ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

МАТЕМАТИЧЕСКИЙ ИНСТИТУТ им. В.А.СТЕКЛОВА АКАДЕМИИ НАУК СССР

P-449

В.С. Владимиров

ЛЯП Л.И. Лапидусу

О ДВОЙНОМ СПЕКТРАЛЬНОМ ПРЕДСТАВЛЕНИИ АМПЛИТУДЫ ФЕЙНМАНА ДЛЯ ДИАГРАММЫ ЧЕТВЕРТОГО ПОРЯДКА В.С. Владимиров

О ДВОЙНОМ СПЕКТРАЛЬНОМ ПРЕДСТАВЛЕНИИ АМПЛИТУДЫ ФЕЙНМАНА ДЛЯ ДИАГРАММЫ ЧЕТВЕРТОГО ПОРЯДКА

1. В недавних работах Мандельштама [1] и Тарского [2] было установлено, что амплитуда Фейнмана \mathcal{F} , соответствующая общей диаграмме четвертого порядка /рис. 1/ и рассматриваемая как функция двух инвариантов $\mathbf{S} = (P_1 + P_2)^2$ и $\mathbf{t} = (P_1 + P_3)^2$, допускает двойное спектральное представление вида

$$\mathcal{F}(s,t) = \int_{\ell_{1}}^{\infty} \int_{\ell_{2}}^{\infty} \frac{\rho(s',t') ds' dt'}{(s'-s)(t'-t)}.$$
 (1.1/

где спектральная функция ho и пороги ℓ , и ℓ_2 - вещественны.

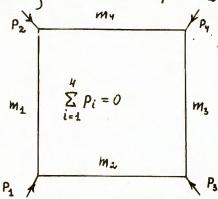


Рис. 1.

х/ Под аналитичностью мы понимаем однозначность и голоморфность.

Область указанного вида рассматривается, конечно, на том листе римановой поверхности продолженной функции $\mathcal F$, где она принимает положительные значения при $\mathcal S < \ell_1$ и $\ell < \ell_2$. Такие области в физической литературе иногда называют физическими листами.

В методе Мандельштама [1] явно вычислялась мнимая часть амплитуды \mathcal{F} , после чего аналитические свойства последней усматривались непосредственно. Им получено также явное выражение для спектральной функции \mathcal{F} и приведены ограничения на массы, при которых представление /1.1/ имеет место.

Другим методом представление /1.1/ было доказано в работе Тарского [2] при тех же ограничениях на массы, что и у Мандельштама. Тарский, исходя из параметрического представления амплитуды Фейнмана, изучает структуру её /комплексных/ особенностей. При этом он опирается на результаты работы Карплюса, Зоммерфильда и Уичмена [3], где исследованы вещественные особенности функции $\mathcal F$. Оказывается, что при упомянутых выше ограничениях на массы, функция $\mathcal F$ аналитична на физическом листе. Поэтому для получения представления /1.1/ в этом случае остается дважды применить теорему Коши. В этой схеме доказывается существование спектральной функции $\mathcal F$ ее явное аналитическое выражение не вычисляется.

В этой работе, не основе параметрического представления амплитуды \mathcal{F} , другим путем выводится представление /1.1/ и вычисляется соответствующая спектральная функция. Для этого при массовых переменных $\mathcal{F}_i > 1$ /см.ниже формулу /2.3// исследуются аналитические свойства мнимой части амплитуды относительно одной из комплексных переменных, в то время как другая остается вещественной, и устанавливается представление /1.1/ в этом случае. Далее производится аналитическое продолжение равенства /1.1/ по массовым переменным. Это продолжение мож но, однако, осуществить лишь в некоторой области переменных \mathfrak{F}_i , определенной неравенствами /2.5/ и /2.7/. Эта область совпадает с областью, найденной ранее Мандельштамом [1] и Тарским [2].

2. Амплитуда Фейнмана для диаграммы четвертого порядка /рис. 1/ с точностью до постоянного множителя приводится к интегралу вида /см. [3] /:

$$\mathcal{F}(x,y;\xi_i) = \int_0^1 \int_0^1 \int_0^1 \frac{\delta(1-d_1-d_2-d_3-d_4)da_i da_2 da_3 da_4}{\mathfrak{D}_i^2}$$
 (2.1/

Как известно, амплитуда рассеяния допускает аналитическое продолжение, полиномиально ограниченное на бесконечности. В этом случае представление /1.1/ претерпевает соответствующее изменение.

где

$$\mathcal{D}_{1} = \sum_{i=1}^{\gamma} d_{i}^{2} + \mathcal{L}d_{1}d_{2} \mathcal{Z}_{1} + \mathcal{L}d_{1}d_{3} \mathcal{Y} + \mathcal{L}d_{2}d_{3} \mathcal{Z}_{3} + \mathcal{L}d_{4} \left(d_{1} \mathcal{Z}_{2} + d_{2} \mathcal{X} + d_{3} \mathcal{Z}_{4} \right),$$

$$\mathcal{Z}_{1} = \frac{m_{1}^{2} + m_{2}^{2} - \rho_{1}^{2}}{2 m_{1} m_{2}}, \quad \mathcal{Z}_{2} = \frac{m_{1}^{2} + m_{2}^{2} - \rho_{2}^{2}}{2 m_{1} m_{4}}, \quad \mathcal{Z}_{3} = \frac{m_{2}^{2} + m_{2}^{2} - \rho_{2}^{2}}{2 m_{1} m_{4}}, \quad \mathcal{Z}_{3} = \frac{m_{2}^{2} + m_{2}^{2} - \rho_{2}^{2}}{2 m_{2} m_{3}}, \quad \mathcal{Z}_{4} = \frac{m_{2}^{2} + m_{2}^{2} - \rho_{2}^{2}}{2 m_{2} m_{3}}, \quad \mathcal{Z}_{4} = \frac{m_{2}^{2} + m_{2}^{2} - \rho_{2}^{2}}{2 m_{2} m_{3}}, \quad \mathcal{Z}_{4} = \frac{m_{2}^{2} + m_{2}^{2} - \rho_{1}^{2}}{2 m_{2} m_{3}}, \quad \mathcal{Z}_{4} = \frac{m_{2}^{2} + m_{2}^{2} - \rho_{1}^{2}}{2 m_{2} m_{3}}, \quad \mathcal{Z}_{4} = \frac{m_{2}^{2} + m_{2}^{2} - \rho_{1}^{2}}{2 m_{2} m_{3}}, \quad \mathcal{Z}_{4} = \frac{m_{2}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{2} m_{3}}, \quad \mathcal{Z}_{4} = \frac{m_{2}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{2} m_{3}}, \quad \mathcal{Z}_{4} = \frac{m_{2}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{2} m_{3}}, \quad \mathcal{Z}_{4} = \frac{m_{2}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{2} m_{3}}, \quad \mathcal{Z}_{4} = \frac{m_{2}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3} m_{4}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3} m_{4}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3} m_{4}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3} m_{4}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3} m_{4}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3} m_{4}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3} m_{4}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3} m_{4}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3} m_{4}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3} m_{4}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3} m_{4}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3} m_{4}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3} m_{4}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3} m_{4}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_{3}^{2} - \rho_{1}^{2}}{2 m_{3}}, \quad \mathcal{Z}_{4} = \frac{m_{3}^{2} + m_$$

Переменные x и y линейно выражаются через s и t .

