ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Лаборатория ядерных проблем.

P-402

Ю.А. Будагов, С. Виктор, В.П. Джелепов, П.Ф. Ермолов В.И. Москалев

УПРУГОЕ РАССЕЯНИЕ П-МЕЗОНОВ ПРОТОНАМИ ПРИ ЭНЕРГИЯХ 128 И 162 МЭВ ЛЕЭТФ, 1960, 738, 6.3, СТР. 734-746 Лисе, Рауз, 1961, 22, ~4, p 226 Ю.А.Будагов, С.Виктор, В.П.Джелепов, П.Ф.Ермолов, В.И. Москалев

УПРУГОЕ РАССЕЯНИЕ П-МЕЗОНОВ ПРОТОНАМИ ПРИ ЭНЕРГИЯХ 128 И 162 МЭВ×/

1621

A Sto

1 - 22× 1463

Сбъединенный институт асоных всследованыя БИБЛИОТЕНА

х/ Работа доложена на УІ сессии Ученого Совета Объединенного института ядерных исследований /май 1959 год/ и на конференции по физике высоких энергий в г. Киеве /июль 1959 год/. Аннотация

Угловое распределение упругого рассеяния отрицательных \mathcal{F} -мезонов протонами при энергиях 128 и 162 Мэв измерено с помощью водородной диффузионной камеры, работающей в магнитном поле. В серии экспозиций зарегистрировано соответственно 344 и 941 случай упругого рассеяния на углы O /с.ц.м./>10°. Полные сечения упругого рассеяния O упр /128 Мэв/= = /12,8 ± 1,0/·10⁻²⁷ см² и G_{ynp} /162 Мэв/=/21,4±1,2/·10⁻²⁷ см² определены путем подсчета полной длины треков \mathcal{F} -мезонов в камере. Угловые распределения упругого \mathcal{F} -P -рассеяния получены в виде / SP -анализ/:

 $\frac{dG}{d\Omega} / 128 \quad M \ni B / = /1,00 \pm 0,08 / 1/0,55 \pm 0,07 / + /0,34 \pm 0,12 / los + /1,30 \pm 0,24 los + 10^{-27} cm kT + page.$

 $\frac{dG}{d\Omega} / 162 \text{ M}_{\text{B}} = /1,00\pm0,06 / 1/0,93\pm0,07/+/0,51\pm0,12 / 0s0 + +/2,28\pm0,22 / Cos^{2} + 10^{-27} \text{ см}^{2} \text{ стерад.}$

Дифференциальные сечения рассеяния вперед равны соответственно /2,20<u>+0,32/•10⁻²⁷ см²/стерад и /3,73+0,32/•10⁻²⁷ см²/стерад. Вычислены действительные части амплитуды вперед /в с.ц.м./ в единицах <u>л</u>с :</u>

 \mathcal{D}^{ℓ} /128 Məb/ =0,261±0,031 H \mathcal{D}^{ℓ} /162 Məb/ =0,216±0,038.

Эти величины согласуются с рассчитанными из дисперсионных соотношений с константой связи $f^2 = 0.08$.

1. В ведение

В последнее время уделяется значительное внимание экспериментальной проверке дисперсионных соотношений. Для рассеяния заряженных 🕤 -мезонов протонами дисперсионные соотношения были получены впервые Гольдбергером, Миядзава и Эме /1/. Эти соотношения связывают действительные части амплитуд **У**-рассеяния и интегралом по полным сечениям рассеяния вперед с длинами ST-p и ГГ-Р - взаимодействий во всей области энергий. В области ин-OSW4M имеется вклад от "связанного состояния", т.е. тегрирования вклад от нейтрона, как возможного промежуточного состояния системы при рассеянии. Этот вклад может быть выражен через перенормированную константу $c_{BR3H} f^{z}$. характеризующую псевдовекторное взаимодействие. В основе вывода дисперсионных соотношений лежат такие общие физические принципы, как принцип микроскопической причинности /требование отсутствия сигналов, распространяющихся со скоростью, большей скорости света/ и гипотеза зарядовой независимости ядерных сил. Сравнение с экспериментальными результатами дает возможность проверки правильности этих фундаментальных предположений. С другой стороны становится возможным независимое определение константы свя-S -рассеяния. зи и длин

Сравнение дисперсионных соотношений с экспериментом, выполненное первоначально Андерсоном, Давидоном и Крузе /2/, показало хорошее согласие между ними. Однако в 1957 году Пуппи и Стангеллини / обратили внимание на то, что **П**-мезонов наблюдается расхождение между эксперимендля отрицательных тальными и теоретическими данными. Если для Я -мезонов действительные части амплитуд рассеяния вперед, определенные экспериментально в интервале энергий до 400 Мэв, находились в согласии с рассчитанными из дисперсионных **∫²** = 0,09 <u>+</u>0,01, то для соотношений с константой связи Я мезонов в интервале энергий до 200 Мэв лучшее согласие получено, если принять константу $f^2 = 0,04$. Тогда же Агоди, Чини и Витале^{/4/} было показано, что эффексвязи ты, зависящие от заряда, электромагнитные поправки и вклад от гиперонов и К-мезонов не могут объяснить наблюдающееся расхождение. С другой стороны, как видно из оригинальной работы /3/, это расхождение основывается главным образом на результатах одного эксперимента - измерений упругого J-P -pacсеяния группой института Карнеги^{/5/} при энергии *Г*-мезонов 150 и 170 Мэв, поскольку остальные экспериментальные данные в этой области энергий имеют сравнительно низкую точность. В связи с этим получение новых экспериментальных данных по упругому *Г*-*Р*-рассеянию в области энергий 100-200 Мэв и сравнение их с предсказаниями дисперсионных соотношений представляли несомненный интерес.

В настоящей работе приводятся результаты измерения упругого рассеяния отрицательных π -мезонов протонами при энергиях 128 и 162 Мэв, полученные с помощью водородной диффузионной камеры. Применение такой методики позволило избежать ряда специфических экспериментальных трудностей, связанных с использованием электронных методов измерения, а также дало возможность продвинуться в область меньших углов рассеяния, что весьма существенно для определения величины дифференциального сечения под 0°.

