





Part I. Electrodynamics

l. A Model of the Univers

Our basic 1dea is that the traditional 4—d1mensionq1 man;fold 1s not sufficient to
describe satisfactorily the ?hysical reality. In what foilows;we shall try to show the
usefulness of a six—dimensional approach for 1ntérpret1ng, from a uniform viewpoint, se-
veral rroperties of matter regarded hitherto as primary and heterogeneous.

We share the opinion of Eddlngton that the fundamental problems of microphysics can—~
not be solved without takingginto~account some cosmological_qspects. Therefore we start
with some considerations conéerning the general structure of the univers.

Our working hypothesis 1s that the physical world is essentlally symmetric. If we
are faced with an asymmetry, then it .is our specialrposition~in'the univers, or the actual
distribution of matter in it, but not the fundamental physical laws that ‘should be blamed
for 1t Now, one of the most consplcuous asymmetries encountered in physics consists in
the fact that the number of space-like dimensions 1is not equal to that of time - like di--
mensions. According to.our working hypothesis this fact is quite unsatisfactory. Therefo-
re we assume that the manifold unoerlying the physical phenomena is actually six—dimensio-
nal with three space~like and three time-1like dimensions. The fact that we overlook the
fifth and the sixth dimensions 1is to be ascribed to the actual distribution of matter and
to our actual position in the univers.

We assume that the 6-dimensional manifold is riemannian dbut singular. The inhomoge-
neities and singularities of the manifold will find a suitable expression in the metic
tensor ?#v (greek indices run from 1 to 6, latin from 1 to 4). We assume that the singu-
lar points within the six-dimensional space form two‘four—dimensional subspaces (hyper-
surfaces), one of them being characterised by the signature + - - , the other by
the singature t++t+ = ‘ R '

Introduce a system of coordinates )(lb in such a way fhaf the first'fhree of them

are space-like, the last three are time-like. Let the equations
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define the singular hypersurface ()(‘ )Q 1-)( X ©. ) with the signature +--- , and
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define the other singular hypersurface ( X X}X JX‘{) with the signature +++- ,Accor-
dingly we postulate the following metric form

g XX .

where¥*

9, ju.—f1*4 [(X’ )f' (x'- 5)] F=1 ’ )

F A ~4-4 [(x c)+(x o)] F

and ?}L =0 for /L:r*v 1s a constant with the dimension of a length, and .4>0 1s
a parameter.

The inhomogenelties and singularities of the above described manifold can be inter-
preted as an averaged background brought about by the existence and special distribution
of matter (in a broad sense.of this work) within the six—dimensiona:l univers. Next we ha-
ve to define our posltion in the univers. We assume to be situated at one qf the two sin-
gular gibspaoes,i,let say at the hypérsurfa.ce defined by (2), far apart fr9m the other sin-
‘gular hypersurface defined by (1). Thus, :if X/‘b means our position in fhe univers, then
X4—H . .as.well as _X_L-’-;D are practlcally infinite whereas :XS" C , and Xi‘ D are
very small or vanish. Under such circumstances we can siuiply neglect the terms involving
'x"'-—F' , and XL“B in (4), and shift the origin of the system of co-ordina.tesf'so ’
that | C= D:: O . The new coordinates (whose origin determines our position in the six-
dimensional univers) will be called X’“’ '« Thus, for our special position in the world the‘
metrio form reduces practically to ' ,

/¢5 j A(/’(/"Gtx : ' (3")

where

Aﬁq"‘jzz =f;3= 'fflrt/ :'4 Y, Jss = Jos = +4 (5)

A/,=-_(4+£“o~"“) where = [0) e (x9*] S ®

and the remalning ,? vanish, Thus, in spite of é. symmetry between space-like and time-

with

like dimensions characterising the whole unilvers,. the two time-like dimensions 5 and 6 -

appear sharply distinguished fromthe point of view of human beings.

