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The statistical variational principle lll_,which is a generalization of .the variatio­

nal principle suggested by Bogoliubovl 2 1 .. enables us to calculate thermodynamic quantities 

at zero temperature as well· as~ at non-zero one. 

In the present ·paper with the aid of the statistical variation_ principle the super­

fluid state of the nucleus at nonzero temper~ture.w'as ··investigated: the temperature of the 

phase transition from the superfluid state.into the--normal one was obtained, the behaviour 
< • ' 0< ~ • -

of thermodynamic quantities at the temperature close toG= 0 as well·as at the temperatu­

re .close to a critical one G • G · was investigated, 
0 

Just as in the previous papers of one of the authors1J, 4 1 basing on the shell model 

of the nucleus we consider 'residual interactions of micl'eons. near the Fermi energy surfa-

ce, i.e. 

Write the Hamiltonian of the residual nucleon interactions in the form: 

. ' . H = L I E(A m·') .: ~ afm(~ )+ aj ~. (A ) + 
__,j,m,f . 

+ 1. ~ T(A .( • A' ./I "" ' . ~) + ... · '. . + . (l) 
4 '<"~~~j: 1('..2/...UI/'.2 Fnl,l112//n,/113;/Qfli11J(A) af1/ll.tf.4.J) a11/11;(1,? ~jni(-4;) 
m,,m~,m~,m~ 
f,,p,_,,;,p:_ , I , 

.f.mtt-f:J.fh.J=ttm: t1i'Jn.tJ f:m, f" /}h1J 
The chemical potential ]\... is determined from the condition: 

+. .. 
Yl = 2, .( Q..jm(A) Qj'inf/.J)> (2) 

..&,111:f 

the notations are the same as in141. Let us perform the canonical transformation· 

(J) 

under the condition 
:z. %. 

~,.(4) = Uffl(A) -+ 7J;. (4)- 1 ..:.. 0 (4) 

and determine a new·vacuum state ~0 
In order to avoid the transition from an even nucleus to an odd one we examine the excit-

ed states of the type: 

. ~.1 = vfm-t (.olc/m-(AJ if!". (5) 

The Hamiltonian is represented by us in the form: 

(6) 

where 

and 



j, 
I 

;' 
f 

I 

~,. _____ ~--- ------- -----------~-- ----- --~ 
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Making use of the Bogoliubov•s variational theorem we get an upper limit for the thermo­

dynamic potential of nucleus in the following form 

tr=- e L.in{.2 ~ f",.f~) J.-r X fct.t.Jh)-Jt)-
.4,m . • 61 A,m j 

. -2 L_J(1i~/Jnlm')"' E:/el~) 21"'/--s)'l/;(4} '21111!4? wf~') -t . 
4A'"'m' ·..... · ·. . (8) , r··, 

of "Z_J(-£,~') m,m').,/, E;t;)-;1. ~~t5J 2/111!6) 7};(4}7,(,.: {.-/) VJI{(,l) . 
..0 L>' "'m' F. I I 

From the condition of the thermodynamic potential minimum we obtain equation for the deter-
mination of U 

1 
l/' .' ~ z 

IE (4JH)-JL l.UIH(4)'V;,(,61 +..!... Um!4)U.t1) 2:_ ]f,6A'/mm:J Y,n (,1') UHf (t!J 7!;..•(-4) + ) '/ e 4-/, .E!:!..0. 4'm' ' J 
GJ I 

+ 4 u,t.6)?J;..f,4J{u"'t4)~ 7/,(-5/ ~ L. J f4~·1mllt'J u,; (4J Y:.:~AJ z Jf.JJ'l"$'11 'J J!,: t4) u"' u' 7/;,:·t4J -+ 
8 d, 'EittfA) ) ..-r;/11~ I 1 A" In" 

6/ ? I 

+.2..f21"'M~7l~~~t&Jjaf&f-$)2Jt'A~1"''"') 21m:;~'J);,.u{ 2_J(4;4/»fmJ ~"!&)tl,"f&' Vitti&) -r e .:Je .IJ'"'I I I s.tt-1'. .&·,.,· . 
I • -;;:-e- I 

T ?J,.(&)":...?);,. (&)~J(~A' /ht m') .,{ fill(~'} Zlnt (tJi) 7lhl (/./) = 0 
2 -4"1H' 

1 
' .2e (9) 

I 

where 

Ym/.-1) = 1 - ti-l _ t JH • ~--::-1=--

It is easily seen that (9) assumes a trivial solution corresponding to the normal state, 
viz. 

U m(,& ) = 1- aF(A ,m), Vm( ..6 ) = aF( ,& ,m) 
where 9F( ,d ,m) = 1 

for E( ..A ,m) ( EF and aF( ...<! ,m)= 0 for 'E( /.I m) > EF. 