11. Условия опыта и аппаратура

1. Экспериментальная установка

Схема расположения экспериментальной установки приведена на рис. 1. Во внутреннем протонном пучке /2/ с энергией 670 Мэв синхроциклотрона Лаборатории ядерных проблем Объединенного института ядерных исследований была помещена бериллиевая мишень /3/ толщиной 40 мм. Генерируемые 刃 -мезоны /4/ магнитным полем ускорителя выводились наружу из мишени вакуумной камеры /1/ и, пройдя дополнительную бетонную защиту /5/, коллимировались заложенным в защитной стене /7/ коллиматором /6/ длиной 3,6 м и внутренним диаметром 504м. Затем пучок 7 -мезонов очищающим магнитом /8/ отклонялся на 40° и попадал в диффузионную камеру /11/, помещенную внутри электромагнита /10/. Перед камерой находился дополнительный свинцовый коллиматор /9/ с прямоугольным отверстием (350 x 50) мм². Трассировка Я - мезонов производилась обычным путем с помощью провешивания пучка траектории частиц гибкой токонесущей нитью. Всего при работе камеры с водородом было получено около 90000стереофотографий. Этот материал позволил наряду с рассматриваемым в данной статье упругим Я - рассеянием обнаβ -распад отрицательных Л -мезонов / Л - € + V / 1/6/ и полуружить

чить некоторые данные \underline{H} о распадах нейтральных $\pi^{\circ} \rightarrow e^{-} + e^{+} + \chi^{\prime}$ /7/ $\pi^{\circ} \rightarrow 2e^{-} + 2e^{+}$ /8/ Л -мезонов по схемам

2. Диффузионная камера

Диффузионная камера была сконструирована для работы с легкими газами при давлении до 25 атм⁹⁹. Схематический чертеж диффузионной камеры, расположенной в магните, приведен на рис. 2. Камера представляет собой сосуд, изготовленный из нержавеющей стали и состоящий из трех частей. В нижней, основной, части камеры с помощью системы нагревателей и змеевика, по которому прогоняется охлажденный ацетон, создается необходимый температурный градиент. В нижнем фланце средней части камеры сделан небольшой желоб для метилового спирта, являющегося рабочей жидкостью камеры. При температуре дна – 70° С и желоба $+10^{\circ}$ С в чувствительном объеме камеры устанавливается примерно линейное температурное распределение с градиентом 7 град/см. При этом высота чувствительного слоя достигает 6-7 см. Контроль и измерение температуры в различных участках камеры осуществлялся с помощью медноконстантановых термопар.

Освещение камеры производилось под углом 90° к оси фотографирования через боковые окна, закрытые пластинами из плексигласа толщиной 30 мм. Эти окна отнесены от рабочего объема на концы прямоугольных выступов длиной 150 мм, приваренных к нижней цилиндрической части камеры, что позволило максимально увеличить рабочий диаметр камеры, который равен 380 мм, при заданном диаметре отверстия в верхнем полюсе магнита 480 мм.

Освещение камеры осуществлялось двумя импульсными ксеноновыми лампами ИФП-500, через которые в момент вспышки разряжались емкости в 200 мкф, заряженные до напряжения 2000 в. Свет каждой лампы формировался в параллельный пучок двумя параболическими рефлекторами.

Фотографирование производилось стереофотоаппаратом с двумя объективами ГОИ "Гелиос-37", фокусное расстояние которых равно 62 мм, на 35-миллиметровую пленку Панхром-Х с чувствительностью 1000 единиц ГОСТ. Объективы были скорректированы на дисторсию, возникающую при фотографировании через стеклянные пластины толщиной 25 мм, которые закрывают окна в верхней конической части камеры. Разрешение объективов составляет 50 линий/мм в центре поля эрения. База стереофотоаппарата равна 120 мм, расстояние съемки около 1 м. Необходимая глубина фотографируемого объема достигалась при диафрагме 5,6.

Цикл работы камеры составлял обычно 8 сек. Управление временным циклом осуществлялось электронной системой, которая выполняла следующие операции: а/ включение на определенное число циклов /обычно 2-4/ высокочастотного напряжения на дуант синхроциклотрона; б/ поджиг импульсных ламп с задержкой по отношению к импульсу частиц 0,2-0,3 сек; в/ включение перетяжки пленки; г/ включение и выключение электрического очищающего поля. Необходимые временные задержки между операциями осуществлялись одновибраторными схемами. Интенсивность пучка поддерживалась путем регулировки числа циклов ускорений такой, что на каждом снимке в среднем регистрировалось около 30 следов π^{-} -мезонов.

3. Электромагнит

Постоянное магнитное поле 9000 гс в рабочем объеме камеры создавалось магнитом-соленоидом типа МС-4А^{X/}, рассчитанным на работу как в постоянном, так и импульсном режимах питания. Неоднородность магнитного поля по высоте чувствительного объема камеры составляла не более 3,5%, по радиусу – не более 2,5%. Кривая намагничивания и спад магнитного поля по высоте и радиусу чувствительного объема были сняты с помощью магнитометра, принцип действия которого основан на эффекте Холла^{XX/}. Калибровка прибора была произведена методом протонного резонанса.

4. Пучки Л - мезонов

x/

Средняя энергия мезонов в пучке и их разброс по энергиям были определены непосредственно путем измерения радиусов кривизны треков на снимках.

Магнит-соленоид МС-4А является модификацией магнита МС-4. Разработка этих магнитов выполнена в НИИ ЭФА Н.С. Стрельдовым, А.В.Угамм Н.Н. Индюковым, Ю.П. Семеновым, В.И. Сергеевой, А.Г. Студенниковой.

Авторы благодарны Д.П.Василевской и Ю.Н. Денисову за предоставленную возможность воспользоваться этим прибором. С целью уменьшения искажений треков из-за конвекционных токов в камере измерения производились на пленках, экспонированных с задержкой поджига импульсных ламп, примерно в два раза более короткой, чем обычно. Определенные таким образом энергии равны /128+8/ Мэв и /162+10/ Мэв, где указанные неопределенности представляют собой полуширину энергетического распределения \mathcal{T}^- мезонов в камере.