Предполага ем, что массы удовлетворяют условиям устойчивости

$$3_{1} > -1$$
, $i = 1, 2, 3, 4$.

au при условиях /2.5/ функция au имеет двойное спектральное представление

$$\mathcal{F}(x,y;\bar{z}_i) = \frac{1}{2} \iint \frac{dx'dy'}{(x'-x)(y'-y)\sqrt{x(x',y';\bar{z}_i)'}}$$
 /2.6/

тогда и только тогда, когда выполнено условие: либо одно из чисел \mathfrak{Z}_{t} больше единицы, либо, в противном случае, когда все эти числа меньше единицы, - они удовлетворяют неравенству

$$\Theta \leq 2\pi,$$

$$Prime \Theta = \theta_1 + \theta_2 + \theta_3 + \theta_4, \quad \theta_i = \arccos 3i, \quad 0 \leq \theta_i \leq \pi.$$

В /2.6/ функция lpha задается формулой

где

$$\delta = \frac{1}{3} \cdot \frac{3}{3} \cdot \cdot$$

Область интегрирования \mathfrak{D} в /2.6/ ограничена той ветвью кривой $\mathfrak{X}(x,y';\mathfrak{z}_i)=0$, которая заключена между касательными $\mathfrak{X}'=\mathfrak{L}_1,y'=\mathfrak{L}_2$ /см.рис. 4,5 и 6/:

$$\mathfrak{D}: \mathcal{X}(x,y;\mathfrak{z}_i) \geq 0, x \in \mathcal{I}_1, y \in \mathcal{I}_2,$$
 (2.10)

где пороги $\mathcal{L}_{\mathbf{1}}$ и $\mathcal{L}_{\mathbf{2}}$ определяются формулами

$$\mathcal{L}_{1} = mox \left[\mathcal{L}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right), \mathcal{L}\left(\mathbf{x}_{3}, \mathbf{x}_{7}\right)\right], \mathcal{L}_{2} = mox \left[\mathcal{L}\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right) \mathcal{L}\left(\mathbf{x}_{2}, \mathbf{x}_{7}\right)\right]/2.11/2$$

$$\mathcal{L}(\mathbf{3}_{i},\mathbf{3}_{j})=\begin{cases} -1 & \text{если } \mathbf{3}_{i}+\mathbf{3}_{j}>0 \\ \cos(\theta_{i}+\theta_{j}) & \sin(\theta_{i}+\mathbf{3}_{j})<0. \end{cases}$$

 $\Phi_{
m ункция}$ $\widehat{\mathcal{F}}(x,y;\xi_i)$ аналитична в области $\widehat{\mathcal{G}}$, состоящей из следующих точек: комплексные переменные x и y пробегают соответствующие плоскости с разрезами

$$\mathcal{I}_{mx} = 0, \quad \text{Re} x \in \mathcal{L}_1; \quad \mathcal{I}_{my} = 0, \quad \text{Re} y \in \mathcal{L}_2,$$
(2.13)

а точки (\mathfrak{Z}_l) пробегают вещественную область \mathfrak{G} , определяемую неравенствами:

3. Докажем сформулированные в п.2 утверждения.

x / Следовательно, аналитичность имеет место и в некоторой комплексной окрестности области G .

Выражение /2.1./ для функции $\mathcal F$ можно записать в виде:

$$\mathcal{F}(x,y;\xi_i) = -\frac{\partial}{\partial \lambda} \mathcal{F}_{\lambda}(x,y;\xi_i) \Big|_{\lambda=1+0}, \qquad (3.1)$$

где функция $\mathcal{F}_{\!\!\!A}$ определена при всех $\lambda \! > \! 1$ формулой

$$\mathcal{F}_{\lambda}(x,y;\xi) = \int_{\mathcal{T}_{\lambda}} \frac{dd_{\lambda} dd_{\lambda} dd_{\lambda}}{\partial \lambda}, \qquad (3.2)$$

где

$$\mathcal{D}_{A}(x,y;d_{i}) = A + 2d, d_{2}(\bar{3},-1) + 2d, d_{3}(y-1) + 2d_{2}d_{3}(\bar{3}_{3}-1) + 2(1-d_{1}-d_{2}-d_{3})[d,(\bar{3}_{2}-1)+d_{2}(x-1)+d_{3}(\bar{3}_{3}-1)].$$

Через T_n мы будем обозначать единичный симплекс в n -мерном про-

Будем теперь считать, что y и z_i фиксированы и удовлетворяют неравенствам

$$y > 1$$
, $3i > 1$, $i = 1, ..., 4$.

Тогда при всех (d_1,d_2,d_3) из T_3 функция $\mathcal{D}_{\lambda}^{-1}(x,y;d_i)$ аналитична в плоскости комплексного переменного x с выключенным разрезом вдоль вещественной оси $\ker x \leq 1-2\lambda$.

Действительно, $\mathfrak{D}_{A}\neq 0$, если только x невещественно, и $\mathfrak{D}_{A}>0$ при $x>-\lambda$; последнее утверждение следует из неравенств /3.4/, в силу которых

$$\Re_{\lambda} > \lambda - 4\lambda \left(1 - d_1 - d_2 - d_3\right)d_2 \geq 0.$$

Отсюда, с помощью теорем Морера и Фубини следует аналитичность функции $\mathcal{F}_{\!\!\mathcal{J}}$ в той же разрезанной \boldsymbol{x} -плоскости /на том листе римано-вой поверхности, где она принимает положительные значения при \boldsymbol{x} >1-2 $\boldsymbol{\lambda}$ /.

Для всех \mathcal{E} , $0 \le \mathcal{E} < \frac{1}{7}$, введем последовательность $\mathcal{F}_{\lambda,\mathcal{E}}$ аналитических функций в разрезанной x - плоскости,

$$\mathcal{F}_{\lambda,\epsilon}(x,y;\xi_i) = \int_{T_{3,\epsilon}} \frac{da,da_2da_3}{\Re_{\lambda}},$$
(3.5/

где $T_{3,\mathcal{E}}$ — множество точек (d_1,d_2,d_3) из T_3 , удовлетворяющих неравенству $d_2 (l-d_1-d_2-d_3) \ge \mathcal{E}$. Ясно, что при $\mathcal{E} \longrightarrow +0$

$$\mathcal{F}_{\lambda,\varepsilon}(x,y;\xi_i) \longrightarrow \mathcal{F}_{\lambda}(x,y;\xi_i)$$
 (3.6)

равномерно во всякой замкнутой области разрезанной 🏖 -плоскости.

Наконец, при всех (d_1, d_2, d_3) из $7_{3,2}$ имеет место оценка

$$\frac{1}{\sqrt{2} \left(x, y, \lambda_i \right) /} < \frac{C_{\lambda} \left(\varepsilon, \delta_1, y \right)}{1 + \left| x \right|}, \qquad 18.7 /$$

всякий раз, когда точка x удалена от линии разреза не меньше чем на δ_1 при любом $\delta_4 > 0$ /см.рис. 2/.

Считая $(d_1, d_2, d_3) \in T_{3,2}$, применим к функции $\mathcal{D}_{\lambda}^{-1}(x, y; d_i)$ теорему Коши, выбрав в качестве контура интегрирования линию // рис. 2/

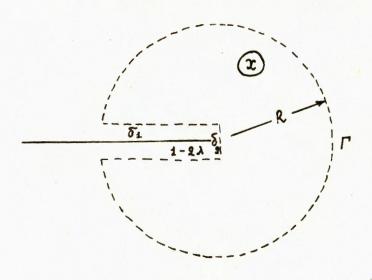


Рис. 2.

Если теперь устремить \mathcal{R} к ∞ , то , в силу /3.7/, интеграл по криволинейной части пути будет стремиться к нулю. Таким образом, получим

$$\frac{1}{D_{\lambda}(x,y;d_{i})} = -\frac{1}{2\pi} \int_{-\delta_{1}}^{\delta_{1}} \frac{d\tau}{(i-2\lambda+\delta_{2}+i\tau-x)D_{\lambda}(i-2\lambda+\delta_{2}+i\tau,y;\alpha_{i})} - \frac{1}{(3.8)^{2}} \int_{-\delta_{1}}^{i-2\lambda+\delta_{2}} \frac{1}{(x'+i\delta_{1}-x)D_{\lambda}(x'+i\delta_{1},y;\alpha_{i})} - \frac{1}{(x'-i\delta_{1}-x)D_{\lambda}(x'-i\delta_{1},y;\alpha_{i})} \int_{\gamma(x')}^{\gamma(x'-i\delta_{1}-x)D_{\lambda}(x'-i\delta_{1},y;\alpha_{i})} \frac{1}{\gamma(x')dx'+1} + \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{2(x')}{(x'+i\delta_{1}-x)D_{\lambda}(x'+i\delta_{1},y;\alpha_{i})} - \frac{2(x')}{(x'-i\delta_{1}-x)D_{\lambda}(x'-i\delta_{1},y;\alpha_{i})} \int_{\gamma(x'-i\delta_{1}-x)D_{\lambda}(x'-i\delta_{1},y;\alpha_{i})}^{\gamma(x'-i\delta_{1}-x)D_{\lambda}(x'-i\delta_{1},y;\alpha_{i})} \frac{1}{\gamma(x'-i\delta_{1}-x)D_{\lambda}(x'-i\delta_{1},y;\alpha_{i})} dx',$$
где $\frac{1}{\gamma(x')}$ - непрерывная функция, равная 1 при $\frac{1}{\gamma(x'-i\delta_{1}-x)D_{\lambda}(x'-i\delta_{1},y;\alpha_{i})}$ при $\frac{1}{\gamma(x'-i\delta_{1}-x)D_{\lambda}(x'-i\delta_{1},y;\alpha_{i})}$

