ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория теоретической физики

P-408

И.С.Златев, П.С. Исаев

ПРИМЕНЕНИЕ ДИСПЕРСИОННЫХ СООТНОШЕНИЙ ДЛЯ ПРОВЕРКИ КВАНТОВОЙ ЭЛЕКТРОДИНАМИКИ НА МАЛЫХ РАССТОЯНИЯХ /11/

И.С.Златев, П.С.Исаев

ПРИМЕНЕНИЕ ДИСПЕРСИОННЫХ СООТНОШЕНИЙ ДЛЯ ПРОВЕРКИ КВАНТОВОЙ ЭЛЕКТРОДИНАМИКИ НА МАЛЫХ РАССТОЯНИЯХ /11/

P-408

Аннотация

С помощью метода дисперсионных соотношений рассчитываются поправки к бете-гайтлеровской формуле тормозного излучения в низшем по С приближении. Рассматривается вопрос о границах применимости квантовой электродинамики на малых расстояних.

1. Введение

В последнее время в ряде работ Дрелла^{/1/} широко обсуждается один из вариантов модификации квантовой электродинамики и указываются экспериментальные возможности ее проверки на малых расстояниях.

В частности, в работе^{/2/} рассматривается процесс рождения пар (ℓ^+, ℓ^-) $\int - \kappa вантами на нуклонах, который при определенных условиях допускает про$ $верку электронного пропагатора на расстояниях <math>\geq 0.7 \cdot 10^{-13}$ см. Ограничение в процессе рождения пар энергиями $\int -\kappa вантов \leq 140 \text{ Мэв}^{/2/}$ было отчасти связано с теоретическими трудностями учета динамических поправок, вызванных протонным током /см.граф. 2а и 26/, а вместе с тем и трудностями учета интерференционных членов типа /1a + 2a и т.д./.

В работе ^{/3/} предлагается использовать метод дисперсионных соотношений для расчета обобщенных диаграмм За, Зб. Таким образом, в принципе появляется возможность расчета процессов тормозного излучения и рождения пар /с учетом мезонного облака нуклона/ до весьма высоких энергий, пока поправки высших порядков по с не станут существенными.

В данной работе нами проведены расчеты однонуклонного члена в дисперсионных соотношениях для тормозного излучения, интерференционного члена /однонуклонное приближение + диаграммы бете-гайтлеровского типа, рассчитанные ранее в ^{/4/}/ и приблизительная оценка вклада однопионного состояния.

Расчет однонуклонного и интерференционного вклада до энергий ~ 500-600 Мэв с учетом форм-факторов оказался возможным потому, что на основе метода дисперсионных соотношений ^{/3/} в однонуклонный член можно строгим образом ввести известные хофстадтеровские форм-факторы.

Однонуклонный член рассчитан нами без учета аномального магнитного момента, в интерференционном вкладе нами удержаны члены, пропорциональные первой степени аномального магнитного момента. Оценки допущенных при этом неточностей даны в соответствующих параграфах.

Точный расчет *Я*-мезонных вкладов в процессе тормозного излучения рассматриваемым методом представляет собой сложную и трудоемкую задачу. Однако, в наших дисперсионных соотношениях можно провести приблизительную оценку одно- *П* -мезонного вклада в том случае, когда квадрат 4-импульса виртуального фотона близок к нулю /случай, близкий к реальному комптон-эффекту/. В статье приведены также оценки вкладов высшего по *С* порядка и процесса множественного тормозного излучения. Эти расчеты дают возмож ность утверждать, что в процессе тормозного излучения при энергии падающего электрона ~ 500 Мэв существует возможность проверки квантовой электродинамики до расстояний ≥ 3·10⁻¹⁴ см.

Интересно отметить, что при $\varphi = 0$ и больших углах Θ , $\Theta_o - I \Theta \simeq \Theta_o I$ однонуклонный и интерференционный члены имеют довольно острый и высокий максимум, иногда превышающий на несколько порядков величину бете-гайтлеровского сечения.