Для определения примеси /4 -мезонов и электронов в пучке, а также для контроля энергии были сняты кривые поглощения в меди с помощью сцинтилляционных счетчиков. Средние энергии пучка, определенные этими двумя способами, совпали с хорошей точностью. Суммарная примесь / -мезонов и электронов в пучках составляла /16 ±2/%.

机合合 的过去分词之

111. Просмотр и обработка

Просмотр полученных фотографий производился с помощью стереоскопов. Все пленки были просмотрены дважды несколькими просмотрщиками независимо друг от друга. Часть пленок была просмотрена третий раз с особой тщательностью с тем, чтобы оценить эффективность двойного просмотра, которая оказалась равной 97%. Исследование угловых распределений пропущенных случаев показало, что эта эффективность не зависит от конкретного случая рассеяния /угла рассеяния или азимутального угла/.

В результате двухкратного просмотра было найдено 379 случаев рассеяния при энергии 128 Мэв и 1113 случаев при энергии 162 Мэв. Обработка этих случаев производилась репроекционным методом. Оба кадра стереопары репроектировались через ту же оптическую систему, с помощью которой производилось фотографирование, на экран, имеющий отсчетное устройство для измерения углов. Экран посредством карданова подвеса укреплен на каретке, которая может перемещаться в двух взаимно перпендикулярных направлениях / X и Y /. Измерение координат Z осуществлялось путем перемещения в вертикальном направлении самой оптической системы. Конструктивно репроектор выполнен аналогично описанному в работе ^{/10/}. Для каждого случая рассеяния измерялись:

а/ координаты точки взаимодействия / Х, У, Е / и координата Zo репер-

ной отметки, находящейся на дне камеры;

б/ углы рассеяния мезона θ_{r} и протона отдачи θ_{p} /с точностью около 1°/;

в/ азимутальный угол φ плоскости рассеяния с точностью около 2^о / $\gamma = 0$ соответствует случаю, плоскость рассеяния которого горизонтальна/;

г/ пробег протона отдачи /в тех случаях, когда это было возможно/.

В величины координат X, Y, Z вносилась поправка на усадку пленки, которая обычно составляла 5-7%. Для каждого случая эта поправка определялась как отношение истинного расстояния от дна камеры до главной точки объектива к измеренному. Влияние усадки пленки на измерения углов Θ и Y очень мало и не учитывалось.

Одновременно с обработкой случая рассеяния на том же кадре измерялась Z-координата трека случайного T-мезона. Сравнение распределений по высоте чувствительного объема h случаев рассеяния с соответствующими распределениями такого же числа случайных треков показывает, что при просмотре не было заметных пропусков случаев рассеяния, расположенных у дна камеры и у верхней границы чувствительного слоя /рис. 3/.

Для дальнейшего анализа были отобраны случаи, удовлетворяющие следующим критериям:

1. Следы частиц должны быть компланарны с точностью до 2[°], т.е. угол между каким-либо одним треком и плоскостью, образованной двумя другими, не должен превышать 2[°].

2.. Углы рассеяния **7**-мезона и протона отдачи должны удовлетворять кинематическим требованиям с точностью 2⁰; кривизны треков, плотность ионизации и пробег протона отдачи /в тех случаях, когда возможно его измерение/ также должны соответствовать кинематике.

8. Угол рассеяния Л⁻-мезона должен быть больше 8° /л.с./ /10°с.ц.м./. т.е. максимального угла при Л⁻-распаде.

4. Длина каждого из трех треков должна быть не меньше 5 мм.

5. Точка взаимодействия не должна находиться в нечувствительной обла-

сти размером более 5 мм или затемнена скоплением капель размером более 5 мм,

6. Точка взаимодействия должна находиться более чем на 1 см от стенок камеры.

7. Падающий *П*-мезон не должен отклоняться от основного направления пучка более чем на 5⁰.

8. Не учитывались случаи на кадрах, имеющих какие-либо дефекты, и на кадрах с очень большой интенсивностью.

Указанным критериям отбора удовлетворяли 344 случая рассеяния при энергии 128 Мэв и 941 случай при энергии 162 Мэв. Все дальнейшие результаты по угловым распределениям основываются на этом статистическом материале.

1У. Полные сечения упругого рассеяния

Полные сечения упругого $\pi - \rho$ -рассеяния были определены путем подсчета полной длины треков π -мезонов. Подсчет был произведен в прямоугольной области π , выделенной в центральной части камеры /рис. 4/. В этой области были сосчитаны все случаи рассеяния, удовлетворяющие отмеченным выше критериям отбора. Распределения по азимутальному углу 4, построенные для указанных случаев /рис. 5/, позволили определить коэффициенты β , учитывающие неэффективность регистрации случаев, плоскость рассеяния которых близка к вертикальной.

Полное число треков в области S было определено путем подсчета треков на всех кадрах, кратных 25; полученное число было умножено на 25 и поправлено на число треков, находящихся на кадрах в конце каждой пленки. Полная длина треков L определена по формуле:

/1/

где **Т** – полное число треков, 15,36 см – ширина области S, α_{cp} – средний угол наклона треков относительно краев области S – /рис. 4/. S – коэффициент, учитывающий замену длины дуги хордой /в нашем случае было принято S = 1/. В полную длину треков была внесена поправка на обрывы треков.