Первый и второй интегралы в /3.8/ стремятся к нулю при $\delta_1 \! o \! O$ в силу аналитичности функции $\mathcal{D}_{\lambda}^{-\prime}(x,y,\lambda_i)$ при $x'>1-2\lambda$. Вычислим предел третьего интеграла в /3.8/ при $\mathcal{S}_1 \to +0$. Отметим предварительно, что равномерно по х.-∞∠х'∠ ∞

$$\frac{\dot{z}(x')}{x' \pm i \delta - x} \longrightarrow \frac{\dot{z}(x')}{x' - x}, \qquad \text{при } \delta_1 \longrightarrow 0. \qquad (3.9)$$

Кроме того, учитывая предположение $d_2(1-d_1-d_2-d_3) \ge \varepsilon$, при $\delta_1 \to +0$

$$\frac{1}{\mathcal{D}_{\lambda}\left(x'\pm i\delta_{1},y;\lambda_{i}\right)} = \frac{1}{\mathcal{D}_{\lambda}\left(x',y;\lambda_{i}\right)\pm i\delta_{i}\lambda_{2}\left(1-\lambda_{i}-\lambda_{2}-\lambda_{3}\right)} = \mp i\mp\delta\left[\lambda_{\lambda}\left(x',y;\lambda_{i}\right)\right] + \\ +\mathcal{G}\frac{1}{\mathcal{D}_{\lambda}\left(x',y;\lambda_{i}\right)},$$
причем стремление к пределу происходит в смысле слабой сходимости.

Устремим в /3.8/ δ_{1} к + 0 и воспользуемся предельными соотношениями /3.9/ и /3.10/. Устремляя, далее, δ_{2} к + o и пользуясь определением функции 3 , получим

$$\frac{1}{D_{\lambda}(x,y;\alpha_i)} = \int \delta\left[D_{\lambda}(x,y;\alpha_i)\right] \frac{dx'}{x'-x}; \qquad (3.11)$$

причем последний интеграл необходимо интерпретировать как значение функциона соответствующей основной

Проинтегрируем равенство /3.11/ по области $T_{3,\epsilon}$ и устремим ϵ κ +0. Используя соотношения /3.5/ и /3.8/, выводим

$$\mathcal{F}_{\lambda}(x,y;\mathbf{z}_{i}) = -\int d\alpha_{i} d\alpha_{2} d\alpha_{3} \int_{-\infty}^{1-2\lambda+0} \mathcal{F}_{\lambda}(x,y;\alpha_{i}) \frac{dx'}{x'-x}$$
/3.12/

"Меняя" порядок интегрирования в /3.12/, наконец, получим

$$\mathcal{F}_{\lambda} \left(x, y; \, \xi_i \right) = \int_{-\infty}^{1-2\lambda+0} \Delta \, \mathcal{F}_{\lambda} \left(x, y \right) \frac{dx'}{x'-x}, \tag{3.13}$$

где

$$\Delta \mathcal{F}_{\lambda}(x,y) = -\int_{\mathcal{F}_{\lambda}} \left[\mathcal{D}_{\lambda}(x,y;d_{i}) \right] da, da_{2} dd_{3}$$
.

Функция $\Delta \mathcal{F}_{\lambda}$ отличается лишь множителем \mathcal{F}_{λ} от мнимой части \mathcal{F}_{λ} .

4. Вычислим функцию Δ $\mathcal{F}_{\!\!\!A}$ при следующих предположениях:

$$x' \le i - 2\lambda$$
, $y > i + (\sqrt{3} \cdot \frac{1}{2} + \sqrt{3} \cdot \frac{1}{2})^2$, $3_i > 1$, $i = 1, ..., 4$.

Используя /3.3/, представим 🖘 д в виде:

$$D_A(x, y; d_i) = C_3 d_3 + 2 b_3 d_3 + a_3$$
, (4.2/

где

$$\begin{aligned} & \mathcal{U}_{3} = \lambda + \mathcal{Q}_{d_{1}} d_{2} \left(\overline{3}_{1} - 1 \right) + \mathcal{Q}_{1} \left(1 - d_{1} - d_{2} \right) \left[d_{1} \left(\overline{3}_{2} - 1 \right) + d_{2} \left(x' - 1 \right), \right. \\ & \left. b_{3} = \left(1 - d_{1} - d_{2} \right) \left(\overline{3}_{y} - 1 \right) + d_{1} \left(y - \overline{3}_{2} \right) + d_{2} \left(\overline{3}_{3} - x' \right), \quad C_{3} = -\mathcal{Q}_{1} \left(\overline{3}_{y} - 1 \right). \end{aligned}$$

<u>Лемма 1.</u> При предположениях /4.1/ $\mathcal{D}_{\lambda} > 0$ в той части \mathcal{T}_{3} , где $\mathcal{Q}_{3} > 0$ /рис. 3/. Если же $\mathcal{Q}_{3} \leq 0$, то \mathcal{D}_{λ} обращается в нуль на поверхности $\mathcal{Q}_{3} = \mathcal{Q}_{3}^{+}$, где использовано обозначение

$$d_3^{\pm} = \frac{1}{c_3} \left(-b_3 \pm \sqrt{b_3^2 - c_3 a_3} \right). \tag{4.4}$$

Для доказательства леммы предварительно отметим неравенства

$$C_3 < 0, \quad b_3 > 0, \quad b_3^2 - C_3 a_3 > 0$$
 (4.5)

при всех (\pounds_1, \pounds_2) из T_2 . Первые два неравенства в /4.5/ вытекают из /4.1/. Третье из неравенств /4.5/ следует из неравенств

$$\left. \left. \left. \left. \left. \left(\frac{1}{3} - c_3 a_3 \right)_{\alpha_1 = 0} \right. \right. = \left. \left(1 - d_2 \right) \left(\frac{3}{3} \sqrt{-1} \right) + \infty_2 \left(x + \frac{3}{3} - 2 \right) \right]^{\frac{2}{3}} 2 \lambda \left(\frac{3}{3} \sqrt{-1} \right) - 4 \alpha_2^2 \left(\frac{3}{3} - 1 \right) \left(x - 1 \right) > 0 \right),$$

$$\frac{1}{2} \frac{\partial}{\partial d_1} \left(\left(\delta_3^2 - C_3 a_3 \right) \right)_{d_1 = 0} = \left(\delta_3 \left(y - \xi_2 - \xi_1 + 1 \right) - C_3 \left[\left(1 - d_2 \right) \left(\xi_2 - 1 \right) + d_2 \left(\xi_1 - x' \right) \right] > 0,$$

$$\frac{1}{2} \frac{\partial^{2}}{\partial d_{1}^{2}} \left(b_{3}^{2} - c_{5} a_{3} \right) \Big|_{d_{1}=0} = \left[y - 1 - \left(\sqrt{3}_{2} - 1 + \sqrt{3}_{y} - 1 \right)^{2} \right]$$

$$\left[y - 1 - \left(\sqrt{3}_{2} - 1 - \sqrt{3}_{y} - 1 \right)^{2} \right] > 0.$$

Таким образом, оба корня 4^{\pm}_3 вещественны.

Принимая во внимание неравенство

$$\sqrt{\ell_{3}^{2}-c_{3}}a_{3} = \sqrt{\ell_{3}^{2}-c_{3}}a_{3}' > /\ell_{3}'/,$$

$$\alpha_{3}' = \lambda + 2 d_{1} d_{2} (\xi_{1}-1) + 2 (1-d_{1}-d_{2}) \left[d_{1} (y-1) + d_{2} (\xi_{3}-1)\right] > 0$$

$$\ell_{3}' = (1-d_{1}-d_{2})(\xi_{3}-1) + d_{1} (\xi_{2}-y) + d_{2} (x^{1}-\xi_{3}),$$

заключаем, что корень d_3 удовлетворяет неравенству $d_3>1-d_1-d_2$. При $d_3>0$ корень d_3^{t} отрицательный. Только при $d_3 \leq 0$ корень d_3^{t} неотрицательный и удовлетворяет неравенству $d_3^{t} < 1-d_1-d_2$. Последнее неравенство опять следует из /4.6/. Лемма доказана.

