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~SATTERING OF ...R...LES AND QUANTUM MECHANICS



* .inevitably from fundamental experiments

T A b st roatett

I As 1s known ‘one needs»notute‘do'allfﬁbssible”polarizetion experiments for a phase-
shift: analysis of j‘—P 3 tor” p-p scattering. Thére exists 4 so-called necessary ‘and ¢ omp—

1 2‘. It 15 shown that the "redundancy" of some remaining experi-

lete set of experiments
ments 1is a conséquence Qfathe'maih”features”of'the quantum meehanics_formali;m"(and,
principally, is due to'tﬁe deséription - of the states with WEVe”functionS)f'The‘eetablieh-
ment of the equalify between 'thé~calculated (with the help of phase-shifts) and the
measured results of the “redundant" experiments will thus constitute a check of the fun-—
damental quantal postulates.;Experiments of such a. kind. have already been performed but

their accuracy is to be considerably improved for our purpose.

Introduotion

The paper is devoted to.the question of testing the fundamental quantal postulates:
| oL | Primary and cemplete characteristic of the physical system state is a wave func-
tion which may be represented by a vector in some space. Particularly, the time-develop-
ment of the characteristics of the system (mean valuesand so on) 1s due to the change of
its wave,function%(

1,13 |.In the above space there-are complete sets of mutually orthogonal vectors-wave

functions in which one can expand the wave function of any state..In ‘the case of a spin-
less particle one of such systems 1s a system of wave functions describing states with
all possible definite momenta.«r

The above mentioned assumptions are formulated in more details in131 as "General
properties® (properties A-G). : TN

It is known that the Heisenberé»uncertainty principle,end the wave-particle dualism
follow from this formalism. Although the indicated.description is not a formalism deduced
|4|,at present one assumes that the partioculariti-
es of anyﬂexperiment-can be explained by means of either particular assumptions (for
example, on.the form of the potential in the Schrbdinger equation) within the framework

of this formalism, Without-suggesting an another mechanics we indicate means for testing

the validity of the main properties | ol | and ngﬂl, more. accurately, the properties

1/1f a state.ls described.by the density matrix-the weights of separate sharp states
under free. development of the system do not change. Only the. sharp states themselves
change. . .



A-G inIJI (but not the correctness of one or. another type of interaction). One may belie-
ve such a testing to be reasonable at high energies of soattered particles.

Since this test,deals with,the most general assumptions. of the quantum theory it
must, striotly speaking, pfecede the test of dispersion relations, for example, (which
use the so-called "local properties”, seelBl).

The idea of this paper may be summarized as. follows (see also the abstract): "If the
phase~shift analysis is nct possible the.quantum mechanics is nct oorrect". This asser-

tion is illustrated in §1, in §2 concrete experiments are discussed.

§ 1. Scattering of spinless particles

From | ol | s | and from the laws of conservation follows that the angular dis-
tribution d(~9) of scattered particles has to be equa.l to the square of the module of a
some complex function f(COS9) possessing the unitarity propertyI5l

Im_)('(ms,)= ‘,—;f_(olwsﬁdf _7(*(%9)][(0190’590 + &hss«'nﬁ, Co:sf) JRNEREY

if there are no other channels of the reaction a+'6’—> besides the elastic scattering
a+6- a+ 6.

The two equations G(F)= lf(s)lz and the non-linear integral equation (1l.1) (for
the function f(m‘})‘_j_) may have no solution for any kinds of function & (¥) . For examp—
le, one of the conditions of its solvability is ’ '

G (0°) 2 Kfyp G? (1.2
following frcm {1.1] when =0 (optical theorem): f"‘f(”/= %o ond from G (0%)>
>[-T"‘ )((0 )J Here d is the'total cross section of the elastic scattering. It is olear
that }1.2] is not fulfiled for any functionCG (‘9) *,

The general considerations of the conditions of solvability of Eq. |1l.l] and
d(q?):[f (\9){2 can be performed by using the way of solution of Eq. |1l.1l| which is
based on the well-known expan§ion oi’f(s) in Legendre polinomials (phase—shift analysis).