- *This is an example, what we really need in is only the fact that when approaching
the singular hypersurface the metric tensor is singular of the type +~% where A is’
the distance from the hypersurface. For 1#—>o> the metriocs should be?. ps.euclideany



"~ 0f course, the dimensions l,....4 are to:be interpreted as the ordinary spac_e;-time..
situated far apart: from' the domain w.here space-time is singular. (or significantly inhomo-

geneous), the manifold (x; X¥*) appears to us as homogeneous and isotropic. This acco=

.......
unts for the invariance of physical laws under the group of inhomogeneous: Lorentz trans-—
. formations and for the conservation of energy-momentum and angulay momentum. On the other
hand, since in that part of the univers Where we are situatedk the invariance under transla-
tions of the variables X¥ and X% is violated, we cannot expect the existence of fur-
ther congervation laws for a f£ifth and a‘'sixth components of an' "energy-mementum six-vec-
tor". similarly, since the manifold is not®isotropic, the groups of rotations in the (Xf
X5 ) - and (XLI X¢) - subspaces oannot play the same role we are accustomed to from con-
siderations of lsotropic spaces. However, the su‘bsbace (5,6) 1s isotropic, whence the phy-
sical laws have to be strictly invariant under the group of rotations in (5,6) around the
point. ‘X’f*/(‘aO . This invariance \_Nill constif,ute .the geometrical basis for electrodynae
mics. : ‘ | : ; : T o R .
Owing to the symmetry under rotations in (5,6) arou.nkd; the point Xf=* X%20 1s will

be convenient to-introduce polar“:coordinates
6 . . .
A= sl X% = gmgem o - -
whereby the metric form goes over into

di*s g dxtdil v §[r 7 W)] -

withg o given by (5) and b given by (6). The contravariant components of the metric ten~-

sor are ,
" L 33 44 / “ 1 r_ A4
g'=q9 =§ =-9 = J c?./m /<7 G (9
v i .
whereas the remaining j vanish. Now, let us compute the contracted curvature temnsor &LV'

Its only non—vanishing components are E -
byt e .

R =4[5 R -r2] 0 a
where prime means a derivative with respect to 7~ . These expressions are singular at the
Minkowski hypersurface r = Q .. R -2 p—a

a* »Q‘Lé—xl A R —> 4t Ly
R — -T o A 2 e (11)
provided a ( 2. In spite of the singular character of the curvature tensor components,
a-2
the curvature R 1tself as well as the quantity 7 /f ‘is regular and .vanishes in the
limit r» =0
, Ja."?
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provided %3 { & . The case : .
e <ad (13)



will be called "half-regular". In a "half—regular& univers the curvature tensor 1s sin—'
gular which fact enables us to disoriminate a four-dimensional space-time in it, but its
singularity 1s so weak that not only the currature_F( but even the quantity (12) vani-
shes at the points r = O defining the space-time..

2. A geometrical interpretation of the electromagnetic field*

In- order to realise that our procedure of geometrizing the electromagnetic field is
quite similar to the well~known procedure of geometrizing the gravitational fleld, let us
‘recall briefly the eseential steps of the latter. First of all one used to extend the Lo-.

.rentz group to the group of all non—linear transformations

xk= £, K) ' e

where;RL meen the original variables. Under the transformation (14) the metric tensor
components cease to-be pf the slmple form ,9«._., ?u:'?”i: _ 7;;12»4/ j‘f.o for L=tk
but are still snbjected to some restrictions whose meaning is that the space-~time remainsi
still‘as it was beforshand, i.e. flat. In this case the jul describe only finctitious
gravitational potentlals. Then comes the declsive step: preserving the generalized metric
form .a%‘=7£‘¢x54h‘ we ‘drop the . restrictions. upon j@b » . This means an encroachment
upon the geometry of our manifold: the space-time acquires an X"- dependent curvature
and now the ytz charaoterize the genuine gravitational'effects. In the sinple oese of
a gravitational field 1n vacuo the field is determined from a varlational principle

8 W = '5_§(¥ x VD etsze L = /

(13

where ** y i
o%,z E—R = x,_l “ki . E . (15’) .