2. Однонуклонный вклад

В лабораторной системе координат матричный элемент тормоэного излучения в однонуклонном приближении /см. $^{/3/}$ совпадает с матричным элементом, соответствующим сумме диаграмм /2a + 2б/ с той, однако, разницей, что в однонуклонном приближении вместо неизвестных форм-факторных функций $\Phi_i(\mathfrak{X}^2, \mathcal{P}^{\prime}, \mathcal{M}^2)$ стоят известные хофстадтеровские форм-факторы $\mathcal{F}_i(\mathfrak{X}^2, \mathcal{M}^2, \mathcal{M}^2)$ Таким образом матричный элемент однонуклонного х/

$$< \frac{1}{|s|i} = ie^{3} \frac{Mm}{(2\pi)^{\frac{3}{2}}} \cdot \frac{\ell_{n} g_{m\ell}}{\sqrt{2k_{o}EE_{o}EE_{o}}} \cdot \frac{\delta(P_{o}+q_{o}-P-q-k)}{(q_{o}-q)^{2}} \cdot \overline{u}(\overline{q}, \sigma)\overline{y}^{m}u(\overline{q}, \sigma),$$

$$\overline{W}(\overline{P}, S) \left\{ \left[y^{n} - \frac{m}{2M} \cdot \frac{[\hat{k}, y^{n}]}{2} \right] \cdot \frac{\hat{k} + \hat{p} + M}{(k+p)^{2} - M^{2}} \cdot \left(\overline{f}_{i}(1q-q_{o})^{2}\right) y^{\ell} + \frac{1}{2.17} \right\}$$

$$\overline{f}_{2}(1q-q_{o})^{2} \frac{M}{2}M \cdot \frac{[\hat{x}, y^{e}]}{2} + \frac{1}{2} + \frac{1}{$$

x/ Обозначения см. /3,4/.

- 4 -

$$+\left(\mathcal{F}_{1}\left(\left|q-q_{o}\right|^{2}\right)g^{e}+\mathcal{F}_{2}\left(\left|q-q_{o}\right|^{2}\right)\frac{\mu}{2M}\cdot\frac{\left[\hat{x},g^{e}\right]}{2}\right)\frac{\hat{p}_{o}-\hat{k}+M}{\left(P_{o}-k\right)^{2}M^{2}}\left(g^{e}-\frac{\mu}{2M}\cdot\frac{\left[\hat{k},g^{e}\right]}{2}\right)\right)W\left(P_{o}s_{o}\right);$$

Из /2.1/ видно, что сечение dG_N , соответствующее квадрату матричного элемента $|\langle f|S|l \rangle/2$ может быть записано в виде:

$$dG_{N} = A_{o} + \mu A_{1} + \mu^{2}A_{2} + \mu^{3}A_{3} + \mu^{4}A_{4}$$

а M всегда сопровождается множителями $\frac{k}{2M}$ или $\frac{\mathcal{R}}{2M}$. Эти множители характеризуют величины соответствующих вкладов. Например, для \mathcal{E}_{o} =0,54 и k_{o} =0,25 /в единицах $\hbar = C = M = 1$, где M - масса нуклона/ величина $\frac{k}{2M} = \frac{1}{8}$, а $\frac{\mathcal{R}}{2M} < \frac{1}{4}$ и поэтому для углов \leq 90° вклад $\sum_{i=1}^{4} M^{i} A_{i}$ оказывается малым по сравнению с вкладом A_{o} . Дифференциальное сечение A_{o} имеет следующий вид:

$$A_{o} = \frac{e^{6}}{8(2T)^{5}} \cdot \frac{|\bar{q}_{o}||\bar{q}_{1}|^{3}}{\varepsilon^{2} \cdot \varepsilon} \cdot \frac{|\bar{q}_{o}||\bar{q}_{1}|^{3}}{(M + \varepsilon_{o} - \kappa_{o})/\bar{q}_{o}^{2}| - \varepsilon \cdot |\bar{q}_{o}^{2}|(\cos\theta\cos\theta_{o} + \sin\theta\sin\theta_{o}\cos\varphi) + \varepsilon \kappa \cdot \cos\theta}{(M + \varepsilon_{o} - \kappa_{o})^{2}} \times \left\{ \frac{\bar{q}_{o}^{2} \cdot \sin^{2}\theta_{o} - 2/\bar{q}_{o}^{2}||\bar{q}_{o}^{2}|\sin\theta\sin\theta_{o}\cos\theta + \bar{q}_{o}^{2}2\sin^{2}\theta}{(pk)^{2}} \left[4M^{2}\varepsilon\varepsilon_{o} + (q_{o} - q)^{2}(M^{2} + m^{2} - M\varepsilon_{o} + Mt) \right] + (pk)^{2} \right\}$$

$$+ \frac{q_{o}^{2} \sin^{2} \theta_{o}}{(p_{k})} \left[(q_{o} - q)^{2} - 4M\mathcal{E} \right] + \frac{\overline{q^{2}} \sin^{2} \theta}{(p_{k})} \left[(q_{o} - q)^{2} + 4M\mathcal{E}_{o} \right] - \frac{Mk_{o}(q_{o} - q)^{2}}{(p_{k})} - (q_{o} - q)^{2} + 4M\mathcal{E}_{o} \right] + \frac{Mk_{o}(q_{o} - q)^{2}}{(p_{k})} - (q_{o} - q)^{2} + \frac{Mk_{o}(q_{o} - q)^{2}}{(p_{k})} + \frac{Mk_{o}(q_{o} - q)^{$$