В силу леммы 1, из /3.14/ и /4.2/ получаем
$$\Delta \mathcal{F}_{A}(x,y) = -\int_{T_{2}} dd_{1} dd_{2} \int_{0}^{1-d_{1}-d_{2}} \mathcal{F}(c_{3}d_{3}+2b_{3}d_{3}+a_{3}) dd_{3} =$$

$$= -\frac{1}{2} \int_{T_{2}} dd_{1} dd_{2} \int_{0}^{1-d_{1}-d_{2}} \frac{dd_{1} dd_{2}}{\sqrt{b_{3}^{2}-c_{3}a_{3}}}.$$
(4.7/

Область интегрирования $T_{2} \cap (\alpha_{3} = 0)$ заштрихована на рис. 3. Эта область определяется следующими неравенствами:

$$0 = d_1 = d_1^{\circ}, \quad d_2^{-} = d_2 = d_2^{\dagger}, \qquad (4.8)$$
где d_2^{\pm} корни уравнения $a_3 = 0$,
$$d_2^{\pm} = \frac{1}{2(1-x')} \left[(1-d_1)(1-x') + d_1(3_2-3) \pm \sqrt{d'} \right], \qquad (4.9)$$

$$d = \left[(1-d_1)(1-x') + d_1(3_2-3_1) \right] + 2\lambda (x'-1) + 4d_1(1-d_1)(x'-1)(3_2-1) \qquad (4.10)$$

и d_1° наименьший корень уравнения $d_{=0}$

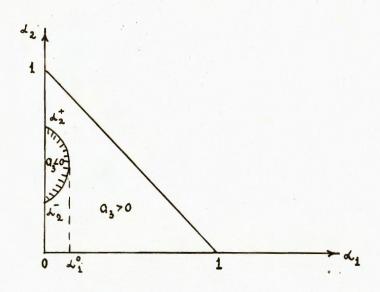


Рис. 3.

5. Вычислим интеграл /4.7/. Принимая во внимание /4.3/, запишем

$$b_3^2 - c_3 a_3 = c_2 d_2^2 + 2b_2 d_2 + a_2$$
, (5.1/

$$a_{1} = \left[(1-d_{1})(3,-1) + d_{1}(y-3,1) \right] + 2\lambda (3,-1) + 4d_{1}(1-d_{1})(3,-1)(3,-1) > 0,5.2$$

$$b_{2} = (3_{3} - 3_{v} - x' + 1) \left[(1 - d_{1})(3_{v} - 1) + d_{1}(y - 3_{2}) \right] + 2(3_{v} - 1) \left[(1 - d_{1})(x' - 1) + d_{1}(3_{v} - 3_{v}) \right] + 2(3_{v} - 1) \left[(1 - d_{1})(x' - 1) + d_{1}(3_{v} - 3_{v}) \right],$$

$$c_{2} - (3_{3} - 3_{v} - x' + 1) - 4(x' - 1)(3_{v} - 1) > 0.$$
(5.4)

Теперь, используя /5.1/, получим

$$\Delta \mathcal{F}_{\lambda}(x,y) = -\frac{1}{2} \int dd_{1} \int \frac{d_{2}^{+}}{\sqrt{c_{2} d_{2}^{+} + 2b_{2} d_{2}^{+} + a_{1}^{-}}} = \frac{-1}{2\sqrt{c_{2}}} \int \ln \frac{\sqrt{c_{2} b_{3}(d_{2}^{+}) + c_{2} d_{2}^{+} + b_{2}}}{\sqrt{c_{2} d_{2}^{+} + 2b_{2} d_{2}^{+} + a_{1}^{-}}} = \frac{-1}{2\sqrt{c_{2}}} \int \ln \frac{\sqrt{c_{2} b_{3}(d_{2}^{+}) + c_{2} d_{2}^{+} + b_{2}}}{\sqrt{c_{2} d_{2}^{+} + b_{2} d_{2}^{+} + b_{2}^{-}}} dd_{1}^{-} = \frac{-1}{2\sqrt{c_{2}}} \int \ln \frac{\sqrt{c_{2} b_{3}(d_{2}^{+}) + c_{2} d_{2}^{+} + b_{2}^{-}}}{\sqrt{c_{2} d_{2}^{+} + b_{2}^{-}}} dd_{1}^{-} = \frac{-1}{2\sqrt{c_{2}}} \int \ln \frac{\sqrt{c_{2} b_{3}(d_{2}^{+}) + c_{2} d_{2}^{+} + b_{2}^{-}}}{\sqrt{c_{2} d_{2}^{+} + b_{2}^{-}}} dd_{1}^{-} = \frac{-1}{2\sqrt{c_{2}^{-} + b_{3}^{-}}} dd_{1}^{-$$

Продифференцируем выражение /3.13/ по λ и подставим $\lambda=1+0$ Так как $d_1=0$ и $d_2=d_2=d_2$ при $\lambda=1+0$ и x'=-1, то на основании /3.1/ и /5.5/ будем иметь

$$\mathcal{F}(x,y;\xi_i) = \int_{-\infty}^{-1+0} \Delta \mathcal{F}(x,y) \frac{dx'}{x'-x}, \qquad (5.8)$$

где

$$\Delta \mathcal{F}(x,y) = \frac{1}{2\sqrt{c_2}} \int_{0}^{d_1^0} \frac{\partial}{\partial \lambda} \ln \frac{\sqrt{c_2} \, b_3 (d_2^+) + c_2 d_2^+ + b_2}{\sqrt{c_2} \, b_3 (d_2^-) + c_2 d_2^- + b_2} \int_{\lambda = 1 + 0}^{\lambda = 1 + 0} dd_1.$$
 (5.7)

Формула /5.8 / справедлива при всех комплексных ${f x}$, лежащих вне разреза

$$\Im m x = 0$$
, $\Re x \leq -1$. 75.87

Используя /4.3/, /4.9/, /5.2/-/5.4/, подсчитаем подинтегральное выражение в /5.7/. После сокращений получим

$$\Delta F(x,y) = -\int \frac{d_1(x,y,d_1) dd_1}{\left[\int_{-1}^{2} (x,y,d_1) - c_2(x') d(x,d_1) \right] \sqrt{d(x,d_1)}}, 15.91$$

 $_{\text{где}}$ $\mathcal{C}_{\mathbf{z}}$ и **о** определены формулами /5.4/ и /4.10/ соответственно и

$$f = (3_3 - 3_y - x' + 1) \left[(1 - d_1)(x' - 1) + d_1 (3_1 - 3_2) \right] + 2(x' - 1) \left[(1 - d_1)(3_y - 1) + d_1 (y - 3_2) \right].$$
 (5.10)

Имеет место тождество

$$\frac{\int_{2}^{2} - C_{2} d}{2(x'-1)} = \frac{\int_{2}^{2} - C_{2} a_{2}}{2(3y-1)} = C_{1} d_{1} + 2 \int_{1}^{2} d_{1} + a_{2}, \qquad (5.11)$$