* We have multiplied the lLagranglan- by an inverse  of the gravitational coupling cons-+
tant G = %x¥{* _ in order to have W ~ with a dimension of action So as to:be able to add
the quantity W - describing the gravitational field to the other W5 deseribing the
remaining fields occuring in Nature.

The above outlined procedure for the gravitational fileld can be closely imitated in
the case of the efebtromagnetio field.‘Firet of all we have the group of rotations in the
subspace  (5,6) around~the origin T=0 that does not influence the form.(a). This group‘
can be regarded as analogue to the Lorentz group. Then, guite similarly as was' the case
with the Lorentz group, we extend the group of rotations in. (5,6) to a non-linear group
- by assuming an Xh —dependenoe of the angle of rotation
' o€ =Lt fOx) o Qe)

*Some earlier attempts tfo ometrize the electrom netic field in
many—dimensiona Spaces are q%ot%% at the end of t fi 8 icle.




In other words, we allow different rotations in (5,6) for different points in the Minkows-—
ki1 subspace. Owing to the symmetry with respect to rotations,in;(5,6), physical laws must
remain covarlant also under the group of non-linear transformations (l6). This is nothing
else hut the group of gauge transformations. The transformation (16) changes the form of
the metric tensor components, In order to simplify the computations let us neglect the
gravitational effects and use an imaginary time coordinate

Xi=<cl R , (an

After the transformation (16) the yﬂd,become

ﬂ"‘g +64'7[/" SRR i“_érr 9= ’jj“=fk,r=0 (18)
where #,  1is the gradient of the phase £ introduoed by (16), | -
| fo= %f as
and 4 1s again given by (6). Of course, the metric properties of our manifold hawe not
been influenced by the above transformation, and the appearance of f, as defined by (19),
does ‘not introduce any new physical contents into the theory, either. However, closely
imitating the procedure of general relativity, a decisive step will be made by dropping
the restriction 19) but preserving the form (18) of the metric tensor. This constitutes h
an encroachment upon the geometry. Hereby the manifold will acquire an X&:dependent
ourvature and the quantities ﬁ involved in it will represent the electronagnetic poten¥

tlals. ‘ . o ) ‘ o

_ The contravariant components of the metric tensor (18) are
kl S ke 1~-f

’-ﬁ,f T I AT A <2°>f

From (18) and (20) we compute the /ﬁ symbols (Christoffel sybols)

A Garbh) | B <400y D04+ B (Aot ifehe)

l:x (Irfr)laﬂ , [‘* IHMLLK ([’-’T)_F il:* (Im ﬁ ) »‘(21)',
I—wr_ ([,4-1) r\d..“ (/(71}) l_‘,.r i

w L wr Lkt gy 1k /

while the remaining (essentially different) /1 ~symbols vanish. The gquantities 42& are

ﬁ,_z %7%_9“725 | (22)

With the help of (18), (20) and (21) we compute the curvature R y or rather the expres-

defined as

sion

OZ ,&,m, azléa. ~a é""l[" I-a ( j“f&ej fl wjktli'j .2R j R'r-r? )

T-0 ‘ (23)
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The result is finite and simple only under the conditions (13), namely: the first term
in (23) yields only a divergence -

-Z: 94 (‘Fk \FRJ) ; . ' (éj')

the socond term yields

-4
Z )ZK %fﬂ y R | | - (23||)

whereas all the remaining terms vanish, Thus, we find

L2 Lem =904, e

an expression that is to be recognized as the Tagrangian for the electromagnetic field in

vacuo. The usual variational procedure (variantions S'Fk ) leads to the Maxwell equations

SW= gjal)(ag 9'70*"0“ | ' (25)

Thus, f‘_ is actuall,y to be interpreted as the eleotromagnetic field tensor and fk

in vacuo

conncted with %k by means of (22), as the electromagnetic potential to whioh we can al-
'ways add a gradient (19) without influencing the physical contents. of the theory.