 $+ \frac{1(\cos |\gamma_0| \cos \phi_0|^2 + \gamma_1 \cos \phi_0|^2)}{(pk)} + \frac{4m \kappa_0 (\cos |\gamma_1| \cos \phi_0|^2 + \gamma_1 \cos \phi_0)}{(pk)}$

BALLENS H

entrepresentation to a service

$$-\frac{4}{M}\left[m^{2}\left(\varepsilon_{o}-\left|\overline{q}_{o}\right|\cdot\cos\theta_{o}-\varepsilon+\left|\overline{q}\right|\cos\theta\right)+k_{o}\left(\varepsilon_{o}-\left(\overline{q}_{o}\right)\cos\theta_{o}\right)\left(\varepsilon-\left|\overline{q}\right|\cos\theta\right)\right]+$$

$$+\frac{2}{M}\left[\varepsilon_{o}\varepsilon - \left|\overline{q}_{b}\right| / \left|\overline{q}\right| (\cos\theta \cos\theta_{o} + \sin\theta \sin\theta_{o}\cos\rho)\right] (\varepsilon_{o} - \left|\overline{q}_{o}\right| / \cos\theta_{o} - \varepsilon + \left|\overline{q}\right| / \cos\theta)\right\}$$

- 5 -

Выражение / 9 - 9 / У является быстроменяющейся функцией углов, что приводит к появлению острого максимума. Детальное рассмотрение максимума показывает, что в области arphi = O , $arphi pprox arphi_{o}$ он состоит из двух максимумов, см. рис. 1. При рассмотренных значениях энергии электрона и фотона максимум значительно превышает величину бете-гайтлеровского сечения. Если arphi возрастает, то максимум довольно быстро уменьшается. При уменьшении энергии начального электрона естественно ожидать, что относительный вклад однопуклонного члена будет уменьшаться. Соответственно и относительная высота максимума должна уменьшаться. Действительно, при Е. =0,14, k =0,07 $\theta \approx \, \theta_o$, θ_o =30° ширина максимума возрастает, а его относииΫ =0, тельная высота уменьшается /см. рис. 2/. С уменьшением энергии 🖁 -кванта /например, $k_o = 0.25, 0.15, 0.05/$ высота максимума сначала убывает /для ko =0,15/, а затем снова начинает расти, что связано, очевидно, с общим ходом сечения процесса при $k_o \rightarrow 0$. Вообще, при любых энергиях максимум имеет симметричную форму относительно точки $\theta = \theta_o$. Появление максимума можно наглядно представить себе, если в бете-гайтлеровских диаграммах поменять местами электронную и нуклонную линии. При этом два бете-гайтлеровских максимума /по одному в областях $0 \le 0_{\circ} \le \pi$ и $-\pi \le 0_{\circ} \le 0$ $\theta \approx \theta_{o}$ смещаются в область в однонуклонном члене.

Для детального исследования вклада /2.2/ нами были получены кривые дифференциальных сечений для энергии начального электрона ξ_{0} =0,54 и энергии f' -кванта k_{0} =0,25. При этом, как и ожидалось, вклад /2.2/ оказался несущественным в области малых углов и сравнимым с бете-гайтлеровским сечением в области больших углов $\theta, \theta \ge 90^{\circ}$. В таблице 1 приведены отношения дифференциального сечения /2.2/ к бете-гайтлеровскому сечению /формула/3/ из^{/4/}/.Заметим, что точки $\theta = \theta_{0}$ не являются строго точками максимума /см.рис.1/ и поэтому отношение вклада однонуклонного члена к бете-гайтлеровскому сечению в точках максимума будет еще больше,чем приведено в таблице 1.Нами был рассчитан также член μ f' f'_{4} и проведено сравнение его с вкладом f_{0} . Оказалось, что в наиболее интересной в настоящее время области углов ϵ 90°, где сечение процесса остается еще сравнительно большим, вклад μ f'_{4} несущественен.

Таким образом, ограничиваясь областью углов ≤ 90⁰ и учитывая в однонуклонном члене лишь вклад *A*_o, мы вносим ошибку в дифференциальное се-

- 6 -

чение тормозного излучения \leq 2%. В максимуме при $\vartheta \approx \vartheta_o$ эта оценка погрешности не годится; она будет определяться здесь в основном неточностью в определении собственно однонуклонного вклада.

