





Abstract

The elastic scattering of Z'—rays by nucleons near the production threshold of a
single meson 1s considered with.the-help'of dispersion-relations.

It 1is shown, that the production of mesons in the S—state leads to’a cusp dependence
of the scattering amplitude, the cross section and. other observable quantities near the
threshold. ' v | '

For forward ]‘-N~scattering 6 =—dlspersion relations are obtained which do not con-
tain infrared divergence or arbitrary constants.- ’ .

Vith some definite assumptions on the analysis of photoproduction data, the scatter-
ing amplitude, differential and total scattering cross section with polarized and unpola-
rized. W ~rays, and also the_polarizationtof the recoil nucleon above the threshold are
calculated as functions of energy up to 220 MeV,

- SRy : * *
*

I. It is particularly interesting to study the scattering of U‘—rays from nucleons
near the threshold of meson production. ‘ '

As 1is well known, in the low energy region scattering of 5‘-quanta from a particle

with spin 1/2 and magnetic moment /M 1s described by the amplitude obtained by LowIll

121,

and

Gell-Mann—Goldberger
A study of the scattering near the threshold of photoproduction may be of interest

not only because it can be compared with the theoretical ‘prediction of the dispersion rela-

131 of the cusp energy dependence of

tions but also because it is connected with the study
the cross- section (or polarization) in this region. From this last point of view the scat-
) tering of 0‘-quanta from nucleons or nucleons near the threshold of production of mesons
1s of great interest for it can serve as an example of the process, which has a rather
mall cross—section and is strongly perturbed by the intensive production of mesons above
the threshold Therefore, one can expect a large effect in the region near the threshold.
It is clear that an experimental study of the threshold anomaly with sufficient accuracy
may help the study of photoproduction of mesons in this region.

The basic aim of the present work is to give a detalled analysis of the influence of
meson production on the cross—section, polarization of recoil nucleon and polarization of

B\-quanta'in the compton scattering near the threshold.

It is shown that the polarization effect is very sensitive to the parameters describ-

ing the photoproduction.

In obtaining useful formula for the analysis of experimental data the phenomenologi-
cal analysis and the dispersion relations are used. The numerical results based on defini-
te assumption in the analysis of photoproduction must be considered as prelimenary. In



out the numerical estimation the small effect in connection with the mass difference of
mesons (and nucleons) has been completely neglected.

There are already many works, in which the scattering of f‘_ quanta from nucleon has
been considered with different methods. In the Present work an effort has been made in
order to retain a minimum number of assumptions and avoid those approximation methods

which are hard to Justify.

I1.

The general expression for the scattering amplitude of -« f -quanta from particles
with spin 1/2 has the forml4 5,61

T =R (E8) +Ry, (S,_~Sc') ~ Ry ((;:[EIE]) +1 Ry, (6 s,_'.§:])
VR (€8 (D) - G R) (B2 +iRe[ (SRIEE) ~(5R) @S]

where R, R, and Ry describe the electric transition, while R, , R, and R, - the mag-
netic transition, —é’ and e are polarization vectors before and after the scattering;

-'1—0 -> A - !
K = 2& . 35
$-[RZ]1, L
are unit vectors along the direction of the impulse of ¥~ quanta before and after the
. scatteringsrespectively; symbol "c"denotes the quantities in the ¢ - m - s.
In the low energy region with terms not higher than the linear dependence on energy

of § —rays the expression T can be written in the formll’al.
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expression (2) can be reduced to the form of (1). Then
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Denote the transition matrix by e o '
T = 2 6 Mue, = eNe

Choose two such coordinate systems x', y!,° 2t and X, y, 2, in’ which the axes z and 2!

and y' have the same direction. In these coordinate systems the eigenstates of the photon

the spin with eigenvalue ,S’f*'i have the following form

.3; = ‘VE(L“J) ; ;-t =4.‘T'i;“(zkﬂ»3) ~ <
’ . ‘ _’ v . . (5)
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where ’ /} ’ E’ are unit basic vectors along the coordinate axis. In general oase

the polarization state of photon will. be a mixed state i.e‘.' .

= ¢ %, +‘c;.§i,' | - R ®)

where \Cd"and [C..| are the probability of finding the photon 1in states with S =44
and S, = -4 respectively.