» ' In ‘this way the electromagnetic field has been geometrized on very similar linea to
those known from general rela.tivity. The gauge transformations hava acquired as well a
: geometrical meaning. The main difference between the gravitational and the electromagne—
tic field consists in the following circumstance: in the case of grqvitation only the coﬁ‘
ponents R‘:k of the oontracted curvature tensor contribute to the curvature R whereas
in the case of electromagnetism only the mixed c'omponents Rk's
the curvature R  of the six-dimensional manifold. The comparison of (23) with (15)shows

and R x6 contribute to

that the gravitational coupling constant G K‘[ can be interpreted as an average  of the

A i <l
-quantity over a very sma11 region 074 ¢ 4n the subspace (5,6). The limit

-a
transition r -—> 0 (whereby Z 7 -0) assumed in this section is in agreement with ‘the

,fact ‘that the gravitation has ‘been neglected.
3. ‘Interaction with charged fields

Consider a i’ield transforming like a vector" under rotations in the subspace (5,6)
around the point Xr: X b2 0 ~« This field possesses two non-vanishing components to be
denoted by y’y and 30 « (It can be loolced upon e.ge. as a six-vector whose oomponents f
vanish)., Let us compute the cova.riant derivatives of this vector field 4in the limit r = O.
The metric tensor components expressed in terms of the variables xl, vea x6 are

Gl b7 g 0 g 008 g0, @

/



and : ) S e

7&42 See '?U“"Gﬁ y -“="’;7€ , ?ﬁ: 2!- i (X‘)'%%é
| ?‘%wfx’)ﬁ At

The Christoffel symbols (computed in the limit r=0 ) that are of interest for our present

(.27)

purpose, are
£ § 6 - Fo2-a, A% -0, . (28)
/;:=/:”_C=O /_,/:‘g“-.z,ﬁ_}, //:5-1:“‘ oz Ik ‘

whence we get the covariant derivatives

5 s d-a 6 6 ' J-Q/
Fu = %P ThY }0&“9 P (29)
. , . - .
Combining the components 90 and 99 (of a real field) into a oomplex field

P =iz (prep’) , "“—(sv—cf) o0

we find L ‘

7.=(9-" Lﬁl) ‘/,’ ( ”‘"—7@7’ o

and recognize in them the well known expressions ocourring in the theories of electrically
charged fields. This discovery enables us to complete a geometrical interpretation of
electrodynamios. o

First of all we notice that the well—known expressions occurring in the case of elec—
trically charged fields possess a geometrical interpretation in terms of oovariant deri-'
vatives. secondly, since a charged (i.e. a complex) field is essentially a vector field,
as 1s seen from (30), it describes particles with a unit spin 1n the subspace (5,6). In-
other words, the electric charge can be interpreted as a spin in (5,6). The charged par-
ticle possesses an internal angular momentum of absolute value 1 (in the units c=h=1)
correspomding to an internal rotational motion thstrtakes place in the (5,6)~subspace,
. However, owing to the geometrical properties of the six-dimensional manifold, this'spin
does not come forth with its full’absolute value 1, but with a strength diminished by:the
factor({éﬂ(i-a) « This factor is nothing else but the reciprocal root of the Sommerfeld
constant. Its experimental value e’=43{—tt lies within the limits (13). In other words,
oe have found a connection between the electric charge ¢ | (expressed in natural units)
and the quantity a characteristic for the structure ofithe underlying manifold,

g = £-a , | (32)