В области углов $\geq 90^{\circ}$, как следует из таблицы 1 и отношения $\frac{\mathscr{R}}{2N} < \frac{1}{Y}$, общий вклад членов $\mathcal{M} A_1 + \mathcal{M}^2 A_2 + \mathcal{M}^3 A_3 + \mathcal{M}^4 A_4$ становится уже значительным и им пренебрегать нельзя. Однако, расчет этих вкладов в рамках обычного метода теории возмущений является чрезвычайно громоздким. В максимуме ($\theta \approx \theta_o$) вклад от членов $\mathcal{M} A_1$, $\mathcal{M}^2 A_2$, $\mathcal{M}^3 A_3$, $\mathcal{M}^4 A_4$ по крайней мере на порядок меньше вклада от A_o , так как величина $\frac{14o-4}{2M} \sim \frac{m}{M}$, а множитель $\frac{k}{2M}$ в области рассматриваемых нами энергий оказывается = $\frac{1}{8}$.

3. Вклад интерференционного члена

Матричные элементы, соответствующие диаграммам /1a + 1б/ и однонуклонному члену, были выписаны ранее /см. ^{/4/}/ и /2.1/. Так же, как и в однонуклонном члене интерференционный вклад можно разбить на сумму членов $d G_r' = B_0 + w B_l + w^2 B_2 + w^3 B_3$

Из-за больших величин сечений, получаемых из бете-гайтлеровских диаграмм, мы не можем ограничиться вкладом \mathcal{B}_o , а должны учесть член $\mathcal{M} \mathcal{B}_1$. Такое приближение близко к приближению, использованному в^{/5/}. В процессе расчетов мы отбросили в числителе члены $\sim m^2$, что равносильно замене $\mathcal{E} \leftarrow |\vec{q}|$ и $\mathcal{E}_o \leftarrow |\vec{q}_o|$. Окончательное выражение для $\mathcal{A}_{\mathcal{C}_{\mathcal{I}}} = \mathcal{B}_o + \mathcal{M} \mathcal{B}_1$ имеет вид /в лабораторной системе/:

$$dG'_{I} = \frac{\ell^{6}}{8(2\pi)^{5}} \cdot \frac{\&k_{o}}{\&o ME} \cdot \frac{dk_{o} \cdot d\Omega_{k} \cdot d\Omega_{q}}{df/d\varepsilon} \cdot \frac{1}{(q_{o}-q)^{2}} \cdot \frac{1}{(P_{o}-P)^{2}} \cdot \mathcal{F}(|q_{o}-q|^{2}) \cdot \mathcal{F}(|P_{o}-P|^{4}).$$

$$\times \left\{ \frac{\mathcal{E}_{o}^{2} \mathcal{G}_{m}^{2} \mathcal{O}_{o}}{(pk)(q,k)} \left[\frac{\varphi}{\varphi} + 2 M \mathcal{E} \left(q_{o} - q \right)^{2} - 4 M^{2} \mathcal{E} \left(\mathcal{E}_{o} + \mathcal{E} - k_{o} \right) \right] + \right.$$