где

$$a_1 = 2(x'-1)(3_3-1)(3_4-1)-c_2 < 0$$
(5.12/

$$\theta_{i} = (x'-i)(y-\xi_{2}-\xi_{3}+1)(\xi_{5}+\xi_{3}-x'-1)-(\xi_{3}-1)(x'+\xi_{1}-\xi_{1}-1)(\xi_{5}-\xi_{3}+x'-1)-(\xi_{2}-\xi_{2}-\xi_{3}-1)(\xi_{5}-\xi_{3}+x'-1)-(\xi_{3}-\xi_{3}-1)(\xi_{5}-\xi_{3}+x'-1)-(\xi_{3}-\xi_{3}-1)(\xi_{5}-\xi_{3}+x'-1)-(\xi_{3}-\xi_{3}-1)(\xi_{5}-\xi_{3}+x'-1)-(\xi_{3}-\xi_{3}-1)(\xi_{5}-\xi_{3}+x'-1)-(\xi_{3}-\xi_{3}-1)(\xi_{5}-\xi_{3}+x'-1)-(\xi_{3}-\xi_{3}-1)(\xi_{5}-\xi_{3}+x'-1)-(\xi_{3}-\xi_{3}-1)(\xi_{5}-\xi_{3}+x'-1)-(\xi_{3}-\xi_{3}-1)(\xi_{3}-\xi_{3}+x'-1)-(\xi_{3}-\xi_{3}-1)(\xi_{3}-\xi_{3}+x'-1)-(\xi_{3}-\xi_{3}-1)(\xi_{3}-\xi_{3}+x'-1)-(\xi_{3}-\xi_{3}-1)(\xi_{3}-\xi_{3}-\xi_{$$

$$\frac{1}{2}c_{1} = (3_{v}-1)(x'+3_{2}-3_{1}-1)^{2}+(x'-1)(y-3_{2}-3_{v}+1)^{2}-$$

$$-(3_{3}-3_{v}-x'+1)(x'+3_{2}-3_{1}-1)(y-3_{2}-3_{v}+1)+c_{2}(3_{2}-1).$$

$$(3_{3}-3_{v}-x'+1)(x'+3_{2}-3_{1}-1)(y-3_{2}-3_{v}+1)+c_{3}(3_{2}-1).$$

Из /4.2/, /5.1/ и /5.11/ следует соотношение x/

$$b_1 - c_1 a_1 = c_2 \chi$$
, (5.15)

где функция κ определена формулой /2.8/.

6. Исследуем аналитические свойства функции $\Delta^{\mathcal{F}}(x,y)$ относительно переменной y . Мы по-прежнему считаем, что x' и ξ_i удовлетворяют неравенствам /4.1/: $x' \in -1$, $\xi_i > 1$.

Обозначим через
$$y^{\pm}(x'), y^{-\xi}y^{+},$$
 вещественные кории уравнения $\mathcal{X}(x', y; \mathfrak{F}_{i}) = 0.$ /6.1/

Ниже, при доказательстве леммы 2, будет видно, что при x' < -1 эти корни всегда вещественны.

Имеет место

Лемма 2. Пусть
$$x' < -1$$
 . Если $y > \overline{y}$, то уравнения
$$f(x, y, a_1) \pm \sqrt{c_2(x') d(x, a_1)} = 0$$
 /8.2/

Проще всего соотношение /5.15/ можно получить, если воспользоваться одной алгебраической леммой, касающейся квадратичных форм /см.например, Тарский [2], лемма 1 В /.

не имеют корней в промежутке $\begin{bmatrix} 0, \lambda_1^o \end{bmatrix}$; если же y < y, то эти уравнения имеют только по одному корню λ_2^{\pm} в промежутке $\begin{bmatrix} 0, \lambda_1^o \end{bmatrix}$,

$$\mathcal{L}_{i}^{\pm} = \frac{1}{C_{i}} \left(- \ell_{i} \pm \sqrt{\ell_{i}^{2} - C_{i} C_{i}} \right).$$

Доказательство. Принимая во внимание /5.11/, заключаем, что уравнение

$$\int_{-\infty}^{\infty} c_2 d = 0$$
 (6.3)

имеет корни d_1^{\pm} . Так как $f^2 c_2 d = 2a_1(x'-1) > 0$ при $d_1 = 0$ и $f^2 c_2 d = f^2 \ge 0$ при $d_1 = d_1^{\circ}$, то в интервале $[0, d_1^{\circ}]$ может быть либо два, либо ни одного корня d_1^{\pm} .

Приняв еще во внимание неравенство /5.12/, $a_1 < 0$, заключаем отсюда, что d_1^{\pm} принадлежит промежутку $\begin{bmatrix} 0, d_1 \end{bmatrix}$, если $y \longrightarrow -\infty$. Так как, в силу /5.10/ и /5.11/,

$$f^{2}-c_{2}d=2a_{1}(x-1)>0, f=(x-1)(3,+3,-x-1)<0$$
 $max d_{1}=0$

то всегда

$$f \pm \sqrt{c_2 d} < 0$$
, $d_1 = 0$.

Кроме того, f положительно при $y o -\infty$. Таким образом , при $y o -\infty$

$$f \pm \sqrt{c_2 d} = f > 0$$
, $d_1 = d_1^{\circ}$. (6.7)

Неравенства /6.6/ и /6.7/ показывают, что уравнения /6.2/ при $y \to -\infty$ имеют только по одному корню в промежутке $\begin{bmatrix} 0, d_1^2 \end{bmatrix}$, причем уравнение $f + \sqrt{c_2 d} = 0$ имеет своим корнем меньшее число d_1^+ , а уравнение $f - \sqrt{c_2 d} = 0$ имеет своим корнем большее число d_1^+ .

Эта ситуация сохранится при всех $y \neq y^-(x')$ х/, где y^- меньший из/двух/ корней уравнения $b_1^2 - c_1 a_1 = 0$, т.е. в силу /5.15/ уравнения /6.1/. Действительно, так как при $y < y^-$ корни x_1^+ различны, то, при допущении противного, возникло бы такое положение, когда один из этих корней еще останется в промежутке $\begin{bmatrix} 0, d_1^0 \end{bmatrix}$, в то время как другой уже вышел из него. Это положение, как отмечалось выше, не может иметь места.

При $y < y < y^+$ оба корня d_1^{\pm} комплексны. При $y > y^+$ оба корня d_1^{\pm} отрицательны, так как, в силу /6.5/, они отрицательны при $y \to +\infty$, а, в силу $d_1 < 0$, они не могут непрерывно перейти через нуль из отрицательной полуоси в положительную. Лемма доказана.

Изучим теперь аналитические свойства функции

$$g(x', y, d_1) = \frac{lf(x', y, d)}{f^2(x', y, d_1) - c_2(x')d(x, d_1)}$$
(6.8/

по переменной y для всех x' < 1 и $0 \le d_1 \le d_1^\circ$.

Функция $g(x, y, \lambda_1)$ аналитична в плоскости комплексного переменного y с выключенным разрезом

$$y = 0$$
, $ke y \leq y^{-}(x')$. (6.9)

Ясно, что, в силу симметрии x и y в задаче, порог y^- при всех x' ζ - 1 удовлетворяет неравенству

$$y^{-}(x') \leq -1 \tag{6.10}$$

/см. рис. 4; напомним, что пока массы удовлетворяют неравенствам $\xi_i > 1$ /.

Действительно, $f^2 c_2 d \neq 0$, если y - невещественно.

Такое $y=y^-$ непременно наступит; иначе при $y \to +\infty$ было бы $d_1^{\pm} > 0$, что находится в противоречии с /6.5/, из которого следует $d_1^{\pm} < 0$.

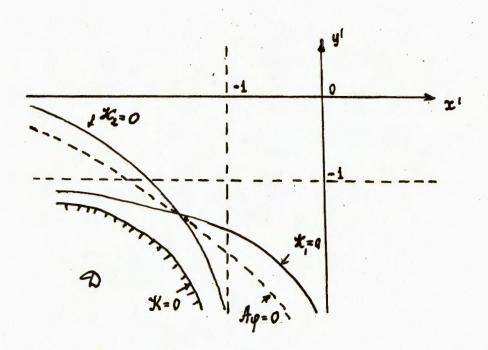


Рис. 4.

Для вещественных y достаточно воспользоваться леммой 2.

Отсюда следует аналитичность функции $\Delta \mathcal{F}(x,y)$ в той же разрезанной y -плоскости.

Наконец, из /6.8/ и /5.10/ при всех d_1 , 0 ℓ ℓ ℓ ℓ ℓ , следует такая оценка:

$$\left|g\left(x',y,\lambda_{1}\right)\right|<\frac{c\left(\varepsilon,\delta,x'\right)}{1+\left|y\right|}$$
(6.11)

всякий раз, когда точка y удалена от линии разреза не меньше, чем на δ_1 при любом $\delta_1 > 0$.