Z
Expressed in terms of the electric charge the restriction of "half-regularity" (13) beco-

mes

0L e< X (13')
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Thus, we are unable to predict theoretically the exact experimental value of the constant
£ but still, we can understand the reasoas why there must be an electric coupling cons—
tant e > 0, and why it must be .significantly smaller than unity. If.¢ 'were zero (if a
were equal to 2) then the singularity of the curvature tensor components would disappear,
as is seen from (12), and we would not be able to disctiminate sharply the Minkowski space
out from the six-dimensional manifold. On the other hand, if e were 1arger than 1/3, the
singularity would be too strong and the part R“? + 1R56‘j + R“? would contribute in-
finitely to the action integral LV at the points r = 0 forming the usual four-dimensional’
space—time. ] ]
With the.aid of (28) we can easily compute the second covariant derivatives and check
their oommutability. The result is ‘ )
Fao ~ Fou = e | o
.wherefrom we see once more that the existence of the electromagnetic field f&b is equiva-
lent to a change of the geometry. The. tensor field fL(X‘) introduces an- X ~—dependent
curvature of the 6-dimensional manofold in the immediate neighbourhood of the Minkovski
subspace. Thus, the electromagnetic field becomes an intrinsically geometrical quantity.
Let us consider the usual Lagragian for a free complex field y7 . According 'to (30)
this Lagrangian Z(’f’f,f 7",,‘ )is to be reinterpreted as a Lagrangian for a vector field
‘f Y . Taking the electromagnetic field with the Lagrangian < (J f(,) into account we
have not only to add the two Lagrangians but, at the ame time, to replace the derivatives
/CV by the covariant derivatives V r);a ‘-Cf}" because the manifold is no more flat
in the presence of the electromagnetic field, Thus, we have to assume the following Lagran-

glian

2= &, (f)r L0550 on

where ‘%m(gl(ﬁ-) is of .the - form.(24). The usual variational procedure applied to (34)
&ields»the usual -equations: for the:complex.field ,Y7 including its interaction with the
eleotromagnetic field and the: Maxwell equations in the presence of a charge and current

constructed out from ¢, <f* and’ Z-)‘?ﬂ/ 9& ?*
Yfaeeh >

If, besides the complex field, we have to do with a real field X it should be regarded
-as a scalar under rotations in (5,6). This assumption sufficiently justified the fact that
neutral fields are not influénced by the electromagnetic field: indeed, the covarlant de-
rivatives of a scalar are identical with the usual derivatives. The same holds for the
second covariant derivatives K TR since XJ"‘ is ag'ain a scalar with  respect to

rotations in the subspace (5, 6)



N ' -1l -

. Let us consider the problem of charge oonJugation. This transformation i1s equivalent
to the following substitution ‘
#* .
: —_— - 6
gy, P ©8)
This ‘holds obviously for bosons but oan be also assumed for - fermions (described by four-—

k matrices 1s used.

_component spinors) provided the MaJorana representation of the x
Complex four-component spinors in the Minkovski subspace are veotors in the (5 6)~subspa-
ce. Real spinors (describing the MaJorana partiole) are scalars in the (5,6)-subspace.

From (30) it is seen that the charge conjugation (36) is equivalent to an inversion
of the sixth axis. Hereby the axis 6 is by no means privileged as compared with the axis
5 since we can also supplement the inversion by a gauge transformation. a rotation in (5,
6) through the angle T, ' ' '

In this way also the charge conJugation aoquires a geometrical interpretation of an
inverstion in the subspace (5 6). The well known transformation cp is a transformation
with Det =1 if looked upon from the six—dimensional viewpoint.