- 9 -

Определение полных	сечении упру	roro pacce	яния	· .
	I28 Мэв		I62 Мэв	
	Величина	Абс.ср.кв. погрешность	Величина	Абс.ср.кв. погрешность
Число случаев рассеяния в области М	190	<u>+</u> 7,2%	449	<u>+</u> 4,7%
Поправка на $\mathscr Y$ -неэффективность eta	I,I3	<u>+</u> 2,5%	1,10	<u>+</u> I,5%
Полное число треков Т	0,991.10 ⁶		I,446•I0 ⁶	
Полная длина треков L	15,3•10 ⁶ см	<u>+</u> 1%	22,3•10 ⁶ см	<u>+</u> 1%
Эффективное давление в камере Рафр	22,5 атм.	-	23,0 атм.	
Число ядер в см ³ при давлении рего Пэрр	1,22•10 ²¹ см ⁻	•3 <u>+</u> 2 %	1,24.10 ² см ⁻³	<u>+</u> 2%
нов в пучке 9.	0,16	+2%	0,16	+2%
Эффективность просмотра 7	0,97	<u>+</u> I%	0,97	<u>+</u> 1%
Полное сечение Оэкси	14,2•10 ⁻²⁷	<u>+</u> 8,2%	22,2.10 ⁻²⁷ M ²	<u>+</u> 5,8%
Полное сечение кулоновского рас- сеяния на углы $\Theta_{(л.c.)} > 8^\circ$	I,6•10 ⁻²⁷ см ²	2	I, I•10 ⁻²⁷ см ²	
Поправка на рассеяние в интерв. углов $\Theta_{()} < 8^\circ$	0,24·10 ⁻²⁷ cm	¹ 2.1	0,35.10 ⁻²⁷ см ²	
Полное сечение упругого рассеяния бутр	12,8.10 ⁻²⁷ cm	² <u>+</u> 8,2%	21,4.10 ⁻²⁷ cm ²	<u>+</u> 5,8%

Таблица

10

длина которых непосредственно измерялась при подсчете числа треков. Эта поправка не превышает 4%. Полные сечения были определены по формуле:

$$\widetilde{J}_{3kcn} = \frac{N/3}{\ln n_{syp} (1-q)Z}, \qquad 12$$

где N и \Box - число случаев рассеяния и полная длина треков; n_{349} - эффективное число ядер водорода в 1 см³; β - коэффициент, учитывающий неэффективность регистрации случаев с Υ , близким к 90° ; q - примесь \mathcal{M} -мезонов и электронов в пучке; Z - эффективность просмотра пленок. В таблице 1 приведены величины, использованные для вычисления полных сечений. В процентах указаны абсолютные средние квадратичные ошибки. После вычитания из сечений, рассчитанных по формуле /2/, кулоновских поправок /способ вычисления этих поправок см. раздел Уб/ и введения полные сечения упругого \mathcal{T} - ρ рассеяния для энергий 128 и 162 Мэв. Как видно из таблицы 11, сечения, определенные в настоящей работе, хорошо согласуются с другими экспериментальными данными.

Таблица 11

Полные сечения упругого рассеяния в интервале энергий 100-200 Мэв

		and the second
Е /Мэв/	Gynp/10 ⁻²⁷ см ² /	Ссылка
98	6,15 <u>+</u> 0,22	an dialah Ang Astronomika 11 - Astronomika
118	9,6 <u>+</u> 2,0	12
120	11, <u>3+</u> 1,6	13 and 14 and 15 and 14
128 130	12,8 <u>+</u> 1,0 12,0	Эта работа 14
144	17,0+2,4	13
150	20,0 <u>+</u> 1,0	5
152	18,8	14
162	21,4 <u>+</u> 1,2	Эта работа
165	22,5 <u>+</u> 1,5	15
169 170	21,2 <u>+</u> 2,0 23,5 <u>+</u> 1,0	16 5
187	22 ,5<u>+</u>1, 3	17
189	23,0 <u>+</u> 1,4	18
194	26,4 <u>+</u> 2,7	16
210	28,7 <u>+</u> 3,1	16

- 11 -

У. Угловое распределение упругого рассеяния

Углы рассеяния π -мезонов были пересчитаны в систему центра масс, и затем все случаи были разделены на 8 угловых интервалов по 20° от θ =10° до θ = 170° /в с.ц.м./. Случаи рассеяния, найденные в интервале $\Delta \theta$ =0° 10° /один случай при энергии 128 Мэв и 9 случаев при энергии 182 Мэв/ не учнтывались /см. критерии отбора, разд. 111/, из-за крайне низкой эффективности наблюдения, так как протоны отдачи при рассеянии мезонов на углы $\theta < 10^{\circ}$ имеют очень малый пробег, и случаи рассеяния не могут быть отделены от

 $\mathcal{T}_{1} - \mathcal{A}^{-}$ -распадов. Кроме того, в этом угловом интервале очень велико сечение кулоновского рассеяния. Интервал $\Delta \Theta = 170^{\circ} - 180^{\circ}$ также не учитывался из-за низкой эффективности /был найден только один случай $\Theta = 173^{\circ}$ при ожидаемом числе 3-5/.

В столбцах 1 и 2 таблиц 111 и 1У приведены углы Θ , соответствующие серединам угловых интервалов, и числа случаев рассеяния ΔN в каждом интервале. Чтобы получить из этих данных дифференциальные сечения, необходимо учесть неэффетивность регистрации случаев с углами \mathscr{G} , близкими к 90°, кулоновские поправки и поправки на усреднение по угловому интервалу $\Delta \Theta$.

Случан рассеяния, плоскости которых близки к вертикальной / $\mathcal{Y} \sim 90^{\circ}$ /, с большей вероятностью могут быть пропущены при просмотре, чем случан, лежащие в плоскостих, близких к горизонтальной. При этом, очевидно, эффективность должна быть более низкой для малых и для очень больших углов рассеяния Θ . На рис. 6 и 7 приведены распределения случаев рассеяния по азимутальному углу \mathcal{Y} для разных угловых интервалов $\Delta \Theta$. Найденная из этих распределений эффективность регистрации случаев в интервале $\Delta \Theta = 45^{\circ} - 135^{\circ}$ составляет 92-93%, а для угловых интервалов $\Delta \Theta = 10^{\circ} - 30^{\circ}$ и $\Delta \Theta = 150^{\circ} - 170^{\circ}$ она падает до 80-83%. Коэффициенты χ , учитывающие поправку на \mathcal{Y} -неэффективность, приведены в столбцах 8 таблиц 111 и 1У.