Considering the second variation of the thermodynamic potential, as inlJl, we obtain 

th~ following equation for finding the phase transition temperature 

1,/ Eft5~111)-/1/vn /'E~~a-FF/ ' 111 (4) +4~](.J,A'J~~~f)t;,. f,&) = o. (lo) 
, 

The phase transition temperature 90 is determined from the condition: the equation 

(10) should have a linn-zero solution. Taking into account the smalfness of IE( _,.6 ,m)-EFI/9
0 and assuming the approx1mation14l 

J "' canst., .f =·canst. 
we get the phase transition temperature eo equal to: 

a =-.d:.L.(A+cf). 
0 2 

(11) 

(12) 

This expression differs by a factor 2 from the corre~ponding expression inlJI. This is re-

~ t 

'[ 
J 



.L_ 

J 
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lated to that we have considered the excited states of the type (5). It should be noted that 

the concept temperature of finite nucleus begins to assume a physical sense under rather 

strong excitation of the nucleus, i.e. near and above the phase transition temperature. 

We find a· non-trivial solution for the Eq. (9). This can be done in the two limitting 

cases: when the temperature is close to zero and when the temperature is close to that of 

the phase transition. In both cases· the Eq. (9) takes the following form: 

$111 /--s) u"'r6J ztnfrS) + Y~~~r6~71..tMJZ Jf1~'/~~t,m'JJ E~;:'J Ym'f6?_v;,.'t69 = o 
4'111' -C7 

(lJ) 
I 

where 

(14) 

then, from the Eq.(lJ) we obtain Cm( .A ) 

and the equation for Cm(A ) takes the form similar to (12) 

Cm(.-0 ) = - + L J ( ...0' .A' lm,m')~ Em•~: •) 
. ~·m· ~ 

In the approximation of (11) the Eq. (15) is got in the form: 

l
'EF-A:tLJ P FC}) 

1 Tf . Pt. :2e Jl; 
=-y .Jc%-+~.:z J 

EF-A-1 

(16) 

where 

(17) 

The Eq.(2) describing the chemical potential in this approximation is written as 
FF -.i\ ~L1 · J 

n-= fl f 1-/CTF) ciJ . c1a) 
Ep->.-J 

and the thermodynamic potential of the system in the following form: 



~ ·; - 6-

. . fp-.\-t-.1 . . . . _ Ff~) £!}) . C t .2 

'f= p j f-e.fl,. (1+e ")- y •3 +JcH• ]d5-t J 
f"p-).- J 

(19) 

Note that for e = 0 the eqs. (16), (18) are solved in a simple manner and the magnitudes 

of C
0 

and Ao .are ob'tained in1 41. 

We find an explicit form of c and )L for each limitting case. 

Case I: e~ 0 i.e. the temperature e is close to zero. Expanding 

... P E( ~ ) . - 2 J c: + ~2 
yh=--~.-~._;....;:::::.1-e e 

2 e 

where 

Jfl Fp-.A:tA J ~ - J< {e) 
1=--y .tc~~'L 

Ep-)\- J 'f ~[(., "-t i ~ 
Ep-Ao+Ll e- e ).fl d} 

I< (8) - - 2 fp-Ao-cf /Co~+) oz. 

We obtain 

Solving (16), (18) in this approximation we get 
C = (2 f1 :..n)n el/q J 1 _ !ill._c:fh _g_ 1. 
. . fCe27t:r- 1) L q- q- J 

(20) 

E J\. f) -n f 1 2~ . 1 } 
F- - f (e2/q- -1) . - q l - e-2/q. 

(21) 

where q = - Jj' , n - is the number of nucleons and /.2- is the number of levels near th( 

Fermi surface. 

Case II: Q ~00 i.e. temperature Q is somewhat less than the phase transition 

temperature eo. 

In this case (lJ) takes· the form: 

c 'J)2/.IH(o)7/,/A)+
4

1 f UJH/J)~~f4f~ 2._J{.&.h'/J111ff')?J~IoJ ?!Jttfn) = o 
5~~tt• B t J..-s'IH' .. 

"1. ; . (22) 

C !«) =-- 2:_ J{;>~'/JH,hf'} [){.(/.>') Um'(tS? 7/,d,{) 
If\ IN 2 e -6' ht , ' 

I 
In the approximation of (11) for determining C we obtain the equation 

Fp-A.-tA ~ . 

1 = 2~ 1 ct!z d~ (2J) 

ff~'>..-J 

from where 



J 

f 
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Remaining only the linear term in the expression C ( 8 ) near e 
e

0 we obtain 

The entropy J and the free energy f of the system are connected with the thermodyna­
mical potential 'f' by the following relations: 

s =- o(fJ- dl.P ac' 
oe ore .. oe 

c=SS+Cf 

It is easy to show that the ~er~vative~ ~~' vanishes in the point e
0 

and owing to this 

fact the entropy ~ suffers no jump in the point e
0

, therefore the phase transition of 

the system from the superfluid state into the normal one is a phase transition of the se­
cond kind. 
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