The function 3 (9) me - be viewed as a representation (description) of experimental
data. The fact that it depe..ds on only one angle 79 (and on the energy of scattered par-
ticles) follows from the law of conservation of total momentum and angular momentum-(but

does not follows from the quant. *-mechanical approach, see appendix A). G(9) as any

- % Of oourse, it is not possible to measure the cross section accurately at the
angle §=0° . But if the particles are identical (for exa.mp%e, in the scattering reac-
tions He+ He—* He+ He or g1tegi*s ztert) then &'(0°) = (180
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function :of ,lf' "~ can be expandedin thecomplete set of functions of ,'9- y for examp—
le, in Legendre polinomials. ' R
G @)= Z (cosd) B, e T e T (1 2
If the electromagnetic -interactions can be neglected G'(ﬂ) is represented in the
form of a finite sum over/(consequence “of: short-rangeness of the interaction) This may
be assumed as a generalization of experimental data. Let ‘us,; neglect all BL for L>3
If the scattering may “be described by the quantum mechanics, then (see for example'el)

| =J— Z Z (2 e”)@el 1)[C£oeo] ‘gif'rgef&hs m (S 5

RuEeey

e=0 e'=)e-L] -
From O B Bz, ~ follows that all the phaseshifts are equal to zero excepting cf
“and 3 . The three coefficients. B, B_!’ B, ~are expressed in terms of ‘this two

real phases. Using the known values of Bo _and 52 -~y for example, we..can’ find two pos-—
sible values for B;, e If the experimental value: of 8 ‘coincides with no one of them,
‘] oL | and ‘ﬁ | are not correct. :

- _We do not suggest concrete experiments on the- spinless particle scattering. The rea—
son may be explained as fOIIOWS. one might to. carry-. out for the present only the reactions
such as scattering of 47,‘_’—-meson by helium, by oarbon and so. on ‘and- such as He+ He"/'/f.’"f/e
“However the scattering of the i’irst type at any: energies have without fail ‘another chan-
nels (for example, T +He—>’T+n.) and the unitarity condition‘1 “ becomes more complicat—
ed. ‘l‘he combined study of several channels is not a simple experiment (note ‘that [T, 2l
holds true in the presence of other channels if G 'means :the; sum 'of total ¢ross sections
of all the channels, including the scattering) The ‘reactiort’«l{e#ﬂe;r ‘has:no other chan-
nels until the energy of incident . é(—particle exceeds 30’ MeV (in the: laboratory system).
However, the majority of the facts confirming ‘the quantum mechanics relates to’ the" small
energy region. It is worth to seek discrepancies .at ‘energies much higher' than the ‘binding

energy of the nucleon in the nucleus, for instance.

“a

1y

»

In other words three coefficients BD B:. ce.lculated with help of the values of
6(9) for: three values ‘of . the angle~ 19_ give correct values of &%) for several other
angles. NN



§ 2. Scattering of Partiocles : s R
with Spin 1/2

The cross section of scattering of particles with spin 172 on f spinless particles
may be also represented in ‘the form of -Eq. |1.3] .(see appendix B) but in .this case:-the

number of coefficients B 1s equa.l to the number of phe.se-—sh:l..-‘?tsI6|

2[6 28 I .
Z Z2(eJ6% ’/L}Re[(i e%)(1-e “)] S 2a
4,6,7,%
in view of the fact tha.t to each orbital momentum Z there correspond now two phases.