Using the elgenstate of spin as the basis for the’ representation, transition matrix

will have the form =~ } N‘; B 0 n A/ 7_( Tl g
T = 0 0 - o0 o |

Introduce the density matrix of Photon in the form

Tomse T

c. e Q cl
9 = 0 o] ‘0

¥

(®
(o ¢ 0 -, E, :

The density matrix in the final state 9 is connected with the rdensity matrix in °
the initial state gw by the relation
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o= T Qu T~ | (9).
Although in (7) and (8) the.transition matrix and the density matrix. are represent—
ed by three dimensional matrix, they have only fournonvanishing1ndependent matrix.

Therefore. we can represent. them.with the help. of. two-dimensional matrix:and:apply the-
well known. technique of . Pauli. matrix|7'

BT B S A & 23
T = P . I > :
N7 4 I\/"‘ ;‘l
’34 % Py B (10)

C. er C.,Ca. (1)

where . P, , F%T‘gnd P, are:Stokes. parameters; Py ‘and: P

represent.the.linear pola-
X
rization of photon along the;and‘j

axis, while P 0 represents the ocircular polariga-
tion of the photon.

From. (10) 1t 1s. easy to*pbtain .
W= ST = TS FNE
2B, = Sp (S¢ T)=§"-N'3"- B
&sx S? CGXT) - ll,{ ;'+;’l N ;1,
e , ' (12)
=3, N ‘S . '-;':’

where the trace is taken with respeot to the variables of X’-quanta.

Quantities A and B oan be written in: terms: of R,,” Rg defined in- (I)



2A = (R.+R,) (1+cos6) -i Ry +R,) siw 6 (§.1)
28; = (Ry+R)@; K+ + (4+cos0) (Re +RY (B 0+ ")
By = [R-Ry - (-cos® (Re-RQ)] (&,%-2
28y = (RI—QZ) (A-cos8) i (R—s‘!‘ 4) S 8. (81)
' (13)

—- - <y
where .\ZS}\AG =[\c‘.k_j , CatQ = (K.k_r)
It is easy to calculate the densitjr'matrix in the final state

(A+€ 3) (1+€x P)CA + S\( B) .‘;SlAA++?>B+ + CAB*«-EAUP

S =12
BRI 18 § A i (68T (BB,
RSO -t +iA[P'B:l—'g[P‘BJf\ i

Using (14) one can calculate all the observable quantities. For unpolarized -

quanta and unpolarised mucleons the differential cross section will have the form

— < 2 15
P =T,@)= £ Sp (AAT+BBY) 12)

where the traoce is taken with respect to the nucleon variables. Substituting (13) in’
(15) | | '
4T.(0)= (R~ R 24+ cos'®) = [R-R,(* (1-cos 8)* + [(R, +RY[* (3~ cofd + 2008 ©) +

+ [Ry-R,(% (3-cos® -20058) + 2. [0c+R (2 (1+cos ) +
2| R -Ref? (4-co0)® + fRe (Ry+R)" (Re+R() (4-+con ©) ~
— 4Re (R -R)" (05 -R() (4—&»6)2

(16)

ot
l.L,,(&) (4~ Cos e)[lﬂxz+lﬂzlz+4ﬂe(ﬂsﬂc+a, R)] + (3-ces?0) (I&FH%]‘)-f

2 (e3wte) (1IR3 Re?) + 4Re[RT R+ RIR +
+ 2 (Ra R+ Ry R) +<°-+a>§e)2;-ﬂglzo§.a | (161)

Expression for the polarization of ‘recocil nucleon has the form and

2T.(e)<Sy = Sp(An*+BEDE
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an

The well known theorem that cross section will not change under the interchange of

electric and magnetic transition 1s shown in the fact, that (16) 1s invariant under the
simultaneous substitution . ‘

(18)

From (17) it 1s clear, that the polarization of the recoll nucleon is also in-
variant under this transformation.

