u>+</u> 0,15	2			• .	
						:		•
-								

инсти

egasse

2

й

111

06

'AYCH

БИ

17

618/10 r,...

тельный уровень 120 Кэв может принадлежать 76 O_s ¹⁸⁴ или 76 O_s ¹⁸². Против массы 182 говорит тот факт, что при многократном выделении O_s из фракции J_2 не было обнаружено активности с периодом полураспада 21-24 часа, принадлежащей O_s ¹⁸² /4/ /рис. 3/. Также при измерении на 100-канальном сцинтилляционном γ -спектрометре не найдено γ - излучения, принадлежащего O_s ¹⁸² /5/.

На основании полученных данных мы предлагаем схему распада \Im г ¹⁸⁴, представленную на рис. 4.

Отметим, что если принять эту схему, то относительные интенсивности переходов 120 Кэв, 264 Кэв и 391 Кэв, подсчитанные из интенсивностей линий конверсионных электронов, в пределах точности опытов оказываются примерно одинаковыми / \mathcal{I}_{Π} -120 : \mathcal{I}_{Π} - 264: \mathcal{I}_{Π} - 391 \approx 13 : 15 9/. Это можно понять, если предположить, что распад \mathcal{I}_{2} ¹⁸⁴ происходит главным образом на какой-то /не ротационный/ уровень Os ¹⁸⁴ с большим спином. Аналогичные случаи наблюдаются у соседних ядер \mathcal{I}_{2} ¹⁹⁰ \mathcal{I}_{3} \mathcal{O}_{3} ¹⁹⁰ \mathcal{I}_{4} возбуждается изомерное состояние. Действительно, при многократном выделении Os из фракции \mathcal{I}_{2} наблюдается активность с периодом полураспада около 20 мин /рис. 3/. Может быть этот период полураспада и связан с изомером Os ¹⁸⁴.

Кроме указанных выше линий во фракции J_z наблюдалось много линий, принадлежащих другим изотопам J_Z :

 Эг
 186
 У - переходы
 137, 297, 435 Кэв
 Т_{//2}=18±2

 Эг
 185
 У - переход
 254 Кэв.
 Т_{//2}=15±1 ч.

 Эг
 188
 У - переход
 156 Кэв.

Платина 187

Для определения периода полураспада платины 187 из облученного на синхроциклотроне золота протонами той же энергии выделялась фракция

18 -

платины /1/, из которой, затем, через равные промежутки времени / $\Delta t = 4$ часа/ выделялся дочерний иридий. Спектр конверсионных электронов дочернего иридия измерялся на магнитном β -спектрометре с двойной фокусировкой /типа $\pi \sqrt{2}$ /. Относительное количество образующегося дочернего иридия 187 определялось по интенсивности конверсионной λ -линии

 $E_r = 90,5$ Кэв /6/ с учетом химического выхода и полноты нанесения на мишень. Определенный период полураспада платины 187 составляет 2,0±0,4 ч. Для контроля определялся период полураспада известного изотопа платины Pt^{186} по интенсивности конверсионной L -линии $E_r = 137$ Кэв, принадлежащей $\Im z^{186}$ /4/, измеряемой в различных преператах дочернего иридия. Полученный период полураспада Pt^{186}_{ss} , равный 2,5±0,3 часа, хорошо согласуется с данными Смита и Холлендера /7/. Конверсионные линии $\Im z^{185}$ в спектре дочернего иридия не найдены.

Выводы

1. Обнаружен новый изотоп $\Im r^{184}$ с периодом полураспада 3,1 + 0,3 часа.

Приводится предполагаемая схема распада.

Найден новый изотоп Pt¹⁸⁷ с периодом полураспада
 2,0 <u>+</u>0,4 часа.

Литература

- 1. А.К. Лаврухина, Т.В. Малышева, Б.А. Хотин, Л.Н. Крюкова, В.В. Муравьева. Х ежегодное совещание по ядерной спектроскопии в Москве, 1960 г.
- 2. И.М. Беккерман, Б.А. Гуменюк, И.С. Днепровский. " *в* -спектрометр типа БПП", Москва, ВИНИТИ, 1959 г.

3. T.C. Chu. Phys. Rev., 79, 582, (1950).

- 4. D. Strominger, J.M. Hollander, G.T. Seaborg. Rev. Mod. Phys., <u>30</u>, 585, 1958.
- 5. Ю.А.Сурков, Г.М.Чернов, А.К. Лаврухина, З.М. Хромченко. Х ежегодное совещание по ядерной спектроскопии в Москве, 1960 г.
- 6. R.M. Diamond, J.M. Hollander, Nucl. Phys., 8, 143, 1958.
- 7. W.G. Smith, J.M. Hollander. Phys. Rev., 98, 1258, 1955.

- 19 -

- 20 -

Экспериментальный спектр фракции $\mathcal{J}_{\boldsymbol{\tau}}$. Закрашенные линии относятся к $\mathcal{J}_{\boldsymbol{\tau}}^{\boldsymbol{d}_{\boldsymbol{v}}}$. /а/ - участок спектра, исследованный на спектрометре с двойной фокусировкой /типа $\mathcal{I}_{\boldsymbol{v}}$.

Рис. 2. График зависимости энергий первых уровней деформированных четно-четных ядер от числа нейтронов 🔊 .

Рис. 4. Схема распада

Jr ¹⁸⁴.