. Concluding, it oan be stated that - similarly as the theory of gravitation - also
electrodynamics can be expressed entirely in a georetrical 1anguage. This can be done in
a six—dimensional space embedding the Minkowski space. This last is distinguished as a
hypersurface where the ourvature tensor is singular. The two-dimensional subspaca (5,6)
is i1sotropic with respect to'rotations around the point r = 0 belonging to. the Minkovski
subspace. Gauge transformation is identical with a rotation in (5 6) around this point.
Electric charge 1is essentially identical with the angular momentum in (5,6). Charge conJQ—
gation is interpretable as inversion in (5, 6) The conservation law for the electrioc
charge is a consequence of the 1sotropic character of the subspace (5 6), quite similarly
~as the conservation laws for energy—momentum and angular momentum have been consequances
of the homogeneous and isotropic dharaoter of the Minkovski space., The electromagnetic
field is equivalent to an x*— dependent ourvature within the six—eimensional manofld. '
‘This curvature 1s of such a type that only the components R and R}G of the curvature
tensor matter. The constants ,4 and A involved in the definition of the geometrioal
"background" are closely oonnected with the gravitational and electromagnetio coupling

constqnts respeotively. - ) S , j
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Par t  II, Mesodynamics

1. The problem of the plon-nucleon interaction

The purpose of Part II is to show that the six—dimensional point of view is useful
not only for geometrizing the electrodynamics but also for a better understanding of
mesodynamics, in particular of the concept of isospin and the ps—scalar character of
nuclear 1nteractions.{

Let us start with pointing out a remarkable fact that (in contradistinction to elec—
trodynamics where bosons as well as fermions serve as sources of the electromagnetic
field) only fermions (baryons) but never bosons constitute the source of nuclear forces.
This gives us a hint that the problem of nuclear interactions mist be intrinsically con-
nected with the theory of spinors. ) - v | j v N

It 1s well known (Cartan 1938) that spinors with Zgi components are adequate for
the case of v —dimensional spaces (n even) Thus, for the case of a six—dimensional
space the eight—component spinors should play a particularly important role (whereas
fourf or two-component spinors should be regarded»rather-as exceptional, degenerate
cases). ) . : , . R . ,

Let us oonsider Dirac matrices ‘/jfowith eight rows and columns. There exist six

'independent matrices satisfying the usual relations ) L o _

PECY e LY =28 . on
and the seventh matrix being the: product of the ramaining six

MecP'rY T ' . (38)
and. satisfying (37) as well. The .six matrices. /-1 Play the same role in the six—~dimensio-
nal space as the usual Dirac matrices Yk with four rows and columns .do in the four-

Y \
dimensional space, whlle P plays the same role as. x « Let us investigate the follow-

(e fTX =M o

Since we are situated in the Minkovski subspace of the six-dimensional world, we are

ing equation

s [
interested chiefly in the values of X(X") in the subspace X =X = 0] . Denoting

) ) ,
X(x%0,0) = Y& (40)
we satisfy the equation (39) by the following Ansatz

X(Kl‘).: LI'J(X“)QL(%X”%)‘ ) (41)

where (Pb‘ ‘and 4—’5 are still functions of XX . This
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k s 6y T o C
' S R (b)] = -
Fore (T eMoalIT =-MFr
valid only in-the Minkovski subspace
In order to find out the meaning of this last equation let us introduce a conve-

nient representation of the r1 matrices. It is easily seen that the following eight

row -and column matrices.

M= O ‘0) F:(}‘x) P (b) K s> F O-()) (43)

satisfy all the requirements. Now we introduce a two-index notation

L{J4='\}l“ ) L{J:._ "f’u, W, = %4. , LH, "'f%/l'/ v-.(44)

tox¥e, Hez Y, M= ) Y=Yy
and represent the eight row and column matrices (43) in form of a direct product of
four row and columns matrices by two row and column matrices
s .5
ﬂ 1
N }54 =3, f‘ =3 o ,I-)"‘ (45)
In this notation the equation (42) assumes the form. »

(3'() +¢3f’€cf )"f/ =~ M’l{/ o , (46)

where the componenﬁs of the "three-vector" ?7 are

44’ 4’6 ) ‘7"3?151"»  <47>

Now we easlly recognize that (46) is nothing else but the equation for the nucleonic ‘
field with a ps-scalar eoupling to a plon field.vIn this way 1t 1s seen that a ps—scalar.
coupling to a ps—-scalar meson field is more natural than e.g. a'ecalar coupling to a
scalar meson field. At the same,time we get a physioal interpretation‘of the‘cOncepts
of isospace and isospin. » o