б/ Кулоновские поправки

13

Кулоновские поправки были рассчитаны с использованием релятивистских амплитуд кулоновского рассеяния, полученных Солмитцем^{/19/}. Дифференциальное сечение рассеяния, обусловленного кулоновским взаимодействием, может быть записано в виде:

$$\left(\frac{dG}{dR}\right)_{kyA+uHT} = \frac{\Phi_1}{\int in^{\frac{4}{2}}} + \frac{\Phi_2}{\int in^{\frac{2}{2}}} + \Phi_3 + \Phi_4 \int in^{\frac{2}{2}} \frac{\partial}{\partial x} \frac{\partial$$

где 6 - угол рассеяния в с.ц.м. Первый член в выражении /3/ является сечением чисто кулоновского рассеяния, а остальные обусловлены интерференцией кулоновского и ядерного рассеяния. Коэффициенты Ф рассчитаны по следующим формулам:

$$\begin{split} & \Phi_{I} = A^{2} (B + C)^{2} \\ & \Phi_{2} = 4A^{2} D^{2} - 4A^{2} C (B + C) + A (B + C) (E + T) \\ & \Phi_{3} = 4A^{2} (C^{2} - D^{2}) - 2A C (E + T) - 2A T (B + C) - 4A D S \\ & \Phi_{4} = 4A (C T + D S) , \end{split}$$

/5/

где

$$A = \frac{e^{2}}{2pc(\sqrt{3\pi} + \sqrt{3p})}$$

$$B = 1 + \frac{1}{2}\sqrt{3\pi}\sqrt{3p} - \frac{1}{4}\sqrt{3p}(2mp^{-1})$$

$$C = \frac{1}{2}\sqrt{3\pi}\sqrt{3p} + \frac{1}{4}\sqrt{3p}(2mp^{-1})$$

$$D = \frac{1}{2}\sqrt{m}p\sqrt{3\pi}\sqrt{3p} + \frac{1}{4}\sqrt{3p}(2mp^{-1})$$

$$E = \frac{1}{3\kappa}(2\sin 2d_{1} + \sin 2d_{3})$$

$$\Im = \frac{1}{3\kappa}(2\sin 2d_{1} + \sin 2d_{3} + 4\sin 2d_{13} + 2\sin 2d_{33})$$

$$\Im = \frac{1}{3\kappa}(2\sin 2d_{11} + \sin 2d_{31} + 4\sin 2d_{13} + 2\sin 2d_{33})$$

$$\Im = \frac{1}{3\kappa}(2\sin 2d_{13} + \sin 2d_{33} - 2\sin 2d_{11} - \sin 2d_{34})$$

Дифф	реренци	иальные сечени	ия упругого 🎵	p -pacces	ния при энерг	чи 128 Мэв
	n to segne	tayon a shara Ali				
<u> 0</u> /с.ц.н.	AN		$\left(\frac{d\sigma}{dSL}\right)_{3\kappa cm}$	0 ^{-27 см² стерад}	$\left(\frac{dG}{dS}\right)_{g}$	10 ^{-27 см² стерад}
20 ⁰	61	I,22+0,06		(3,63+0,50		(2,0I <u>+</u> 0,54
40 ⁰	78	I, I4 <u>+</u> 0, 05		2,31 <u>+</u> 0,28		2,07 <u>+</u> 0,28
60 ⁰	44	I,08±0,02		0,91 <u>+</u> 0,14		0,85 <u>+</u> 0,14
80 ⁰	37	I,08 <u>+</u> 0,02	I,00 <u>+</u> 0,08	0,68 <u>+</u> 0,II	I,00 <u>+</u> 0,08 {	0,66 <u>+</u> 0,II
100 ⁰	33	I,08 <u>+</u> 0,02	at a star in a te t	0,60 <u>+</u> 0,10	n du _{ala} n teorra	0,60 <u>+</u> 0,10
120 ⁰	33	I,08+0,02	an shirin a shirin a	0,69 <u>+</u> 0,12		0,70 <u>+</u> 0,12
140 ⁰	34	I,08 <u>+</u> 0,06		0,95 <u>+</u> 0,17		0,98 <u>+</u> 0,17
160 ⁰	23	1,25 <u>+</u> 0,10		1,40 <u>+</u> 0,31		I,43 <u>+</u> 0,3I

Таблица 111

Таблица 1У

Дифференциальные сечения упругого $\pi^- \rho$ -рассеяния при энергии 162 Мэв

	÷					2
д / с.ц.1	M./ AN	d	$\left(\frac{dG}{dR}\right)_{3\kappa cn}$) ⁻²⁷ 2 стерад	$\left(\frac{dG}{dR}\right)_{Rg}$	(10 ⁻²⁷ см стерад
20 ⁰	139	I,20 <u>+</u> 0,04		(4,76+0,43	a de la companya de l La companya de la comp	(3,60 <u>+</u> 0,46
40 ⁰	I75	I,02 <u>+</u> 0,0I		2,7I <u>+</u> 0,2I		2,55 <u>+</u> 0,2I
60 ⁰	159	1,09 <u>+</u> 0,01		I,96 <u>+</u> 0,I6	i Ser da parte	1,91 <u>+</u> 0,16
80 ⁰	96	I,09 <u>+</u> 0,0I	I,00 <u>+</u> 0,06 «	[I,04 <u>+</u> 0,II/	I,00 <u>+</u> 0,0	6 { 1,02 <u>+</u> 0,11
100 0	86	I,09 <u>+</u> 0,0I		0,93 <u>+</u> 0,10		0,92 <u>+</u> 0,10
120 ⁰	102	I,09 <u>+</u> 0,0I		I,26 <u>+</u> 0,I2		I,26 <u>+</u> 0,I2
I40 ⁰	I24	I,I2 <u>+</u> 0,03	1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 -	2,II <u>+</u> 0,20		2,13 <u>+</u> 0,20
160 ⁰	60	I,20 <u>+</u> 0,06	÷	2,06 <u>+</u> 0,28		2,09 <u>+</u> 0,28
Koa	ффицие	енты Ф фор	<u>Таб</u> мулы /3/ для	<u>ица У</u> энергий 128	и 162 Л	Мэв
E		Φı	ф	•	Φ_3	Φ_4
/Мэг	в/		(₁₀ -27 см	2/стерад)		
128	2,	18.10-4	3,61.10-2	-9,33	· 10-2	3,21. 10-2
162	I,	54•I0 - 4	2,57•10 ⁻²	-7,26	5•10 ⁻²	2,96. 10,2

