Laboratory of Nuclear Problems

Yu.P. Kumekin, M.G. Mescheryakov, S.B. Nurushev, G.D. Stoletov

$$
P-440
$$

TRIPLE PROTON SCATTERING AT 660 MEV

II Angular Dependence of Depolarization Parameter

TRIPLE PROTON SCATTERING AT 660 MEV
Il Angular Dependence of Depolarization Parameter

INTRODUCTION

The previous experiments have shown that the polarized proton bean scattering by protans af 840 iteV of an angle of 90° in the centre-af-mass system (c.m.s.) causes weak depolarization of the beam/1/. This result witnesses that at this energy the pp-interaction, connected with elastic scattering of large angles is comparatively sel fom accampanied by changes of spin orientation. Further infarmotion, concerning the character of pp-inferactions, can be obtained from experiments in which the depaiarization parameter is meosurf at scattering angles both asove and below 90° (c.m.s.), that has been realised in the present wark. Results af such measurements give two independent ralations between the amplitujes of pp-scatfering matrix in addition to two relations, corresponding to the dato on ongular dependence of differential cross sections and to thase of polarization.

The experiments in question have been performed at the 6 -meter synchrocyclotron of the Joint Institute for Nuclear Research in accordance with the programme of pp-interaction studies at 660 iteV.

PROCEDURE OF MEASUREMENTS AND RESULTS

The scheme of the experiment, plotted in Fig. 1, was the same in general feotures as in the preceding experiments (see "ig. la in $/ 1 /$). The proton beam with the polarization $P=0.58 \pm 0.03$ and the energy of $640 \pm 12 \mathrm{hleV}$, scatfered inside the synchrocyclotron chamber to the left of an angle of 9° in the berillium target-polarizer, has aeen used. The second scattering took place in a cylindrical container 12 cm in diameter, filled with liquid hydrogen. In the centre of the liquid hydrogen target the average proton energy was equal to 635 iheV, the density of the beam 3 cm in diameter was 7.10^{5} protan/ cm^{2} sec.

The depolarixation parameter D was measured at 18° interval of the scattering angle θ_{2} ranging from 54° up to 126°. The beam of protons, second-scattered to the left at an angle of θ_{2} was determined by a three-caunter telescope C_{1}, C_{2}, C_{3}. In order to separate elastic pp-scattering from the accompanying inelastic processes, which take place in the liquid hydrogen target, the scattered and recoil protons were regisfered by the conjugated telescope C_{1}, C_{2}, C_{3} and C_{3}, C_{9}, the angle of divergence detween them was correspanding to the kinematics of elastic pp-collisions.

The normal component of the polarization vector of the secand-scattered protons was determined by
measuring the left-right asymmetry $\varepsilon_{3 n}$ of the charged particles ammited in the direction af $\theta_{3}=12^{\circ}$ (lab.system) from the earbon targef-onalyser i_{3}. These measurements consisted in the registration of ninefold caincidences of impulses fram the counters, grouped into the telescopes C_{1}, C_{2}, C_{3} and C_{8}, C_{9} and the caunters of the telescope $C_{4}, C_{5}, C_{6}, C_{7}$, detecting triply scattered protons.

In the registered number of ninefold caincidences the corrections were introduced which took into account a) accidentol ninefold coincidences ($\sim 1 \%$), b) the effect of the empty container ($\sim 3 \%$). In order to be convinced that the angles θ_{3}, counted to the left and to the right are really equal and, cansequently, there is no possibility of appearing false asymmetry owing to difference of zero reoding of the scale of θ_{3} with the effective axis of the secondary beam, the profile of the second-scattered protons of the beam was carefully meosured at all the angles of measurement. The procedure of these experiments was analogous to that which had been used earlier by Berkely group $/ 2 /$