- 7 -

 $+\left(\left(\frac{\gamma\circ_{d}}{\circ_{b}\circ_{d}}-\frac{\gamma\,d}{\circ_{b}\circ_{d}}\right)\frac{\gamma\circ_{b}}{\gamma\,b}+\left(\frac{\gamma\circ_{d}}{h\circ_{d}}-\frac{\gamma\,d}{h_{d}}\right)\frac{\gamma\,b}{\gamma\circ_{b}}\right)(\gamma\circ_{b}-\gamma\,b)\gamma+$ $+\left(\frac{\gamma b}{\delta \circ d}-\frac{\gamma \circ b}{\circ \delta \circ d}\right)\frac{(\gamma \circ b)(\gamma \sigma)}{\epsilon(\gamma \circ b-\gamma b)}+\left(\frac{\gamma \circ d}{r(\gamma \delta)-r(\gamma \circ b)}\partial +\frac{(\gamma \circ b)(\gamma b)}{\epsilon(\gamma \circ b+\gamma b)}\right)\frac{\gamma d}{(\circ b-b)}+$ $+\left(\frac{(\gamma^{\circ}d)}{(\gamma^{\circ}b)}+\frac{(\gamma^{\circ}d)}{(\gamma^{\circ}b)(\gamma^{\circ}b)}-\frac{(\gamma^{\circ}b)(\gamma+\eta+M)}{(\gamma^{\circ}b)(\gamma+\eta+M)}\frac{(\gamma^{\circ}b)(\gamma^{\circ}d)}{(\gamma^{\circ}b)(\gamma^{\circ}d)}+\right)$ $+\left(\frac{(\chi^{\circ} d)}{\varepsilon(\chi^{\circ} b)}-\frac{(\chi^{\circ} d)}{(\chi^{\circ} b)}+\frac{(\chi^{\circ} d)}{(\chi^{\circ} b)}+\frac{(\chi^{\circ} b)}{(\chi^{\circ} b)}\right)\frac{(\chi^{\circ} b)}{(\chi^{\circ} b)} + M + M$ $+\frac{(\chi^{\circ}b)(\chi^{\circ}d)}{(\chi^{\circ}b)(\chi^{\circ}d)} - \frac{(\chi^{\circ}b)(\chi^{\circ}d)}{(\chi^{\circ}b)(\chi^{\circ}b)(\chi^{\circ}d)} - \frac{(\chi^{\circ}b)(\chi^{\circ}d)}{(\chi^{\circ}b)(\chi^{\circ}d)} + \frac{(\chi^{\circ}b)(\chi^{\circ}d)}{(\chi^{\circ}b)(\chi^{\circ}d)} + \chi^{\circ}b\chi^{\circ} +$ $+ \gamma^{\circ}b\gamma + b^{\circ}d4 - \left[\frac{(\gamma b)(\gamma^{\circ}b)}{\gamma(b-\gamma^{\circ}b)} + \frac{(\gamma d)(\gamma^{\circ}d)}{\gamma(d-\gamma^{\circ}d)}\right] (\gamma^{\circ}b+\gamma^{\circ}b)(\gamma^{\circ}b+\gamma^{\circ}d\gamma) +$ + [((y - 3 + ° 3) ° 3 = W 2 + 2 (b - ° b) (° y - ° 3) W) - y ° b - 7 $-\left(^{\circ}\gamma+3+^{\circ}3\right)S_{7}W^{*}\left(\frac{1}{2}\left(\frac{b-^{\circ}b}{2}\right)\left(^{\circ}\gamma+3\right)W\right)\frac{\gamma b}{2}+\left(\frac{\gamma \circ b}{1}+\frac{\gamma b}{1}\right)\cdot \frac{\gamma b}{1}\frac{(\gamma d)}{\frac{1}{2}}\frac{(\gamma d)}{\frac{1}{2}}$ $-\left[\left(^{\circ}\gamma+3+^{\circ}\right)^{\circ}3_{*}WH^{-}_{2}(b-^{\circ}b)^{\circ}3W?-\phi\right]\frac{(\gamma b)(\gamma d)}{\beta_{*}^{m_{f}}}+$

- 8 -

$$+ \left((qk)^{2} - (q_{\circ}k)^{2} \right) \left(\frac{1}{pk} + \frac{3}{p_{\circ}k} + \frac{qk - q_{\circ}k}{(Pk)(P_{\circ}k)} \left(\frac{P_{\circ}q}{qk} + \frac{P_{\circ}q_{\circ}}{q_{\circ}k} \right) \right) \right] \right\}$$

rme $f(\xi) = E(\xi) + \xi + k_{\circ} - M - \xi_{\circ}$

 $\phi = -\lambda \left(P_{\circ}q_{\circ} - P_{\circ}q_{\circ} - P_{\circ}k \right) (q - q_{\circ})^{2} + \lambda \left(M^{2} + m^{2} \right) \left(P_{\circ}q + P_{\circ}k - P_{\circ}q_{\circ} + (q - q_{\circ})^{2} \right)$

 $U = \lambda \left(q_{\circ} - q_{\circ} \right)^{2} \left(P_{\circ}q_{\circ} - P_{\circ}q_{\circ} - P_{\circ}k \right) - (q_{\circ} - q_{\circ})^{4} + \lambda \left(q_{\circ}q_{\circ} \right) \left(P_{\circ}^{-\frac{p}{q}} + P_{\circ}k - \frac{1}{2} \left(q_{\circ} - q_{\circ} \right)^{2} \right) +$

 $+ \left(P_{\circ}k \right) \left(q_{\circ}k \right) - \left(P_{\circ}k \right) \left(q_{\ast}k \right) + \left(P_{\circ}q_{\circ} \right) \left(q_{\ast}k \right) + \left(P_{\circ}q_{\circ} \right) \left(q_{\circ}k \right) -$