В этих формулах Р= ТК -импульс в с.ц.м., В и Р- скорости Т -мезона и протона в с.ц.м., Мр - магнитный момент протона в ядерных магнетонах. Величины коэффициентов Ф для энергий 77 -мезонов 128 и 162 Мэв, рассчитанные по формулам /4/ и /5/, приведены в таблице У, причем для вычисления \mathcal{E},\mathcal{F} и \mathcal{G} были использованы фазы мезон-нуклонного взаимодействия; полученные Чиу и Ломоном /20/. Интегрирование выражения /3/ в пределах 10° < 0 < 180° дает поправки к полным сечениям упругого рассеяния /см.табл.1/:

$$G_{kyn+uhm} = 2\pi \int_{10^{\circ}} \left(\frac{dG}{d\Omega}\right)_{kyn+uhm} \int in \theta d\theta = \begin{cases} 1,6 \cdot 10^{-27} \text{ см}^2 & \text{для 128 Мэв} \\ 1,1 \cdot 10^{-27} \text{ см}^2 & \text{для 162 Мэв}. \end{cases}$$

Для получения дифференциальных сечений чисто ядерного рассеяния из определенных экспериментально величин $(dG)_{3kcn}$ вычитались сечения $(dG)_{kyn+uhm} = 2\pi \int_{\Delta G} (dG) \int_{Kyn+uhm} \int_{\Delta G} \int_{G} \int_{Kyn+uhm} \int_{\Delta G} \int_{Kyn+uhm} \int_{G} \int_{Kyn+uhm} \int_{G} \int_{G} \int_{Kyn+uhm} \int_{G} \int_{G} \int_{G} \int_{Kyn+uhm} \int_{G} \int_{G} \int_{G} \int_{Kyn+uhm} \int_{G} \int_{G} \int_{G} \int_{G} \int_{G} \int_{Kyn+uhm} \int_{G} \int_{$ разумных пределах фазовых сдвигов, входящих в выражения /5/.

в/ Поправка на усреднение по угловому интервалу

1800

Так как середине интервала 8 приписывается значение сечения, являющееся усредненным по конечному угловому интервалу $\Delta \Theta$, то истинное значение сечения для угла Θ будет отличаться от усредненного на величину

$$d(\theta) = -\frac{(\Delta \theta)^2}{24} \left[\frac{dG}{d\Omega}(\theta) \right],$$

где $\left[\frac{dG}{d\Omega}(\Theta)\right]''$ - вторая производная от дифференциального сечения. В качестве первого приближения для вычисления $d(\Theta)$ была использована зависи-мость $\frac{dG}{d\Omega}(\Theta) = \alpha' + \beta' \cos \Theta + c' \cos^2 \Theta$, найденная методом наименьщих квадратов по исправленным на кулоновское рассеяние экспериментальным дифференциальным сечениям. Тогда

$$d(\theta) = \frac{(\Delta \theta)^2}{24} (\beta' \cos \theta + 2c' \cos 2\theta). \quad 171$$

/6/

Рассчитанная по формуле /7/ максимальная величина поправки не превышает 2,5%.

г/ Дифференциальные сечения упругого рассеяния

Дифференциальные сечения $\begin{pmatrix} d & G \\ d & Q \end{pmatrix}_{KCh}$ /столбцы 4 таблиц 111 и 1У/ были получены из угловых распределений \bigwedge_{AJZ} нормировкой на полные сечения G_{KCh} /табл.1/ с учетом коэффициентов \measuredangle . В столбцах 5 табл. 111 и 1У приведены дифференциальные сечения упругого \mathcal{T}^{-P} -рассеяния, обусловленные чисто ядерным взаимодействием. Они получены вычитанием из $\begin{pmatrix} d & G \\ d & S \end{pmatrix}_{KCh}$ сечений кулоновского рассеяния и введением поправок на усреднение по угловым интервалам. Указанные ошибки являются средними квадратичными погрешностями, обусловленными, главным образом, статистическими ошибками и малыми неопределенностями от введения поправок. Общий множитель перед сечениями представляет собой ошибку в нормировочном полном сечении.

Через экспериментально найденные сечения $\begin{pmatrix} d & G \\ d & D \end{pmatrix}_{ag}$ методом наименьших квадратов были проведены кривые вида $\frac{d \cdot G}{d \cdot D} = a + b \cos \Theta + c \cos^2 \Theta$. В таблице У1 приводятся эначения коэффициентов a, b. и C, а также величина $M = \sum_{i} \left(\frac{\mathcal{E}_{i}}{\Delta G_{i}}\right)^{2}$, представляющая собой сумму квадратов отклонений \mathcal{E}_{i} рассчитанных сечений от экспериментальных точек, выраженных в единицах экспериментальных ошибок ΔG_{i} , и число степеней свободы $M_{o} = n - m$ / n - число экспериментальных точек, m - число параметров кривой/. Близость величин $M \times M_{o}$ указывает на хорошее согласие между приведенными кривыми и экспериментальными сечениями.

В правой части таблицы У1 приведены матрицы ошибок Gij, рассчитанные методом, изложенным в работе^{/21/}. Ошибки коэффициентов a, b и C являются квадратными корнями из диагональных элементов матриц. Недиагональные элементы являются произведением соответствующих стандартных отклоне-

ний, умноженным на коэффициент корреляции. В одной половине матриц на месте недиагональных элементов указаны коэффициенты корреляции между Q, в C /в %/.

Полученные кривые вместе с экспериментальными точками представлены на рис. 8. Они согласуются с угловыми распределениями упругого $\mathcal{J} - \rho$ -рассеяния, измеренными Ашкиным и др.⁵⁷ при энергиях 150 и 170 Мэв, а также с результатами еще неопубликованной работы Крузе и Арнольда¹¹⁴ при энергиях \mathcal{J}_{1}^{-} -мезонов 130 и 152 Мэв.