7. Считая $d_1 \ge \varepsilon > 0$, применим теорему Коши к функции $g(x,y,d_1)$, выбрав в качестве контура интегрирования линию, аналогичную f / рис. 2/. Устремляя ℓ к бесконечности и пользуясь /6.11/, получим

$$g(x',y,d_{1}) = -\frac{1}{2\pi} \int_{-\delta_{1}}^{\delta_{1}} \frac{g(x',y'+\delta_{2}+i\tau,d_{1})}{y'+\delta_{2}+i\tau-y} - \frac{1}{2\pi i} \int_{y'+\delta_{2}}^{y'+2\delta_{2}} \frac{g(x',y'+i\delta_{1},d_{1})}{y'+i\delta_{1}-y} - \frac{g(x',y'-i\delta_{1},d_{1})}{y'-i\delta_{1}-y} \left[\frac{g(x',y'+i\delta_{1},d_{1})}{y'-i\delta_{1}-y} \right] z(y')dy' + \frac{1}{2\pi i} \int_{-\infty}^{\infty} \left[\frac{g(x',y'+i\delta_{1},d_{1})}{y'+i\delta_{1}-y} - \frac{g(x',y'-i\delta_{1},d_{1})}{y'-i\delta_{1}-y} \right] dy',$$

где $\chi(y')$ - непрерывная функция, равная 1 при $\chi' \chi' + \delta_2$ и равная 0 при $\chi' \chi' + 2 \delta_2$; δ_2 - любое положительное число.

Принимая во внимание /6.1/, /5.10/ и предположение 4.25, имеем при

$$\frac{\delta_{1} \rightarrow +0}{g\left(x, y' \pm i\delta_{1}, a_{1}\right)} = \frac{1}{f\left(x, y', a_{1}\right) + \sqrt{c_{2}d} \pm 2id_{1}\left(x'-1\right)\delta_{1}} + \frac{1}{f\left(x, y', a_{1}\right) - \sqrt{c_{2}d} \pm 2id_{1}\left(x'-1\right)\delta_{1}} \rightarrow \pm \operatorname{fii}\delta\left(f + \sqrt{c_{2}d}\right) \pm \operatorname{fii}\delta\left(f - \sqrt{c_{2}d}\right) + \frac{1}{f\left(f + \sqrt{c_{2}d}\right)} + \frac{1}{f\left(f +$$

Стремление к пределу в /7.2/ происходит в смысле слабой сходимости. Устремляя в /7.1/ δ_{4} к нулю и рассуждая как и в п.3, при всех y вне разреза /6.9/получим

$$g(x',y,d_1) = \int_{-\infty}^{y+0} \left[\delta(f+\sqrt{c_2d}) + \delta(f-\sqrt{c_2d}) \right] \frac{dy'}{y'-y}$$
 (7.3)

Умножая равенство /7.3/ на $\frac{1}{2}(1-x')d^{-1/2}$, интегрируя по \mathcal{L}_1 в пределах от \mathcal{E} до \mathcal{L}_1^o , устремляя \mathcal{E} к +0, меняя порядок интегрирования и используя /5.9/, получим

получим
$$\Delta \mathcal{F}(x,y) = \int_{-\infty}^{y^{-}(x')+0} \frac{\rho(x,y')dy'}{y'-y},$$
(7.4/

где

$$S(x',y') = \frac{1-x'}{2} \int \left[\delta\left(f + \sqrt{c_2d'}\right) + \delta\left(f - \sqrt{c_2d'}\right) \frac{dd_1}{\sqrt{d'}} \right] .$$
 (7.5)

Используя лемму 2, вычислим спектральную функцию ho . Имеем

$$\int (x,y') = \frac{1-x'}{|2f'\sqrt{d(x',d_{1}^{+})} + \sqrt{c_{1}} d'(x',d_{1}^{+})|} + \frac{1-x'}{|2f\sqrt{d(x',d_{1}^{-})} - \sqrt{c_{1}} d'(x',d_{1}^{-})|} = \frac{(1-x')\sqrt{c_{1}}}{|2f'f(x',y',d_{1}^{+}) - c_{1}d'(x',d_{1}^{+})|} + \frac{(1-x')\sqrt{c_{2}}}{|2f'f(x',y',d_{1}^{-}) - c_{1}d'(x',d_{1}^{-})|} + \frac{(1-x')\sqrt{c_{2}}}{|2f'f(x',y',d_{1}^{-}) - c_{1}d'(x',d_{1}^{-})|},$$

$$\int f' = \frac{\partial f}{\partial d_{1}}, \quad d' = \frac{\partial d}{\partial d_{1}}.$$

$$\int d' = \frac{\partial f}{\partial d_{1}} \cdot d' \cdot \frac{\partial d}{\partial d_{1}}.$$

основании /5.11/ и /5.15/, имеем:

$$2 \int_{d_1=d_1}^{d_1-c_2} d' \Big|_{d_1=d_1}^{d_1=d_1} = \frac{\partial}{\partial d_1} \left(\int_{d_1=d_1}^{d_2-c_2} d' \right) \Big|_{d_1=d_1}^{d_1=d_1} = \frac{\partial}{\partial d_1} \left(\int_{d_1=d_1}^{d_2-c_2} d' \right) \Big|_{d_1=d_1}^{d_2=d_1} = \frac{\partial}{\partial d_1} \left(\int_{d_1=d_1}^{d_2-c_2} d' \right) \Big|_{d_1=d_1}^{d_1=d_1} = \frac{\partial}{\partial d_1} \left(\int_{d_1=d_1}^{d_2-c_2} d' \right) \Big|_{d_1=d_1}^{d_1=d_1} = \frac{\partial}{\partial d_1} \left(\int_{d_1=d_1}^{d_1-c_2} d' \right) \Big|_{d_1=d_1}^{d_1=d_1} \Big|_{d_1=d_1}^{d_1=d_1}^{d_1=d_1} \Big|_{d_1=d_1}^{d_1=d_1} \Big|_{d_1=d_1}^{d_1=d_1} \Big|_{d_1=d_1}^{d_1=d_1} \Big|_{d_1=d_1}^{d_1=d_1} \Big|_{d_1=d_1}^{d_1=d_1} \Big|$$

Принимая это во внимание, получим из /7.6/

$$\rho(x',y') = \frac{1}{2\sqrt{x'}}$$
.

8. Таким образом, на основании /5.6/, /7.4/ и /7.7/, доказано двойное

Спектральное представление /2.6/:
$$\mathcal{F}(x,y;3i) = \frac{1}{2} \int \frac{dx'}{x'-x} \int \frac{y'(x')}{(y'-y)\sqrt{x'}} = \frac{1}{2} \int \int \frac{dx'dy'}{(x'-x)(y'-y)\sqrt{x'}} .$$
 /8.1/

Мы отбросили здесь в верхних пределах бесконечно малые положительные добавки +0, так как функция $\mathfrak{K}^{-/2}$ суммируема по области \mathfrak{D} . Область интегрирования \mathfrak{D} заштрихована на рис. 4.

Равенство /8.1/, однако, доказано пока при условиях /4.1/,

для всех комплексных \mathfrak{X} , не лежащих на разрезе /5.8/. Так как $\mathcal{F}(x,y;\overline{x})$ есть аналитическая функция всех своих аргументов в этой области /см.п.3 при $\lambda=1$ /, то , в силу принципа аналитического продолжения, равенство /8.1/ сохраняется и для тех y , для которых правая часть этого равенства аналитична по y , т.е. заведомо для всех комплексных y , не лежащих на разрезе /см. /6.9/ и /6.10//:

$$y_{my=0}$$
, $key \le -1$.

9. Теперь осталось аналитически продолжить равенство /2.6/ по массовым переменным \mathfrak{z}_i со значений \mathfrak{z}_i >1 на всю область \mathfrak{G} /см./2.14//.

Предварительно докажем лемму.