The depolarizotion parameter $D\left(\theta_{2}\right)$ was found from the relation $/ 3 /$:

$$
\begin{equation*}
D=\frac{\varepsilon_{3 n}}{\varepsilon_{3}}\left(1+P_{1} P_{2}\right)-\frac{P_{2}}{P_{1}}, \tag{1}
\end{equation*}
$$

where P_{1} is the initial polarization of the beam, P_{2} is the polarization, arising in the unpolarized proton beam scattering in hydrogen at o given angle θ_{2}. The magnitudeand angular dependence of P_{2} are known from the pravious measurements $/ 4 /$.
\mathcal{E}_{3} is the left-right asymmetry, observed experimentally in the emission of the charged particles from the carbon target, bombarded by the proton beam with the polarizations ? P_{1} and the energy equal to that of protons, scattered in hydrogen at an angle of θ_{2}. In the meastrements of this asymmetry the same technique was used as in the measurements of $\varepsilon_{3 n}$. The counters C_{7}, C_{2}, C_{3} and the carbon torget ware instolled in the primary polarized proton beam, the energy of which was reduced to that of the secand-scattered proton beam by means of a fifter, made of lead and polyethelene plates. Particles, emitted from the carbon target in the direction of 12°, were registrated by the telescope $\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C} 7$, switched in coincidence with the telescope C_{1}, C_{2}, C_{3}. Simultaneously the intensity of the primary beam was reduced $50-100$ times. It is neetssary to mark that meosurements, performed with slowing dawn filters, which had different ratia between the thickness of lead and palyethelene layers, gave values which are in agreement within standord deviations.

At each angle of observation $10-12$ independently repeated measurements of the asymmetries $\varepsilon_{3 n}$ and ε_{3} were performed. In the overwhelming majority of cases the results of the repeated measurements coincided within experimental errors. Data on average energies and also on angle divergence of protons in the second-seattered beams are listed in the table togather with experimentally measured asymmetries $\varepsilon_{3 n}$ and \mathcal{E}_{3} and their statistical errors. The obtained values of the depolarization parameter for different scattering angles are also listed there.

Table
The values of the asymmetries $\varepsilon_{3 n}, \varepsilon_{3}$ and those of the depolarization parameter D (for $\theta_{2}=90^{\circ}$ the results are taken from $/ 1 /$)

$\theta_{2} \pm \Delta \theta_{2}$	$E_{2} \pm \underset{M e V}{ } E_{2}$	$\varepsilon_{3} \pm \Delta \varepsilon_{3}$	$\varepsilon_{3 n} \pm \Delta \varepsilon_{3 n}$	$D \pm \Delta \mathrm{D}$
$54^{\circ} \pm 4^{\circ}$	490 ± 20	0.121 ± 0.005	0.161 ± 0.024	0.99 ± 0.25
$72^{\circ} \pm 4^{\circ}$	416 ± 21	0.173 ± 0.008	0.164 ± 0.029	0.69 ± 0.20
$90^{\circ} \pm 5^{\circ}$	315 ± 20 *	0.216 ± 0.012	0.200 ± 0.032	0.93 ± 0.17
$108^{\circ} \pm 5^{\circ}$	219 ± 27	0.198 ± 0.011	-0.023 ± 0.033	0.28 ± 0.16
$126^{\circ} \pm 5^{\circ}$	125 ± 21	0.152 ± 0.015	. -0.009 ± 0.036	0.57 ± 0.20

DISCUSSION

According to Wolfenstein $/ 3 /$ the depolarizotion porameter can change in the limits of $-1+2\left|P_{2}\right| \leqslant 0 \leqslant+1$. The results, obtained in these experiments, shaw that the depolarization parameter, corresponding to pp-scattering at angles $54,72,90,108$ and 126°, has a positive value. Horeover, for angles 54,72 and 90° the value of the depalarization parameter was found to be near +1 . Comparing the asymmetry values $\varepsilon_{3 n}$ and ε_{3}, obtained for angles $54^{\circ}, 72^{\circ}$ and 90°, one can see that in ppscattering at these angles the normal component of polarixation does not undergo considerable changes.

Earlier the systematic meosurements of the depolarization parameter in pp-scattering had been performed af $315^{/ 5 /}$ and $143 / 6 /$ idev for angles less than 90°. In both cases the obtained values of the depolarization parameter had a positive sign. The comparing of the available data an triple proton scattering shows thot with the increase of the energy from 143 up to 635 HeV in the interval of the scattering angles of $50^{\circ} \leqslant \theta_{2} \leqslant 90^{\circ}$ there appears a tendency to the increase of the depolarixation parameter. Indicotions on this feature of pp-interaction in the energy range under study had been more convincing if the measurements

[^0]of the depolarization parameter had been performed with a better accuracy and with less anergy in. servals.