 $- \left(q_{\ast}k \right) \left(q_{\circ}k \right) - \left(P_{\circ}q_{\circ} \right) \left(q_{\ast}k \right) - \left(P_{\circ}q_{\ast} \right) \left(q_{\ast}k \right) z -$

 $- \left(P_{\circ}q_{\circ} \right) \left(q_{\circ}k \right) - \left(P_{\circ}q_{\ast} \right) \left(q_{\ast}k \right) z -$

 $- \left(P_{\circ}q_{\circ} \right) \left(q_{\circ}k \right) - \left(P_{\circ}q_{\ast} \right) \left(q_{\ast}k \right) z -$

$$W = \left(P_{o}q_{o} - P_{o}q - P_{o}k - \frac{(q - q_{o})^{2}}{2}\right)\left(m^{2} + qq_{o} + 2p_{o}q + 2p_{o}k - 2p_{o}q_{o}\right) + (q_{o}k)(q_{k}) + 2\left[(q_{k}) - (q_{o}k)\right]^{2} - \frac{(q_{o} - q_{o})^{2}}{2}$$

$$\mu=1,79.$$

В таблице 11 приводятся отношения дифференциальных сечений интерфе-.ренционных членов В. и м В, к бете-гайтлеровскому дифференциальному сечению.

Интерференционный вклад $d \, \mathcal{C}_{I}$, вообще говоря, оказывается значительным и, например, при d = 0, $\theta = 30^{\circ}$ и $\theta_{o} = 60^{\circ}$ достигает 20% от $d \, \mathcal{C}_{5-f.}$ Вклад $M \, \mathcal{B}_{1}$, примерно на порядок меньше вклада \mathcal{B}_{o} /за исключением точек максимума/. Эти вклады становятся сравнимыми лишь при больших углах. Таким образом интерференционный член учтен с достаточно высокой степенью точности, а ошибка, которая при этом вносится в дифференциальное сечение тормозного излучения для рассматриваемых нами энергий, оказывается ζ 1% / исключая, конечно, точки максимума и большие углы/.

Расчеты для \dot{c}_{o} =0,54 и k'_{o} =0,25 и других значений \dot{c}_{o} и k_{o} проводились на электронно-счетной машине "Урал". Кривая в максимуме / $\dot{\gamma}$ = 0, $\partial \approx \partial_{o}$ / считалась по ∂_{o} с шагом 30" и с точностью до седьмой значащей цифры. В ряде случаев шаг 30" оказался недостаточным для точного определения положения максимума. На рис. 1 приведены кривые 111, 1У, соответствующие интерференционному члену при \dot{c}_{o} = 0,54, k_{o} =0,25.

4. Оценка однопионного вклада

Дисперсионные соотношения /см. $^{/3/}$ связывают эрмитову и антиэрмитову части амплитуды процесса тормозного излучения. Если условие унитарности $SS^+ = 1$ записать в одномезонном приближении, то антиэрмитову часть ампли – туды виртуального комптон-эффекта можно выразить через амплитуду реального и виртуального фоторождения \mathcal{T} -мезонов. Амплитуда виртуального фоторождения \mathcal{T} -мезонов была найдена в работах $^{/6,7/}$, амплитуда реального фоторождения может быть взята из опытных данных. Таким образом, существует принципиальная возможность учета однопионного вклада. Для нас сейчас достаточно приблизительной оценки рассматриваемого вклада, которую можно получить в пределе малых значений \mathcal{X}^{\ddagger} . В этом случае виртуальный комптонэффект можно рассматривать близким к реальному и воспользоваться результатами работ $^{/8-11/}$. В известных в настоящее время экспериментальных данных

- 10 -

комптон-эффект мерялся под углами ≥ 50°. Для энергий ≤ 100 Мэв экспериментальная кривая хорошо согласуется с пауэловским сечением.

Для энергий > 150 Мэв начинают сильно сказываться мезонные поправки. Гелл-Манн и Метьюз^{/10/} провели сравнение полученных ими дисперсионных соотношений с опытными данными по комптон-эффекту на нуклонах для угла рассеяния $\theta = 90^{\circ}$. Расчеты по дисперсионным соотношениям были проведены в одномезонном, статическом приближении с учетом (/3/2, 3/2/) резонанса. Авторы получили удовлетворительное согласие с опытом до энергий f -квантов ~ 250 Мэв.

Результаты, близкие к результатам ^{/10/}, были получены также Каппсом^{/9/} и Анибой и Сато^{/11/}. Некоторые различия в результатах этих работ для нас несущественны, поскольку нас интересует лишь приблизительная оценка вклада, однопионного состояния^{x/}.