L "3k

with f‘e / (space parity- is assumed to be conserved). Therefore 6(9) may be _e.rhitra—
ry (non-negative) function ot ¥ . ( ' ‘

Let other chanuels be absent. For instance, let us take the scattering Tt +P"7”P
at 9“« -meson energles up-to 170 Mev (in the laboratory system)*. In fact the contribu—
tion of inelastic intere.ction is small at 300 Mev as wellb Then from the unita.rity con-
dition follows that the pha.ses tg_,-e are real and to the measured coefficients Ba oy ete.
there oorrespond seversl possible sets of phase-shifts, several solutions of the system
) 12 11, With their ald one oan calculate several possible values for the recoil ~proton
'polariza.tion (at some angles ‘9 ) ‘and compare with -the polarize.tion measured. If not a8
single calculated. polarization value P(S) coincides with the experimental one this would
mean that the<quantum -rmecha.nica.lve;pproe.ch to scattering problems .y{a.s ;ﬁﬂ;ﬁ-ft}“”a@_,fﬁ‘;_Thﬁ,

. e.ccuracy of experiments already made may be characterized by the fact the.t one can not. -
yet choose definitively one set of phe.se-shifts (see”l, the energy of Jr* mesons is
.307 Mev ana!®8l the . energy 15: 312 MeV).

1t other channels are- -@ssential the phasess'are complex. In order to chooee either
solution we have to: compare ithe measured and oaloula.ted values of" the a.eymmetry ess (8)
in the: triple soattering, seelll ("R -«experiment") However, . 1f there are - no pola.rized

hydrogen, targets 1t : is impossible to oarry out experiment of such a type for the ree.o-“

K]

of oourse, there is always the ohannel 7" {'"77** P*Jr- However, .its oontribution
does not exceed 1% At enersies up to 300 MeV(see, Tor ex. ! ) This means that if the
deviations from quantum mechanlos doces not exoeed 1% the process i1s desoribed by quan=--
tum meohanios.

** 0f oourse if this ocoured, at first it would be necessary to e.ttempt to make a
phase=shift a.na.lysis with greater number of . pha.se-shifts, i.e. the non-coincidentce "should
be "steady”™ with respect to various ways of phase shift analysis. The phase-shift analy-
8is may be substituted by any other way of .investigation of the solvahility of Eqs«|3:2)
and |3.4{ in|2]| analogous to the equations &(J)=|f(S)]*> and |1 1| for soe.ttering of the
spinless pe.rtioles. .



- asymmetryegn‘ iy See

tion 7[‘-’-’+f)—>m‘=ep . But one may suggest a triple scattering of protons on helium.

. For suoh a type of triple scattering one may propose one more "redundant" for any
energies4experiment which does not réquire a phasé-shift analysis. We have in mind the
lll. All the,three'ecattering are performed inihe same piane; Let us
denote ‘the. number ‘of particles scattered in the second scatteringlto the 1eft!and in the
third one to the right by chR'G” , '9 heing the polar angle of the seoond{scattering.

[6 () + Cex ¥) = G, ®) - dm("”)]

"The function

z,p, (2.2)
must coincide’ with 0ross section(f(a) when the beam is unpolariged* (depolarization goeffi-

~clent "D is to be equal to.unity, seeI1|

and also’appendix B). Py 1s the magnitude
of polarization after the first scattering, ?B characterimes the third scatterer.
The‘investigation of the PP scattering is also at present in that stage when only
the insufficient accuracy prevents from testing | A l gn ljﬁ (yet it 1is not possible,
éé& example, ‘to-choose . definitely either set of phase-shifts see|9 10I) We note ‘that the
) weasured value of the coeffioient C (correlation of polarizations ofithe soattered and
the recoil protons, ‘all the scattering planes coincide) and-the'caloulated‘value ciosist
to it differs almost by two standard errors (0,75 + 0,11 and 0,61 + 0,06 respeotivelﬂlqh
an another set of phase—shifts yields :Cnn‘= 0,38 + 0,08). If the difference of such a ty-
pe maintained after improving the accuraoy and if it turned out to be steady with respeot
to various Ways of phase—shift analysis this would provide evidence that | c( | ‘and | j3 |

fail, o

Appendix A. Soattering of ‘Spinless Partioles

.. The oonditions and the results of the experiment may be desoribed by the function
@(H,P‘ P"ﬁ) giving the number of partioles soattered in the direction of the momentum
,9 (corresponding reooll particles have the momentum /& ) under the oondition that the

beam particle momentum was definite and was equal to f% (target partiole momentum wae/&
As:.regards the ooordinates they are in any oase not fixed (by aooelerator) and are not )
measured (by oounter) with such an acouracy that ‘one may speak about the obeervation of
.soattering of a certain beam partiole marked by indioation of its trajeotory on the
.marked (by the indication of its coordinate) target partiole. The experiment makes sense
for beam with arbitrarily 1arge seotion.