4.
Now we shall establish the relations between Stokes parameters and the statistical
tensor moments are defined by the following well known equations
L, —_— ' VT 3 o2
to" Y3 I4o=v?sa 7:02 3(182 f9
= L 2 2 .
- p[s2-s, +i(5:8,+8, 8]

(19)

Tog =3/ SH-S7-i(SSy + S, S)

22 T[> Ty =4 g =

Thgy are normalized in such a way, that
W TE <55 (20)
T'M II Cmm
The density matrix can be written in terms of these tensor moments
9_{_ 29“ ‘\oo "’945—(—40“" on—r;o * S22 laz ™ 92—2 (21)
with o ' '

Qo =\ 0 = /i3

5
* Formula (19), (23) and (24) 1in / contain some mistakes




Parameters 93)4 are connected with the Stokes parameters
Q=B fh | SRR 9., = P e

On account of the invariance: under the time reversal the expression for the scattering
cross-section T'(a g) of polarized Y~ —quanta with unpolarized nucleons may be writ-
ten in the formgs/ : 4 . k ‘

I (e.tg); T, (e)[4+’2<nz>i' <1;>¥ oo 2¢]
(23)

where

2 T.(2) <7:z> = siwe (IR\FIRNT= IR -[R,(2) (24

.

<T;-:.> 1s the initial polarization of the 8‘ —beam., It is noted, that (24) changes 1its
sign under the transformation (18). 5 ‘ '

For energies of Y~ -quanta below the threshold ©f pion photoproduction the
imaginary'parts of R, ... R¢ are small. Above the threshold the imaginary parts of
" R,:.. R, are determined by the unitarilty condition of $-matrix, whioh takes the fol-

lowing form the terms quadratic in electromagnetic interaction are neglected.

L[T (%,-2,-R-8,-8)-T (RE,£E8)] = |
l(o{'Q(%)[ e (o B8 T, G R2,3)]
. J,_SA.Q(?)[T\,_,P (9 £'2:8) T, g (731,/2,2,5)]

| _rx C_‘T":'é”é)=£ (&. e) M[(y[/?é’])-;(s'[[ efjchﬂ_

-my [2([£2]3) NG [z ?€J§’])]+ 2 [EREG) SO @A

(25)

g

is the amplitude of photoproduction of pions on a proton .
In (26) only the lowest states are taken into consideration. E 4 oorresponds to the

transition from state ’[,_- and negative pa.rity to meson state ,S',/2 y M 1‘— ti‘é.xisi.i
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4 + ‘ ] ' 3r +
tion from . %, to P%_ state, Mj;and E;are transition from % ". . to.the meson
‘resonance state P%_ From (25) it follows, that above the threshold
- _ 2 .
Tra Re = Ve § JE® + 416 cot8d =V Ao

T ' : ; :E Qi‘ = jfun'ﬁﬂ;
Tw Ry =v¢§ TR RSN I

T Ry = {IM)Z—MH VRl g (BT & Ms)g Ve Ay
L Rse =~ Vc%‘f‘Ei(z CE*M ~E, M3 )2 =Vehs ; L, R(c_ <o : B 27)
with the help of (27) it is easy to become convinced that the total cross section of
-rays o B ' k
G = %E IM,[Q.¢(0°) ""QACQO")} =45 % [E, )2 + MR« 2 IMsf* —-6'— {Ezjzf
+ (4

(28)

coinoides with the total cross section of photoproductiongy/ as 1t should be.

The threshold for production of J° meson V,(¥°equals 144,7 MeV, while that of a T
meson V, (W*)equals 1S0,5 MeV. For energies above  V, (i*)the right hand side .of (27) con-
> tains both the quantitites characterizing the production of 3(‘5 meson (E° MS...., AL A,_°...)

- and those for .production of Ji. meson -(E, .'f-...AT,A:-.). The effeotsconnected with the
mass difference in the mergy Vo () > V> Vp(-!{“) are not considered in the present
work. ‘ ‘

Cusp dependence of scattering cross secytion of ]" -quanta in the neighbourhood of
the threshold is caused by the production of mesons in the S—state. According to-the exist-
ing experimental data, cross section for the production of J"" mesonin the S-state is
much greater than that of ~5° meson. It 1s avdifficult experimental task to establish
the existince of production of K ° meson in the S-state. Evidently, an experimental stu-
dy of soattering of T—rays in the energy region \’oé"b\)) v, @‘°) will provide additional
information on this problem. ’ ’ ‘ : ‘ ,
The imaginary parts of R.--- QG _are ca‘lcuklated with the nelp of unitarity condi-
tion. For the ’calculation of thé,real 'partls, we have used the dispersion relations dis-

cussed in a number of works.