Таблица У1

Энергия в Мэв	Коэффициенты разложения а + 6 соз + с Соз * /10 ⁻²⁷ см ² /стерад/		۸ <u>م</u>	Матрицы ошибок Gij^x10² /10 ⁻²⁷ см ² /стерад/ ²		
		(a=0,55 <u>+</u> 0,07	53,53	-3,73	-118,15	
128	1,00 <u>+</u> 0,08	в=0,34 <u>+</u> 0,12	-4,1%	153,65	86,48	
		c=1,30 <u>+</u> 0,24	-66,3%	28,6%	593,87	
		M =5,8 Mo =5				
	•	(a=0,93 <u>+</u> 0,07	49,78	0,76	-101,65	
162	1,00 <u>+</u> 0,06	в=0,51 <u>+</u> 0,12	0,9%	140,28	39;35	
antini. Antini parta pr		c <i>=</i> 2 , 28 <u>+</u> 0 , 22	-64,8%	14,9%	494,60	
	M	= 5,2 q = 5				

д/ Определение действительной части амплитуды рассеяния вперед

Дифференциальные сечения рассеяния вперед $dG_{SS}(0)=a+b+C_{ДЛЯ}$ энергий 128 и 162 Мэв равны соответственно /2,20±0,32/·10⁻²⁷ см²/стерад и /3,73±0,32/·10⁻²⁷ см²/стерад. Указанные ошибки, кроме средних квадратичных отклонений коэффициентов a, b и C, учитывают корреляцию между коэффициентами /недиагональные элементы матриц ошибок/. Величину действительной части амплитуды рассеяния вперед $Re f(O, \omega)$ легко получить, используя оптическую теорему

$$J_m f(0,\omega) = \frac{\kappa}{4\pi} G_t,$$

/8/

- полное сечение $\overline{M} - \rho$ -взаимод ействия. Тогда $D_{-}^{d} = R_{c} f(0, \omega) = \sqrt{\frac{dG}{d\Omega}(0) - \frac{\kappa^{2}}{6\pi^{2}}} G_{t}^{2}$ где /9/

Сбъединсьный институт алерных исследований БИБЛИОТЕКА

7621

Величины G_{2} были взяты из кривой энергетической зависимости полных сечений, полученной Клепиковым, Мещеряковым и Соколовым²² путем анализа всех экспериментальных данных по полным сечениям $\pi^{+}\rho$ и $\pi^{-}\rho$ - взаимодействия в широкой области энергий:

$$G_{\ell} / 128 \text{ M}_{\text{BB}} = /39,7 \pm 1,0/\cdot 10^{-27} \text{ cm}^2$$

$$G_{\ell} / 162 \text{ M}_{\text{BB}} = /63,3 \pm 1,0/\cdot 10^{-27} \text{ cm}^2$$

Тогда действительные части амплитуды рассеяния вперед в системе центра масс /в единицах *т* /равны:

$$D^{\ell}$$
 /128 Məb/ = 0,261±0,031
 D^{ℓ} /162 Məb/ = 0,216±0,038.

Большая относительная ошибка величины \mathcal{D}' /162 Мэв/ обусловлена тем, что формула для вычисления ошибки \mathcal{D} содержит в знаменателе \mathcal{D} и поэтому при приближении энергии к резонансной, когда \mathcal{D} , относительная ошибка неограниченно возрастает.

Во время выполнения настоящего эксперимента появился ряд теоретических работ⁽²³⁻³¹⁾, в которых анализировались возможные причины расхождения, обнаруженного Пуппи и Стангеллини. Заиди и Ломоном⁽²³⁾ была показана резкая зависимость величины \mathbb{D}^{e} от хода кривой полных сечений $\pi - p$ -взаимодействия вблизи резонанса. Подробный анализ ошибок, возникающих при применении дисперсионных соотношений к $\pi - p$ -рассеянию, произведен Гамильтоном⁽²⁵⁾ и Шнитцером и Сальзманом⁽²⁸⁾. Последними авторами было показано, что используя зависимость полных сечений от энергии, полученную Андерсоном⁽³²⁾ удается уменьшить расхождение между экспериментальными и теоретическими значениями \mathbb{D}^{e} примерно в два раза. Кроме того, учет нормировочного множителя в дифференциальных сечениях и корреляции между коэффициентами \mathcal{A} , \mathcal{B} и C ведет к увеличению ошибок в экспериментальных значениях \mathbb{D}^{e} при 150 и 170 Мэв примерно вдвое по сравнению с указанными Пуппи и Стангеллини. Несмотря на это, все еще оставалось небольшое расхождение, для выяснения которого требовалось уточнение экспериментальных данных по полным сечениям вблизи резонанса и новые величины 🎾 🖉 /28-30/.

В самое последнее время Клепиковым, Мещеряковым и Соколовым /22/ рассчитана кривая $\mathcal{D}'(\omega)$ для $f^2 = 0,08$ с использованием новых данных по полным сечениям в широкой области энергий, в том числе результатов из-(лр) с точностью 2-3%, выполненных Зиновым, Кониным, Коренмерений ченко и Понтекорво /33/ в интервале энергий 🞵 -мезонов 160-330 Мэв. На рис. 9 кривая Клепикова и др. проведена сплошной линией, штриховая линия - кривая Шнитцера и Сальзмана^{/28/} для f² =0,08. Черными точками обозначены величины D⁶, полученные в настоящей работе. Кроме них на рисун-/34/ ке приведены результаты выполненных в недавнее время работ Барнеса и др. /41,5 Мэв/, Эдвардса и др. /11// 98 Мэв/и Крузе и Арнольда /14//130 и 150 Мэв/, а также значения Д_⁶ х/при 150 и 170Мэв^{/3/}, величины ошибок которых пересчитаны Шнитцером и Сальзманом /28/. Как видно из рис. 9. результаты наших опытов и данные всех последних экспериментальных работ по упругому П-р рассеянию в области энергий до резонанса вполне удовлетворительно согласуются с новой теоретической кривой, рассчитанной с константой связи f^2 =0,08.

Таким образом, в настоящее время можно считать, что экспериментальные данные по упругому рассеянию отрицательных π -мезонов на протонах также согласуются с дисперсионными соотношениями при $f^{z}=0,08$, как это было установлено ранее для рассеяния положительных π -мезонов.