In classical, quantum and any another mechanics there ought take place the law of oon-

* s prof. Markov observed this result follows from | oK | used for the desoription
of the spin state only (but not the coordinate-momentum one).
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servation of total linear and angular momenta and of energy since they follow from the
fact that the space (and the time) are expected to be homogeneous and isotropic. Let us
introduce instead Of, Pl and P2 the total momentum T and the relative momentum P
‘The law of conservation of total momentum means ‘that q)(f’, P [’, -P) 1s equal to ze-
ro, provided P-‘# P Therefore we omit the indices P and P and in the ‘following we
assume the process 1s described in the center of mass system where P P 0 Then, if
in the space there are no prefered direotions the number of particles scattered in the
direotion _P' under the condition that the i1nitial relative momentum was P is equal
to, the number of’ particles scattered 4n’ the direction ofng (5P is a momentum p ro--
tated around a certain axis ‘about a-certain angle) under the condition that the initial

relative momentum was. gP =

CP(SP"!N’) rEpH Caw

(indeed the second experiment differ from_.the first one only by the. position with res-
peot to the frame ;of, reference) From-here:follows that’ Cp depends only on the modules
9";:":3P . -and- P .. (which are equal in-virtue of the. energy conservation ) and on the angle
-3 .between them. . . ., ' ‘
v JIf there are no.other channels thenffd-ﬂ. q:)(‘s ‘"ds a consequence lof ¢onservation
of number of particles. By:subtracting from- @(19) -the function describing initial redu-

, ed beam .(such as O(S(P P) 0<c(<i) we -obtain the cross section G () -

Appendix B. Scattering of Particles with Spin l/2 by Spinless

Particles v

’l‘he quantum - mechanical description of the spin state is taken. S:ince our purpose
is to verify if the dynamical parameters introduced by quantum mechanics are sufficient‘
for describing experiment or a greater number of parameters is required then this adopt}en
from quantum mechanics simply restricts perhaps the possibilities for testing | O( { and
| j5 l (the difference from quantum mechanics will consist only in re:jecting the assump—
tion that the weights of sharp states do not change with time, see remark 1 ).

The arbitrary spin state of the particle with spin 1/2 is described by the Hermitean
density matrix involving four' elements or so-called polarization tensors, see for ex. '111
For example, scattered particles are described by the function G'(P P) (which represents
their angular distribution ) and by functions P (f, ) P s P (the projections of their

polarization vector) The spin state may be also given by indicating the fraction P of
totally polarized particles (l—-P will be ‘then a fraction of unpolarized particles) Note



that P turns out to be equal to the magnitude of the polarization vector P Vsz*B‘* p?
a

>

Seel“lLet us direct the axis Z

—_

vector P + Introduce the function W(P P) which represents the angular distribution

from unpolarized beam (P—O) and the function WB(P ID) which represents the angular dis-
tribution in the case of totally polarized beam (P—l) If 0<P<j we have;

G (p\P)= W(F, F)1-P)+ Wz(,v,lo)P_
W(P'P)J « W, (/)P ‘

The linear dependence of d(p,P) on the beam polarization vector magnitude io a con-
sequence of the obvious fact that

of the ooordinate system along the beam polarization

|B.1}

‘the number of - scattered particles is proportional to

the number of incident particles of either kind. (polarized or unpolarized).

Let us denote the values of X y and .2 ~ components. of the polarization vector  of
scattered particles when the beam is unpolarized by w (ID Ib) WJ a.nd W oorres—.

pondingly. Analogously W,a_ (/’ P) M/E and WE denote the corresponding components in
the case when P = 1. If (< P<{ we have

!