Turning to the study of dispersion relations for scattering of f’ —rays from nuc-

leons we begin with a detailed consideration of the kinematics.
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Let the four vectors K and k' denote the impulse of the incident and scattered

photon, ¢ andp’ those of a nucleon. They satisfy the law of conservation

K+ p =K'+p' 25
29

Introduce P = i(P*P')
’ ' 40/
Following Prange we will choose the following 4 orthogonal vectors as the basic
veotors
A ' (P'k)
K-t Q=)= pGopn , P= P K

N =t Epuas A Ky Qe |
(30)

Scattering amplitude can be written in the form

- ' o (31
[ =uw@vel My € 4P
0 ! .
while A/,.« can be written in terms of the invariant functions
[*] .S & C s/ (32)
/vv = 2 66’ 7
M e 7#‘- ' /v
where 767 are four basio vectors introduced in (30).
0
Gauge invariance regires that e'k'=0 ,ek=0 and K,{A{,fo,/t{.:n-_gds a consequence

o
of these relations /\/,.4 can be reduced to a system with eight invariant functions
T... —!—8 of two invariant variables Mv=-P-K and @2

! o Qz I ! . A
er- f"’ e\l = M"\/Z'QZ(QZ+MZ) (QP)(C.E)[I‘PthJ -+

N 4 WY@eN) [T+icTq] -
G)szzdz—Qz(Qz+M‘)1 (e ) [ 3 ‘J
i [@P) (M) -(eW) @PI] 4 [Te+iRTo] - (35

- M:.' VE -~ QZ(Q%M‘)

- _____i__/____ [(e'P')(e'N) *(e’N)CQP')] ¥s [7} “ik T;J .
Mz - B (g%+ M)
QZ
Normalization factors MEVE — GE(GEeMD)
One can show, that in any system (including, in particular, the Brelt system and the

eto are introduced for convenience.

center of inass system) the following equations hold

’
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(e FINCE- YN CESICE )

i 'P) (e P)

MEyt- QG+ MY 2[R Sin26 SinZp
e'W) (eN) R ELRRY €8 &) (34)
‘ Sivo T Sinte R

MEV2 = 2 (@2 MY
(eP)(e) = EWI(eP) 32y @8 = @F)(E
MEYE - QG2 MD) - . SmZO

where © 4s the angle between g and z - E and &k 'are unit vectors along ;_ and

x g’;” = [R-R7]. We shall prove (34) in the Breit system, where

kr Q2 (35)

It 1s easy to justify the following formnla
Mv

[ 2] = oo =~y

| ’ (36).
26%= k& (1-c0s8) '
37
2 2ema gt
o= MIZ - QI+ MY 2
Multiplying (37) by (38) we obtain - :
£ ShW2 o = QZ[MZV"—@ZCCV-;M")j o 39
7 Sm6 = —— RTT ‘ o : A
With the help of (36), (39? can be’ transformed into the form
| M2 - (e m2) )
Kgnte = 4Gt~ 0 “e
from (33) and (35) we obtain finally , .
@ ML @) CEE ER2)ER)  @IEE Gy

F A 2
MEVE - Q%02+ M2) @-q' | £ gin2a Sinie

Using formula ‘
/\7:-—1 Rt +MZ '/‘['2&27 - ' (42)

one can justify. other equations in (34) in a similar way.(As is well known, the invari-

ance under time reversal (or as one can prove it below, the requirement of crossing sym—

metry)reduces the number of 1ndependent 1nvariant functions to six (T ~/, =0 ). If we

wtite the scattering amplitude in Breit system 1n the £ orm (1), then we obtain

N
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- E o 2
Riswed = & (Tices +T3) - ko (Tcoss+To) ;R B
e s«'\‘e~-5 T+ T oose) vk (T, T con®) Q.(=2_"::77'
. K5 - =
Rosae = of (oo +T0) & Groos® T -LE (maue) T, - (43)
R smze =—“° (-rzﬂ:,c.»e)+ @m»e) 2_5 G-av0) T,
It 15' eagy to become convinced, that as (E =M » V= ko)
Retly o4 [T -v(T-T]
ReeRe - L [ (BT T :
60 M (44)
- V& -
R /9=o T
- E
R"{e-o S 2 14 : o 11-15/
Based on the first principle of quantum field theory ~ 1t is-proved that 7;
are analytic functionsof V both for 9=0'(?'50)_ and for
2 . 2 __Q@mr ug) (EM2rI Mg +4mP) o

where My 1s the mass ofa & meson.