Пемма 3. Правая часть равенства / 2,8/ есть аналитическая функция всех своих аргументов в области G_1 , состоящей из следующих точек / x, y, g_i /: комплексные точки (x,y) пробегают произведение плоскостей с разрезами /2.13/, а точки (g_i) пробегают вещественную область G_1 , состоящую из таких g_i , для которых найдется такой единичный вектор $\widehat{n} = (\cos y, \sin y)$, что

 $\inf_{(x', y') \in \mathcal{D}} |A_{\varphi}|$

где область \eth определена неравенствами /2.10/ и

$$A_{\varphi} = -\frac{1}{2} \vec{n} g \cos d x = \cos f x_1 + \sin f x_2,$$

$$x_1 = -\frac{1}{2} \frac{\partial x}{\partial x} = -xy^2 + x + dy - \beta, \quad x_2 = -\frac{1}{2} \frac{\partial x}{\partial y} = -yx^2 + y + dx - y.$$
(9.2)

Доказательство. Будем обозначать правую часть /2.6/, по-прежнему, буквой \mathcal{F} . Пусть $(\mathfrak{z}_i^*) \in \mathcal{G}_{\mathfrak{z}_i}$. Тогда, в силу /9.1/, найдутся такой вектор \tilde{n} - (2014), уще число $\mathfrak{E} > \mathfrak{O}$ и окрестность $\mathcal{N}(\mathfrak{z}_i^*)$ точки (\mathfrak{z}_i^*) , что при всех (\mathfrak{z}_i) из $\mathcal{N}(\mathfrak{z}_i^*)$ и $(\mathfrak{x},\mathfrak{y}')$ из \mathfrak{D} будет выполнено неравенство $|\mathcal{A}_{\mathfrak{Y}}| > \mathfrak{E}$. /Напомним, что \mathfrak{D} зависит от \mathfrak{z}_i /.

Вычислим производные \mathfrak{F} по \mathfrak{F}_{i} из $\mathcal{N}(\mathfrak{F}_{i}^{\mathfrak{o}})$. Непосредственное дифференцирование правой части /2.6/ невозможно. Пользуясь формулой Грина, перепишем /2.6/ в виде

$$F(x,y;\xi_i) = \frac{1}{2} \iint \sqrt{x} \ \vec{n} \ grad \frac{1}{A\varphi(x'-x)(y'-y)} dx'dy'.$$
 (9.4)

Теперь уже можно дифференцировать /9.4/ по ξ ; один раз. Дифференцируя и пользуясь опять формулой Грина, получим

$$\frac{\partial \mathcal{F}}{\partial \mathbf{z}_{i}} = \frac{1}{2} \iint \sqrt{\chi} \ \vec{n} \ grad \left(\frac{\mathcal{K}}{A \varphi} \ \vec{n} \ grad + \frac{\partial}{\partial \mathbf{z}_{i}} \right) \frac{1}{A \varphi \left(\mathbf{x}' \cdot \mathbf{x} \right) \left(\mathbf{y}' \cdot \mathbf{y} \right)}, \quad (9.5)$$

где обозначено

$$\mathcal{K}^{i} = \frac{1}{2} \frac{\partial \mathcal{K}}{\partial \tilde{\mathbf{j}}_{i}}, i = 1, 2, 3, 4.$$
 (9.8)

И. вообще, если

$$\mathcal{F} = \frac{\partial^{n+m+\kappa+\ell} \mathcal{F}}{\partial \mathcal{S}_{n}^{n} \partial \mathcal{S}_{n}^{m} \partial \mathcal{S}_{n}^{\kappa} \partial \mathcal{S}_{n}^{\kappa}} = \frac{1}{2} \iint \sqrt{\mathcal{K}} \, \mathcal{F}_{n,m,\kappa,\ell} \, dx \, dy', \qquad (9.7)$$

то, например,

$$\varphi_{n+1,m,\kappa,\ell} = \left(\vec{n}, \operatorname{grad} \frac{x^{1}}{A_{\varphi}} + \frac{\partial}{\partial x_{1}}\right) \varphi_{n,m,\kappa,\ell} .$$
(9.8)

При этом, в силу /9.7/, необходимо, очевидно, положить

Принимая во внимание рекурентную формулу /9.8/, а также формулы /2.8/, /2.9/, /9.2/, /9.3/ и /9.11/, при всех (3_i) из $\mathcal{N}(3_i)$ и(x,y) из \mathfrak{D} выводим такие оценки:

$$| \varphi_{n,m,\kappa,\ell} | < (n+m+\kappa+\ell)! B^{n+m+\kappa+\ell} (x'y')^{-2}, \qquad (9.10).$$

где в некоторое достаточно большое число, зависящее от $\mathcal{N}(\mathfrak{z}_i^{\circ})$, но не зависящее от (x,y,\mathfrak{z}_i) . Стало быть, для производных /9.7/ справедливы оценки

$$/ \mathcal{F}^{(n,m,\kappa,\ell)} / \mathcal{L}_1(n+m+\kappa+\ell)! \mathcal{B}^{n+m+\kappa+\ell}$$
 (9.11)

Производные по переменным x и y изучаются тривиально.

Таким образом, функция \mathcal{F} бесконечно-дифференцируемая по всем шести аргументам (x,y,\mathfrak{F}_i) , и все ее производные $\mathcal{F}^{(N)}$ в некоторой окрестности каждой точки области \widetilde{G}_1 удовлетворяют неравенствам

$$|\mathcal{F}^{(N)}| < \mathcal{N}/c^N, \quad \mathcal{N} = 0, 1, \dots$$

$$/9.12/$$

при достаточно большом $\mathcal C$. Это и значит, что функция $\mathcal F$ аналитична в $\widetilde{\mathcal G}_1$. Лемма доказана .

10. В силу леммы 3 правая часть /2.6/ есть аналитическая функция всех сеоих аргументов в области \widetilde{G}_1 /и, следовательно, в некоторой ее комплексной окрестности/. Левая часть /2.6/ , амплитуда \mathcal{F} , аналитична в области x>1 , y>1 , $z_i>1$ /см. п.3 при $\lambda=1$ / и совпадает с правой частью при этих / x_iy_i , z_i / /см. п.8/. В силу принципа аналитического продолжения функция z_i 0 z_i 1 и в ней имеет место равенство /2.6/.

Для завершения доказательства утверждений, сформулированных в п.2, осталось показать, что \widehat{G}_1 = \widehat{G} . Для этого достаточно установить равенство

$$G_1 = G$$
,

Прежде всего отметим, что точки (\S_i) , которые расположены на участке границы $\theta = 2\pi$ области G, не принадлежат G_1 . Действительно, в этом случае, в силу /2.11/, /2.12/ и /9.3/, точка $(x,y')=(X_1,X_2)$ является особой для кривой $\mathcal{K}=0$, так как в ней grad $\mathcal{K}=0$ /см.рис. 5 в работах [2,1,3] дано подробное описание кривой $\mathcal{K}=0$ /. Поэтому в этой точке $A_0=0$ и неравенство /9.1/ не может быть выполнено ни при каком \mathcal{G} . Таким образом, справедливо включение $\mathcal{G}_1 \subset \mathcal{G}_1$.

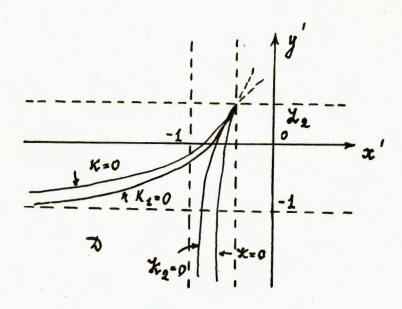


Рис. 5.

Для доказательства обратного включения изучим поведение кривых $\mathcal{K}=0$, $\mathcal{K}_1=0$ и $\mathcal{K}_2=0$ в плоскости (x,y') при различных (ξ_i) из области /см.формулы /2.8/,/9.3/ и рис. 4,5, 6/. Мы не будем эдесь описывать полную структуру этих кривых, а рассмотрим только те из их ветвей, которые лежат в квадранте $x' \in \mathcal{I}_1$, $y' \in \mathcal{I}_2$. Кривая x=0 имеет две асимптоты, x'=-1 и y'=-1, и, если $x_i>-1$, касательные $x'=x_1$, $y'=x_2$. Кривая $x_1=0$ имеет две асимптоты, x'=0 и y'=-1, и, при $x_1>-1$, пересекает кривую x'=0 в точке касания ее с прямой $x'=x_1$. Аналогичными свойствами обладают и кривая $x_2=0$. Кривая $x_3=0$ при любом x'=0 имеет асимптоты x'=0 и x'=0.