J

~WK(1~P)+ W:PE W s + MK~P L K= X4,2 1B.2}

In the other coordinate system (the axis %2 1is usually taken along initial momentum IB. )
the beam polarization vector will have the projections P . P - =Z£ﬁ ] P ‘where
gjc is the matrix of the corresponding space rotation of the coordinate system. We in-

troduce new functions W (F P) W(P'P)jzz and W WK gat Let us introduce also in-

stead of the Decart projections of polarization vect_or_the .cy’olicv;‘ones - .
- P"‘l:p) =
PI,—J ( g //3 ) /3'!;0 ‘ /Di' ) ‘Pftl (P )/r . iB.3]

Now |B.l] and |B.2| can be combined into the relation

ot

Pye (FF)=2 wl’ <F¢wp)ﬂ¢r(/°) BECERRYS :
, ' | : B4y
where Palo (F;P)Ed(["’, ];) y Pf’é’ " are cyolic projeotions of P 10,,‘, (P)=/
if the flux density of incident particles equals 1 pazmcee/ ¢_re¢- and there 'is one
- target particle. |

“From the hermiticity of the density matrix (or from the.reality of- Deo‘art'projeo—
tions~of the polarization veotor) follows that )P;:E =(.~';/):?}o%_‘z..f. Therefore, .
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In qua.ntum mechanics , t S TR
Wn- /z SP R d R . 1B.6)
where R 1s the transition matrix (see.for example 1121 and also”‘l)
We have showed that |B.4] take place also when Wflr, J:I.s not represehted in such
a form. RN
We agree .that futher the projections 7T are ref?;'réd to the system of axis A with
the axis '*2/1.'[/ F ‘and the axis yA directed ‘8long that beam polarization vector compo-
nent which 1s perpendicular to P' , while the projections.Z’ are referred to the-
" system of axis c with the axis Z, H/D and o% l[[/oxf)_] If there are no prefered di-

/ 4
rections in the spa.oe then W t (/J, P) 1s to be of the form

?'C(P /:) Z 2 (TSzf)Ct,M' , 1B.71

7, L ot

S grwlgl) Gy = WEE s

Here (-, 3 77"}”) are Euler angles of rotation carrying the axis A into the axis
c; & and P é.i'e spheriocal angles of the vector P" with respect to the system A.
B 7 the parity conserves, then (seellzl) ’ . '
RE0)2 (( LIRGIL) (4 IRI-'/)) (a(s) £e) )
LIRI-E)  4IR[-) 8(8) a®
where the pro:]ections m' “and m appearing in the elements (m’ “8(19, 0” M) are related
to the system C and. A ~respectively.
» The angular distri‘bution from the uﬁpolarized beam is defined by the function
W % [3 0)= (lal*+]¢€I*) and the function |2.2] is defined by the sum
I/V"—I (90)+ Wl 4(-9 o) (see Eq. |31] in l12|,)’ equal to “Jal*+|&]*
Y ret us note the fact that -the equation D= (W“ (59 + W’ '(-90))/W""690) *_/
does ‘not follow from the invariance under spaoe rotarions. Indeed W is expressed in
terms.of:coefficients (4 L'lW'T/fL) while W is expressed in terms of other coefficients
(0L' | WTIOL)= B8, &, see (B3) |
Let us note that the law of parity conservation may be formulated in terms of polariza-
tion:tensors-(without- the helb‘of.the transition matrix)as:.it has been made 1n]‘1.3l«,.‘ We ob-
tain the same selection rules as in quantum. mechanics,- seel;&?‘"(ofl course,. in quantum me-

chanics there are some additional stronger parity selection rules). We emphasize that the



‘lf?éa/y 4;f7.

- 1] =-

' tqéﬁ of parity oonservation suggesfed 1n|12I does not depend on the fact whether or not

quant@m;mechanics is consistent.
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