Usually,. only two dispersion relations for the forward scattering amplitude P.e.l?
and: R Q,'+2(2‘¢2Rc are considered. From (44) it is shown, that at 6:0° they are really

four dispersion rélations ‘for the scattering amplitudes :e,'fﬂ R ' R,, and Rr‘-Rc

#

Retarded oausal amplitude for the scattering of proton can be written 1ny the form

Ty N a = 2w (BAY" d'ze’ “<rloea[4. (), j C2)] fp>

(45)
51m11ar1y we have for the advanced causal amplitude
A IV,A,, L(p) =-25%2¢ (P"TP;)/" deze’t <f'!6(‘20)[3’;(§) ‘j;(%)]/,o) (46)

Define the dispersive part ruand the -absorptive part ,4’,‘, in the following way.
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ady £ m{d
(/V,m/ ) A (M M

(47)
Paking the complex conjugate on both sides of (45) and remembering that //' are
hermitian operators, we obtain
B A/ (b pk)ﬁ (P-k P-k) 48
Changing the order of .jr. and j‘/- in the commutator 1:1};(45) and using -2 instead
of 7 as the variable of integration, we have
' et B ad| o Lo
ot v .
MI‘V (PZ Pk‘) = /K\/ (P"K /’-k') (49)
Substituting (33) in (48) and (49) we obtain
4-3.9. ( Y z) =+ 13,5, 6 CVIQQ)
e , (50)
R .
D LE) - T, (ued ~
T =T, =0 |
With the help of (50) one oan easily- write down the dispersion relation
%,,,,9,60,@9 = J;P] vAuee (1,09 gy
v -y2
%zv("(?) -—-—P/ Asy (VQ) ' (51)
vz o

Consider the dispersion relation at Q = (¢ When the_Breit system coincides with
the laboratory system and V. be_'oomes':' the energy of Y- -quanta in the laboratory sys—

tem.

Sinoe the dispersion rela.tions +’nz 2y 1in e? —a.ppi-oxirﬁation contain infrared divergenoce

f the form
at §*z0 it 1s possible, in faot to use only the combination
2\'1' R,_: L.t

and : -
Rg + RC = L;
also the quantities

R3=L3 lpq"'[‘,
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which do not contain divergent‘ term a‘s V=g , At Qz=_o R L=L(v) it 'can be shown,
that -

'[,(-v)s Z,(V)'

L,*"-”t'd) *Laae(v) o ‘ o)

*

Therefore, for these quantities we may write the dispersion relatione.

Re L, ()~ Rely(o = &Y P[ T LGy,

] 'C,/lz V") " " P
(53)
! L Lya,y (9
Re L2'3 L,(V)‘ v Q LQ,S y (0) = _.Ef u CQJ'lei) AV
Two other dispersion relations are obtained in the following section.
JFrom (4) . . . ST el
2
Re L,(e)=- £ ; VRzL (o)-_e_ ve AV v 1
M N A A TR Y S A
' S e \2’ V v . - M (54)
v ) = = -— ::—\ e Vo V. : ‘ ’
Relyy=-2(g)ve-Lese v

VRel, @=-qevant SR v

First expression can be reduced with the help of the optical theorem to the usual form

v -rQ v ,-_ G(v')ofv v .
Re[k() (._-I + _P[ v"--uz (‘53.)“
i.e.ooinoides with the dispersion relation first obtained by Gell-Mann, Goldberger and
‘l‘h:ering- a ' oo MR ‘
8.
In the center-of-mass system Re... Rec -can be' expressed in'terms of the soatter-

ing amplitude with definite angular momentum and parity. Let us denote the electrio .di-
‘pole transition amplitude with total angular momentum 1/2 and 372 by £ and f; _res-'
peotively, the electrio -quadrupole transitionvamplitude with angular momentum 3/2 by {;;
Similarly the magnetic dipols and quadrupole transition amplitudes are ‘denoted by 777., 77?3
and 7, Besides these it is neoessary to introduce amplitudes C'(?n,é‘) C Cé‘z, ;)

c' Cis ™) . and C'C’)uz £s) ~“Which correspond”to the transition from the

B
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state M; (El) to &, CWx)_Invariance under time reversal leads to the equation

C,(M_; £;)= c' Ci'l M_;) , C,' (Ez }ﬂz) = C'(?n‘,éé) (55)
Finally, using the tedhnique of projecting ope;rator and restricting to the states
3/2, we obtain
Qrc = E: +2€3 fz&&se —W2
Ric = I+ 205 +2m, coa© - €, (56)
Ric = £,-€, +2€,an8 gz m, +(6C (& m)
Ric ==, 1My eos 8 43 €, (G’ (M, £,)
- L . ' = V
Rse = E_z fcc (ms €.:.) =“E_z - C»C%_,,E,_)