Итак, в рассматриваемом нами случае $\mathscr{R} \stackrel{i}{\sim} 0$, амплитуда Т^С /см. ^{44/}/ близка к амплитуде реального комптон-эффекта.

Сравнивая теперь величину сечения однонуклонного вклада при $\theta = \theta_o$ / $\psi = 0$ / со значениями сечения комптоновского рассеяния, взятыми из работ /9-11/ под теми же углами, мы получаем требуемую оценку.

Для угла $\theta \approx \theta_o = 30^\circ$ энергия кванта ≈ 250 Мэв. Вклад однопионного состояния оказывается \prec вклада однонуклонного члена.

Для углов $\theta \approx \Theta_0 = 80^\circ$ и энергии γ -кванта ≈ 270 Мэв вклад однопионного состояния приблизительно в 5-8 раз больше однонуклонного. При энергии падающего γ -кванта ≈ 300 Мэв /угол = 90° / вклад однопионного состояния приблизительно в 15 раз больше вклада однонуклонного члена.

Мы считаем, что полученные оценки, относящиеся к реальному компгонэффекту, справедливы и для виртуального комптон-эффекта, когда $/\theta - \theta_o / \leq 5^{\circ}$ /тогда \mathscr{X}^{\flat} достаточно мало/.

Комптон-эффект на нуклонах вблизи порога рождения **-**мезонов рассмотрен Л.И. Лапидусом и Чжоу Гуан-чжао, препринт ОИЯИ, Р-372.

- 11 -

5. Поправки высшего по в порядка

Поправки высшего по ℓ порядка были найдены в работах Фомина^{/12/} и Митра, Напаянасвами и Панде^{/13/}. Мы используем в своей работе оценки, полученные Фоминым.

В ультрарелятивистском случае и при не слишком малых углах суммарный вклад радиационных поправок и поправок на двойное тормозное излучение не превышает несколько процентов. Эта оценка получена без учета отдачи нуклона. Эффект отдачи нуклона не вносит существенных изменений.

6. Заключение

Используя проведенные в данной работе расчеты поправок /88 2-4/, мы можем получить сечение тормозного излучения в низшем по с порядке с определенной степенью точности.

Так, например, при $\varphi = 0$, $\theta = 30^{\circ}$ кривая по θ_{\circ} до углов $\leq 40^{\circ}$ дана с точностью до 5% /см.рис. 3/. Радиационные поправки и поправки на двойное тормозное излучение не превышают нескольких процентов.

Предполагая, что при проверке сечения тормозного излучения экспериментальная ошибка составляет 10%, мы получаем, что для углов θ , $\theta_o \sim 30^\circ$, энергии падающего электрона \mathcal{E}_{\bullet} =0,54 и энергии f^{\bullet} -кванта = 0,25 квантовая электродинамика проверяется до расстояний ≥ 3.10⁻¹⁴ см. /Во всех рассуждениях область максимума исключается/.

Точный учет 1 П - мезонного состояния позволит пройти далее по углам $\varphi, \theta, 9$. и по энергиям падающего электрона, и, следовательно, позволит проверить электродинамику до еще меньших расстояний.

В заключение мы приносим глубокую благодарность академику Н.Н.Боголюбову и А.А.Логунову за предложение темы работы и ценные указания, Д.В.Ширкову и А.Н.Тавхелидзе - за полезные дискуссии. Авторы также благодарны Н.И.Полумордвиновой за проведение расчетов на машине "Урал".

Литература

1. CM., HANDUMED, S.D. Drell, Annals of Physics, 4,75 (1958).
/В этой работе даны дополнительные ссылки на работы, посвященные вопро- сам проверки квантовой электродинамики на малых расстояниях и вопросам модификации квантовой электродинамики/.
2. J.D. Bjorken, S.D. Drell, S.C. Frautschi, Phys. Rev. 112, 1409(1958).
3. И.С.Златев, П.С.Исаев. Препринт ОИЯИ, Р-321, ЖЭГФ 37,728, (1959).
4. И.С.Златев, П.С.Исаев. Препринт ОИЯИ Р-264, Nuovo Cimento, I3, I (1959).
5. R.A. Berg and C.N. Lindner, Phys. Rev., 112,2072 (1958).
6. Fubini, Nambu, Watagin, Phys. Rev., 111, 329 (1958).
7. Л.Д.Соловьев, частное сообщение.
8. C.L. Oxley and V.L. Telegdi, Phys.Rev., 110, 733 (1958), 100, 435(1955).C.S.Janes, R.Comes, C.Rugh and D.K.Frisch, Phys.Rev.100, 1245(1955).
9. R.K. Capps, Phys.Rev., 108, 1032 /Другие ссылки на теоретические работы по комптон-эффекту можно найти в работе Каппса/.
10. Доклад Чу (Annual Conference at High Energy Physics, CERN, 1959).
11. T. Akiba and I. Sato, Progr. Theor. Phys., V.19,93 (1958)
12. П.И.Фомин. ЖЭТФ, 35, 707 /1958/; диссертация.
13. A.N. Mitra, P.Napayanaswamy, L.K. Pande, Nuclear Physics, 10,629 (1959).