If one writes the matrix of po-scattering in notations of work /3/,

$$
\begin{align*}
M= & B S+C\left(\vec{\sigma}+\vec{G}_{t}\right) \vec{n}+\frac{1}{2} G\left[(\vec{\sigma} \vec{k})\left(\vec{G}_{t} \vec{k}\right)+(\vec{b} \vec{p})\left(\vec{G}_{t} \vec{p}\right)\right] T+ \\
& +H\left[(\vec{\sigma} \vec{k})\left(\vec{b}_{t} \vec{k}\right)-(\vec{\sigma} \vec{p})\left(\overrightarrow{b_{t}} \vec{p}\right)\right] T+N(\vec{\sigma} \vec{n})\left(\vec{\sigma}_{t} \vec{n}\right) T \tag{2}
\end{align*}
$$

and expresses the differential crass section of the unpolarized proton beam scattering by protons $\sigma_{0}(\theta)_{\text {and the depolarization parameter }} D(\theta)$ by the complex amplitudes B, C, G, it and N in the following form:

$$
\begin{gather*}
\sigma_{0}(\theta)=\frac{1}{4}|B|^{2}+2|C|^{2}+\frac{1}{4}|G-N|^{2}+\frac{1}{2}|N|^{2}+\frac{1}{2}|H|^{2}, \\
\sigma_{0}(\theta)[1-D(\theta)]=\frac{1}{4}[G-N-B]^{2}+|H|^{2}, \tag{4}
\end{gather*}
$$

then keeping in mind that $B, C / \sin \theta$ and H are even and G and N are odd functions of $\cos \theta$, it is not difficult to show that the values of the depolarization parameter for angles symmetrical relatively to the direction of 90 , are connected by the following two independent relations with the amplitudes of the scattering matrix:

$$
\begin{align*}
& \sigma_{0}(\theta)[D(\theta)+D(\pi-\theta)]=4 / C /^{2}+/ N /^{2}-/\left.H\right|^{2} \tag{5}\\
& \sigma_{0}(\theta)[D(\theta)-D(\pi-\theta)]=\operatorname{Re}\left[[G-N] B^{*}\right] \tag{6}
\end{align*}
$$

Hence, it is seen that the product of the differential cross section $\sigma_{D}(\theta)$ by the sum $[D(\theta)+D(\pi-\theta)]$ is represented only by the triplet amplitudes C, N and H, whereas the product of the differential cross section $\sigma_{0}(\theta)$ by the difference $[D(\theta)-D(\nabla-\theta)]$ is wholly caused by singlet-triplet interference.

Basing on the results of the present experiments, one can state with confidence that in ppscattering at 660 : NeV the sum $[D(\theta)+D(\pi-\theta)]$ is not equal to zero. It means that in pp-scot. taring matrix a great role is played by the triplet terms $C\left(\vec{\sigma}+\vec{\sigma}_{t}\right) \vec{n}$ $H\left[(\vec{\sigma} \vec{k})\left(\overrightarrow{\sigma_{t}} \vec{k}\right)-(\vec{\sigma} \vec{p})\left(\vec{\sigma}_{t} \vec{p}\right)\right]$
ord $\mathcal{N}(\vec{\sigma} \vec{n})\left(\vec{\sigma}_{x} \vec{n}\right)$.
As it hos been mentioned olready in $/ 1 /$ from the fact that $D\left(90^{\circ}\right)$ is near +1 , it follows that the term $C\left(\vec{\sigma}+\overrightarrow{v_{t}}\right) \vec{n}$ gives the main contribution into scattering at an angle of 90°.