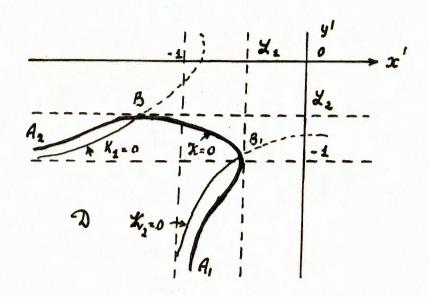


Рис. 6.

Докажем обратное включение, $G \in G_1$. Пусть $(\xi_i) \in G$.

Рассмотрим случай, когда

$$d+\beta = (3_1+3_3)(3_2+3_4)>0, d+\gamma = (3_1+3_4)(3_3+3_4)>0.$$

В силу условия $\,$, неравенства /10.2/ эквивалентны неравенствам

$$3, +3, >0, 3, +3, >0, 3, +3, >0, 3, +3, >0.$$
 (10.3/

Откуда по формулам /2.11/ и /2.12/ получаем $\mathcal{L}_1 = \mathcal{L}_2 = -1$; кривые $\mathcal{K}_i = 0$ лежат вне \mathcal{D} . При приближении к асимптоте: $x' \to -1 - 0$, $y' \to -\infty$, $x' \to -\infty$, $x' \to -\infty$, $x' \to -\infty$. Поэтому условие /9.1/ здесь выполнено при любом y', $0 \le y' \le \frac{\pi}{2}$.

Рассмотрим теперь случай, когда $d+\beta>0$. $d+\beta \leq 0$. Здесь $\chi_1 \geq -1$ и $\chi_2 = -1$; кривая $\chi_2 = 0$ лежит вне области $\mathfrak D$. Так как при приближении к асимптоте $\chi' \to -1 - 0$, $\chi' \to -\infty$, $\chi_2 \to d+\beta>0$, то условие /9.2/ будет выполнено при $\varphi = \frac{\pi}{2}$. Аналогично рассматривается и случай $d+\beta \leq 0$, $d+\gamma>0$.

Таким образом, перечисленные точки (3_i) принадлежат области G_i . Докажем, что и остальные точки (3i) из G , т.е. точки, удовлетворяющие неравенствам

также принадлежат G1.

Возьмем точку (\mathfrak{z}_i) , принадлежащую области G и удовлетворяющую неравенствам /10.4/. Соединим ее непрерывной кривой ${\cal C}$, целиком лежащей в G , с какой-либо точкой $(\mathfrak{z}_i)^2$ из G , для которой условие /9.1/ выполнено при некотором \mathcal{G}_0 , $0<\mathcal{G}_0<\overline{\mathcal{I}}/2$. Может случиться, что неравенство /9.1/ при \mathcal{G}_1 выполнено в точке (\mathfrak{z}_i) , и тогда (\mathfrak{z}_i) \mathcal{G}_1 . Пусть, напротив, это не так. Так как функция \mathcal{G}_0 непрерывна , то на кривой \mathcal{C}_1 найдется первая точка $(\mathbf{3}_{t}^{\prime})$, в которой

> min Ap = 0 /10.5/

 $(x,y')\in \mathfrak{D}$. (10.5) Так как точка (\mathfrak{z}_i) первая, в которой условие /9.1/ нарушается, то имеют место только две возможности: 1/ либо найдется такая точка $(oldsymbol{z}',oldsymbol{y}')$ внутри или на границе \mathfrak{D} , в которой $grad \mathcal{K}=0$; 2/ либо, в случае, когда $grad \mathcal{K} \neq 0$ в \mathfrak{D} , кривая $\mathcal{H} \varphi_0 = 0$ лежит вне \mathfrak{D} , имея, по крайней мере, одну общую точку с границей x_0 области x_0 .

Первая возможность при $heta < 2 \pi$ не реализуется; она наступает, как отмечалось выше, при θ = 2π , когда grad x = 0 при x' = \mathcal{L}_1 , y' = \mathcal{L}_2 /рис. 5, см. также [1,2] /.

Осталось рассмотреть вторую возможность. Так как асимптоты кривых ${m x}$ = 0 и $\mathcal{H}=0$ различны, то точки (x',y') кривой $\mathcal{X}=\mathcal{O}$, где реализуется равенство /10.5/,

$$A \varphi_0 = 0, \quad (x', y') \in \beta$$
 /10.6/

x' $f \rightarrow +\infty$ при приближении к асмптотам: $x \rightarrow -1+0$, $y \rightarrow -\infty$ и $y' \rightarrow -1+0$, $x' \rightarrow -\infty$.

образуют компакт /ограниченное и замкнутое множество/. Обозначим его через S. Так как g сол χ_{f} о в χ_{f} о в гол веравенство, в силу /10.4/ и χ_{f} сохраняется и для всех точек χ_{f} χ_{f} . Пусть χ_{f} достаточно малое положительное число. Принамая во внимание /9.2/ и /10.6/, в точках компакта χ_{f} имеем

 $A_{\varphi_0+\chi} = \cos \varphi_0 \ \, x_1 + \sin \varphi_0 \ \, x_2 + \chi \left(\cos \varphi_0 \ \, x_1 - \sin \varphi_0 \ \, x_2\right) + O\left(\chi^2\right) =$ $= -\chi \ \, x_2 \cos \varphi_0 + O\left(\chi^2\right) > \chi_1 > 0.$ (10.7)

Неравенство /10.7/ сохранится также и в некоторой окрестности \mathcal{N} компакта S. В силу /10.5/ и /10.6/ на множестве $\mathfrak{D}-\mathcal{N}$ выполнено неравенство $\mathcal{A}\mathcal{J}_0>0$. Так как при приближении к асимптотам x'=-1 и y'=-1 $\mathcal{A}\mathcal{J}_0>0$, то найдется такое \mathcal{L}_2 , что $\mathcal{A}\mathcal{J}_0>\mathcal{L}_2$ во всех точках $\mathcal{D}-\mathcal{N}$. Но тогда последнее неравенство сохранится и при достаточно малом $\mathcal{L}_0>0$. Отсюда и из /10.7/ будет следовать, что $\mathcal{A}\mathcal{J}_0+\mathcal{L}_0>\mathcal{L}_0>0$ при всех \mathcal{L}_0 из \mathcal{D}_0 , если \mathcal{L}_0 и \mathcal{L}_0 достаточно малы. Это значит, что точка \mathcal{L}_0 вместе с некоторой своей окрестностью принадлежит \mathcal{L}_0 .

Совершая, в силу леммы Гейне-Бореля, конечное число таких шагов по кривой \mathcal{C} , выводим, что и точка (\mathbf{z}_i) принадлежит области \mathcal{G}_1 . Таким образом, доказано включение $\mathcal{G}_1 \subset \mathcal{G}_1$, а с ним и равенство /10.1/.

Как отмечалось выше, представление /2.8/ справедливо при всех (\mathfrak{Z}_i) из области G. По непрерывности оно еще сохраняется и при θ = $\mathfrak{L}T$. При θ > $\mathfrak{L}T$ представление /2.8/ уже не имеет места. Тарский [2] показал, что в этом случае функция \mathcal{F} имеет особенности, лежащие внутри физического листа. Таким образом, поверхность θ = $\mathfrak{L}T$ действительно является носителем особенностей /точек ветвления/ функции \mathcal{F} .

Пользуясь случаем, благодарю Н.Н. Боголюбова за постоянный интерес к работе и обсуждение результатов.

Рукопись поступила в издательский отдел 28 декабря 1959 года.

 $^{^{\}rm X}$ В этом случае одно из чисел $^{\rm X}$, или $^{\rm X}$ непременно отрицательно. Касание кривых $^{\rm K}$ = $^{\rm O}$ и $^{\rm A}$ у $^{\rm S}$ 0 может происходить либо на участке $^{\rm A}$, $^{\rm G}$, , либо на участке $^{\rm A}$ $^{\rm A}$ $^{\rm D}$ /рис. $^{\rm B}$ /.

Цитированная литература

- 1. S. Mandelstam. Analytic Properties of Transition Amplitudes in Perturbation Theory, (preprint, 1959).
- 2. J. Tarski, Spectral Representations in Perturbation Theory. III. The Scattering Amplitude with two Complex Invariants, (preprint, 1959).
- 3. R. Karplus, C. Sommerfield and E. Wichmann. Spectral Representations in Perturbation Theory. II. Two - Particle scattering, Phys. Rev., 114, (1959), 376-382