Рукопись поступила в издательский отдел 18 сентября 1959 года.

5

		4	1	· · ·	ТАБЛИ	IA I	•				
	•			2. 							
			f = 0			-1 =90°.			$\varphi = 150^{\circ}$		
0.	30 ⁰	90 ⁰	150 ⁰	30 ⁰	90 ⁰	150 ⁰	30 ⁰	90 ⁰	150 ⁰		
6 ⁰	0,36.10-4	0,14.10 ⁻³	0,II.I0 ⁻⁵	0,56.I0 ⁻⁴	0,15.10 ⁻⁴	0,12.10-5	0,63.IO ⁻⁴	0,16.10 ⁻⁵	0,12.10 ⁻⁵		
30 ⁰	62	0,28.10 ⁻²	0,23.10 ⁻²	0,24.10 ⁻²	0,47.10-2	0,30.10 ⁻⁴	0,17.10 ⁻²	0,40.10 ⁻²	0.33.10-2		
60 ⁰	0,018	0,042	0,016	0,69.10 ⁻²	0,027	0,019	0,41.10 ⁻²	0,0I4	0,017	14	
90 ⁰	0,0I4	0,16.10 ⁵	0,19	0,91.10 ⁻²	0,085	0,12	0,62.I0 ⁻²	0,036	0,081	1	
120 ⁰	0,030	I,4	3,2	0,022	0,26	0,70	0,018	0,14	0,37		
150 ⁰	0,066	I , 4	0,69.10 ⁵	0,053	0,77	5,4	0,048	0,49	2,9		

-

v = 0 ⁰				₽ = 90 ⁰								4 = 150							
2		30 ⁰		90 ⁰		150 ⁰		30 ⁰		90°		150 ⁰		300		90 ⁰		150 ⁰	
	a	٤	a	4	a	8	8	E	a	4	8	-	8	n n 8 − N	8	4	8	.	
രം	0,011	0,14,10-4	0,014	0,11.10-2	0,34.10	² 0,62.10 ⁻³	-0,74.10-2	-0,19,10-4	-0,39.10 ⁻²	-0, 38.10-3	-0,30.10-2	-0,77.10-3	-0,013	-0,68.10-4	-0,014	-0,14.10-2	-0,78,10-7	² -0,19.10	2
30° -0	0,013	5,7	0,046	0,13.10-2	-0,044	-0,0II	-0,07I	-0,11,10-2	-0,080	-0,85.10-2	-0,066	-0,016	-0,056	-0,21.10 ⁻²	-0,074	-0,012	-0,074	-0,020	
60 ⁰ (0,20	0,94.10-2	-0,44	-0,045	-0,22	-0,050	-0,065	-0,46.10-2	-0,20	-0,027	-0,22	-0,05I	-0,071	-0,90,10 ⁻²	-0,14	-0,031	-0,19	-0,052	
90 <mark>0</mark> 0) , I 3	0,026	0,12	0,83,104	-0,64	-0,13	-0,033	-0,50.10-2	-0,26	-0,045	-0,44	-0,0%	-0.076	-0,019	-0,20	-0,052	-0,35	-0,089	5
1200 0	009	0,037	0,57	0,48	-I,24	-0,070	-0,023	-0,34.10 ⁻²	-0,23	-0,033	-0,6I	-0,090	-0.076	-0.024	-0.25	-0.066	-0.45	-0.095	
1500 0	0,059	0,031	0,23	-0,23	-0,047	0,6.104	-0,92.10 ⁻²	+0,19.10-2	-0,12	+0,031	-0,62	-0,028	-0,054	-0,018	-0,21	-0,033	-0,57	+0,052	

II

TA

Рис. 1. 1 - бете-гайтлеровское сечение; 11 - Однонуклонный максимум; 111 - Интерференционный член д и 1У - Интерференционный член во У - Результирующая кривая.

Рис. 3. Ход кривой для $\Theta = 30^{\circ} \sim см.рис.$ 1.