Авторы выражают благодарность Л.И.Лапидусу, С.Н.Соколову, В.А. Мещерякову за полезные обсуждения, Л.И.Краснослободцевой, Т.С.Сажневой и Ю.Л.Сайкиной за помощь в просмотре фотографий, А.А.Андриановой и Г.Д.Малышевой за расчет матриц ошибок.

Рукопись поступила в издательский отдел 8 сентября 1959 года.

К/ Следует отметить, что величины рассчитаны /3/ с несколько заниженными полными сечениями, измеренными в работе /5/, и использование новых данных для дет к уменьшению этих величин.

- 19 -

итература Л

1. M. Goldberger, H. Miyazawa, R. Ochme, Phys.Rev. 99, 986 (1955) 2. H. Anderson, W. Davidon, U.Kruse, Phys.Rev. 100, 339 (1955)

3. G. Puppi, A. Stanghellini, Nuovo Cim. 5, 1305 (1957)
4. A. Agodi, M. Cini, Nuovo Cim. <u>5</u> , 1256 (1957); Nuovo Cim. <u>6</u> 686 (1957);
A. Agodi, M. Cini, B. Vitale, Phys.Rev. <u>107</u> , 630 (1957)
5. J. Ashkin, J.B. Blaser, F. Feiner, M.O. Stern, Phys.Rev. <u>101</u> , 1149 (1956)
 Ю.А. Будагов, С.Виктор, В.П. Джелепов, П.Ф. Ермолов, В.И. Москалев. ЖЭТФ, <u>37</u>,№3 /1959/.
ЖЭТФ, <u>35</u> , 1575 /1958/ ЖЭТФ /в печати/.
8. Ю.А.Будагов, С.Виктор, В.П.Джелепов, П.Ф.Ермолов, В.И. Москалев. ЖЭТФ, <u>36</u> , 1080 /1959/.
9. Ю.А.Будагов, С.Виктор, В.П.Джелепов, П.Ф.Ермолов, В.И. Москалев. Материалы совещания по камерам Вильсона, диффузионным и пузырьковым камерам, ОИЯИ, Дубна, 1958 г.
10. А.Т.Василенко, М.С.Козодаев, Р.М.Суляев, А.И.Филиппов, Ю.А.Шерба- ков. ПТЭ, № 6 /1957/.
11. D.N. Edwards, S.G.F. Frank, J.R. Holt, Proc. Phys. Soc. <u>73</u> , 856 (1959)
12. J. Orear, Phys.Rev. <u>92</u> , 156 (1953)
13. H. Anderson, E. Fermi, R. Martin, D. Nagle, Phys.Rev. <u>91</u> , 155 (1953)
14. У.Крузе, Р.Арнольд. Материалы Киезской конференции по физике высо- ких энергий /июль 1959/, доклад Б.М.Понтекорво.
15. H.L. Anderson, M. Glicksman, Phys.Rev. 100, 268 (1955).
16. E. Fermi, M. Glicksman, R. Martin, D. Nagle, Phys.Rev. <u>92</u> , 161,(1953)

- 17. M. Glicksman, Phys.Rev. 95, 1045 (1954)
- 18. U. Kruse, H.L. Anderson, W.C. Davidon, M. Glicksman, Phys. Rev. 100, 279 (1955).

- 21 -

- 19. F.T. Solmitz, Phys.Rev. <u>94</u>, 1799 (1954)
- 20. H. Y. Chiu, E.L. Lomon, Ann. of Phys. 6, 50 (1959)
- 21. Н.П. Клепиков, С.Н. Соколов. Анализ экспериментальных данных методом максимума правдоподобия. ОИЯИ, Дубна, 1958.
- 32. Н.П.Клепиков, В.А. Мещеряков, С.Н. Соколов. Материалы Киевской конференции по физике высоких энергий /июль 1959/.
- 23. М.Н. Zaidi, E.L. Lomon, Phys.Rev. <u>108</u>, 1352 (1957) 24. В.А. Мещеряков, ЖЭГФ, <u>35</u>, 290 /1958/.

25. J. Hamilton, Phys.Rev. <u>110</u>, 1134 (1958).

- 26. H.Y. Chiu, Phys.Rev. <u>110</u>, 1140 (1958)
- 27. L. Bertocchi, L. Lendinara, Nuovo Cim., <u>10</u>, 734 (1958)
- 28. H.I. Schnitzer, G. Salzman, Phys.Rev. 112, 1802 (1958)
- 29. H.Y. Chiu, J. Hamilton, Phys.Rev. Lett. I, 146 (1958)
- 30. H.P. Noyes, D.N. Edwards, Bull.Am. Phys. Soc. 4, 50 (1959)
- 31. H.J. Schnitzer, G. Salzman, Phys.Rev. 113, 1153 (1959)
- 32. H.L. Anderson, Proc. of the Sixth Ann. Roch.Conf., p.20, (1956).
- 33. В.Г.Зинов, А.Д.Конин, С.М.Коренченко, Б.М. Понтекорво. Материалы Киевской конференции по физике высоких энергий /июль 1959/, доклад Б.М.Понтекорво.

34. S. Barnes, B. Rose, G. Giacomelli, J. Ring, K. Miyake, Phys.Rev. /в печати/.

Рис. 1. Схема экспериментальной установки.

- 22 -

Рис. 2. Схематический чертеж диффузионной камеры, расположенной в магнитесоленовде МС-4А. 1- ярмо электромагнита, 2-катушки, 3-диффузионная камера, 4-стереофотоаппарат, 5-осветители.

Рис. 8. Распределения по высоте чувствительного слоя *h* случаев упругого рассеяния /сплошная линия/ и такого же числа случайных треков – Л. мезонов /штриховая линия/.

·

Рис. 5. Распределение по азимутальному углу *Ф* случаев рассеяния, находящихся в области *S*.

х угловых интервалов

Рис. 7. Распределения по азимутальному углу У случаев рассеяния при энергии 162 Мэв для различных угловых интервалов $\Delta \Theta$.

Рис. 8. Угловые распределения упругого $\pi^- \rho$ -рассеяния при энергиях 128 и 162 Мэв. Кривые a и b найдены методом наименьших квадратов с учетом только S и ρ - волн.