In order to find out whether the difference between the observed values $D(\theta)$ and $D(\pi-\theta)$ is valuable or it is accidental, it was necessary to analyse the character of distribution of all
the errors of the measured asymmetries $\varepsilon_{3 n}$ and ε_{3}, and also of the polarizations P_{1} and P_{2}. The result of statistical analysis is os follows: the probobilities, that the difference $\left[D\left(54^{\circ}\right)-D\left(126^{\circ}\right)\right]$ and $\left[D\left(72^{\circ}\right)-D\left(108^{\circ}\right]\right.$ by the module differ from $\mathbf{z e r o}$, are 80% and 86%, respectivaly. Both the differences between the obsetved values of the depolarization parameter are practically independent of each other and the probability that the accidental deviation of both the differences from the average value, equal to xero, which takes place simultaneously, makes up 3% only.

Thus, though the accuracy of the dafa of the present experiments is poor, these data, however, indicate that in the treated region of energy and of scottering angles the singlet-triplet interference takes place, hence, it follows that the final states of pp-system include same mixture of singlet stotes.

The authors wish to express their gratitude to Yo.A. Smorodinaki, S.N. Sokolov, N.P.Klepikov and R.th. Ryndin for useful discussions.

REFFERENCES

1. Yu.P. Kumekin, M. G. Mescheryakov, S.B . Nurushev, G.D. Stoletov, JETP, 35, 1398,(1958).
2. O. Chamberlain, E. Segre, R. Tripp, C. Wiegand, T. Ypsilontis, Phys,Rev. 102, 1659, (1956).
3. L. Wolfenstein Phys.Rev. 96, 1654, (1954).
4. H.G. Hescheryokov, S.B.Nurushev, G.D. Stoletov, JETP, 33, 37, (1957).
5. O. Chamberlain, E. Segre, R. Tripp, C. Yiegand, T. Ypsilantis, Phys.Rev. 105, 288, (1957).
6. C. Mwang, T. Ophel, E. Torndike, R. Wilson, F. Ramsey, Phys.Rev. Lett. 2, 310, (1959).
7. A. Tayior, L. Hood, 1958, Annual International Conference on High-Energy Physics at CERN, -dited by Faretti, CERN, Geneva, p. 56,(1958).
8. J. Gammal, R. Thalor, Phys. Rov. 108, 163, (1957).
9. P. Signell, R. Zinn, R. Tharshak, Phys.Rev. Lett., 1, 416, (1958).

Fig. 1. The scheme of arrangement of the scatterers and the registrating equipment in the scatfering plane. M is the monitor, R_{2} is the second scatterer (a container with liaiud hydrogen), R_{3} is the third seatterer (a graphite block $5 \times 5 \mathrm{~cm}^{2}$ in section and 6 cm thick), $C_{7} \ldots C_{9}$
are scintillation counters which had sixes $6.5 \times 6.5,6 \times 7,6 \times 7,6 \times 6$, $6 \times 6.5,6.5 \times 7,6.5 \times 6.5,7.5 \times 12$, and 8.5×13 horisontally and vertically, respective$l y$, and 6 mm thick. The measurements of $\mathrm{D}^{\left(126^{\circ}\right)}$ were fulfilled without the counters C_{2} and C_{5}, and simultaneously, the third scatferer $5 \times 5 \mathrm{~cm}^{2}$ in section and 3 cm thick was used. The dashed curve shows the location of the lead shiolding.

[^0]: * In ${ }^{1 /}$ it is pointed out by mistake that the energy divergence of the second+scattered protons is ± 40 HeV. in reality it is $\pm 20 \mathrm{MeV}$.
 ** The Harwell group 17/ bas found negative value of the depolarization parameter for angles in the intental of $50 \leqslant$ Of90 ${ }^{\circ}$. on observing depolarization in pp-scattering at 142 MeV . This result, bowever, was not confinmed (seef.). it is necessary ta math that the sign of the depolarization parameter is extremely senstive to nuclear potential models used. Thus, the values of the depolarization parameter, found in'6/, are in agreement with the calculations of Gammel ana Tbaler who bave used the static poten tial with the addition of $\bar{L} . \vec{S}$-term while the use of the Sigpell-Marsbak potertial $\overline{\text { S }}$ leads to the value of the depolarization parametep, differing even by the sign from that, given by tbe experiment.