First of all we see that "isospaoe“ is not a genuine three—dimensional space. Only.
two of its "dimensions" (namely 5> and 6) are genuine whereas the “third" dimension 1is
nothing but an imitation brought about by the fact that, 1f we have six matrioes P/b
there: exists also the seventh matrix, in form of a product of the remaining six matrices’
satisfying (37) too. From the point of view of the Minkowskl space three of the matrioes
[1/u namely F f" [1 are "redundant" and algebraically equilvalent. Therefqre 1t is
not surprising that‘some physical laws (strong interactions ) can take advantage of the
fact of the existence of‘three subsidiary Dirao matrices and can be characterized by a
higher degree of symmetry: invariance under the group of rotations.in~a “three-dimensio-

nal apace* (5,6,7). However, since it 13 not a'genuine space, the requirement of invari-
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ance 1s not compulsory, and therefore, some other physical laws can as well violate this
algebraic symmetry. In particular, since ‘f.ﬁ is a sca.lar but. (]ﬂ together with % form
a vector with respect to rotations in the subspa.ce (5,6) (as is seen from (47)), we con-
clude that (/l/{‘)(-fﬂf,_) should describe charged particles whereas T5 is to describe neutral
ones in agreement with the experimental evidence. In this way we have found an explanation
of the fact why the so called "'third component" of isospin is privileged and why it unavoi-
dably contributes to the electric charge. In other words, why the electromagnetic interac-
tion violates the invariance under the group of rotations'in “isospace",
Until now we have disregarded, for the saice of simplicity, the fact that our six-

dimensional manifold is not flat. Neglecting the electromagnetic interaction we have to

put R v
' MY+ PVP#==l7%

(37)
where ’? g,“ % ?rs =0 . To satisfy (37') we have only to replacerjpe
and /-1 S ¥ o 5

4 ( Js) A ( . ,/) A (J )
BE ), e MR s L (43
respectively. However, the factor / / ' can be absorbed into the coupling constant j

and we get again the equation (42), or the equivalent eguation (46).
7. Strong interactions involving strange particles

The above ideas about nuclear interactions can be extended for the case of strong in-
teractions among "strange" particles. However, once the concept of isospace and isospin
has been clarified, we'can use the notion of isospin in the traditional way. In order to
make a plausible "Ansatz® fordthe interaction energj density'we have to require not only
the conservation of>isospin andkstrangeness but,bnoreover, we have to use, as a guiding/
principle, the reguirement that the interaction'energj density should appear aa natural as
possible from the six—dimensional point of view, i.e. from the point of view of the algeb—
ra of Dirac matrices with eight rows and columns. As suggested by (45), this means a res—
trictive requirement that the ’t ‘ matrices should appear always multiplied by ) whereas
the appearance of ’b or X separately is to be regarded as artificial. This ‘principle

restricts the choice of plausible interactions to the following types
-3

a) L?NX'C('DN-F/IC . “‘b) &?A(fz_t'/'lc . c) 4,‘? ,__‘{)'2' f-hc

(48)

N

5 L?ﬁK/\ +he ) ’QQN}D?K-{*R'C' 1) r*"j ER

——
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The above set of interaction terms gives us some- information about the relative partio-

. “"‘l
les of baryons. Comparing d) and f£) we see that the nucleon and the hyperon ., have. the

same relative parities.'From b) it follows that 1\ ~and 2: have opposite relative par-

‘ties. If the K meson is ps—scalar then, from d) it follows that J\ has‘the opposite

parity to that of the remaining baryons. We notice also that, according to our list of

‘strong interactions, not only the process j\ d [\-#'H but also :E‘§2:+ T does not

occur.¥*

* The author is indebted to Dr. X. Wohlrab for an enlightening discussion of the
content of this section.
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