Ree = -1a-VgC' (€, M) = m, ~C(Ey,m,)
Using (2) and (4) we ocan-.determine the dependence of energy of these quantities at

Ve 20
Elv 1E0=-8 878 =-[2(B) &V (&0 iMoo

,, ) 1)
Mes AN imIs R CTE M0 C(E, M) £ py

In addition to (53) one can obtain two other dispersion relations by differentia-

tion
sk = &
25-‘2,“ 2 and R 26

with respeot to (,g)z and then putting &% &. The faotor K& containing in 25 and R‘,
at - G* ~0 tends to V?® which compensate thepossible infro.red  divergence in T, and
T, .

Consider

R SN ST
2 (@ +m® , o
If T, and T, 15 an analytic function V at @*<q% , then K, and D‘%Q;will
also be analytic functions ofV. Since the pole terms of T QMJT; have the form
=RAN

. 2
where % is some constant, while V, =-%- , then: it follows

2 I _
%\662 W/Q"—o =0

i.e. the pole terms tn dispersion relation for )@‘/M’- and )P% q* vanish
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Restricting the number of states as has been Z.jown in (56)

LQ_; = - fL(“) ’ v
BQ" v? . , ‘ (58)

&9 : o '
then - "”(Aﬂwill be analytic function of J whose behavior under crossing symmetry
colncldes yith that of Q_‘ « Therefore the ‘dispersion reln,i;ion for Ea/vz has the form

Re £ v (Iw LM 2w (T, £6)ds
VI.

. I A vtl( vli.-‘vt_) o I- ) V"'CV""V")
or finally ‘
~
Qe fz(q) = _24".3_}3 -‘_L;'“_@ vt ' o (59)
k3 vlLCvt)._vz) .

Combining (57) with the dispersion relation for £;+R.we see that .{—; (vand C(§ ™)
satisfy the dispersion relation (59) separately. )
Similarly, differentiating Q,r over &* one oan ;how that 7, (v) also
0 satisfies the dispersion relation (59). Finally, it 1s possible to construot & dispersion
E relations for the 8 quantities characterizing the scattering amplitude of §* =quanta
‘under the restriotion given by (56). We did not succeed in obtaining more
dispersion relations without infrared divergence.The differentiation over az' for meny
times leads to unknown oonstants,whioh are determined by Perturbation theory :Ln some
papers. If the experimental data are suffiolent, one can also determine these unknown
constants from experimental data similer to the ’case of J-N scattering. In the present
work we do not adopt this kind of approach. ‘ k
In carrying out the oalculation with dispersion relation forv_;}j:he scattering of
Y -quanta from nucleons it requires a quitedetailed analysis of the experimental data
on the photoprdduction.From the existing‘data oan oonclude thaf Imm =0 _' ' If wé al-
so take into consideration ° = 0 then

My (v)=0 (60)
The oaloulation 1s carried outunder the assumptions
Cim€)=c(4 M) =C°(§ m,) =-%fu/

(61)
M @) = M@= - §prv

For the remaining quantities we can write the following dispersion relations
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O 4.2 Jv'_ﬂ_ e+ E[*
Re £, = .é 3° P hhv zvu*v:
e - s+ 30 4 e, I
Vi-ys

Re [£.6) +2 €, 0] =~ %z EJ S8 - Re &) -2 Re [ I, &) - 7’&]
Re[E.(V)—\‘& O] = - [2 (&) -2y « &0 fj . !éf:’(|tj‘,!fz£.°!l

Re Clmsg,y = Re C (E2ms) < stfjdm (e £31;)" + Re £7)°

: vl). YA

- (62)

production threshold.of a single

the considered energy region is near the
are

Since
meson, the processes 1n which more than one meson or other particles are created,
neglected. ) | ]
If the g_u.ifme, analysis indicates that IwM, ¥ 1t is not difficult to take it
into consideration. . g - B
~rays in the laboratory system and, that in the center-of.mass sys-

The energy of ¥
are connected by the relation

tem Y, v
. Ve = —m—
With the help of the expression for the total energy meson in the center—of-mass system
z
a’g = _v :"____——Mﬁ/iﬂ
V1= 2"y ‘ ‘ o
i1t 1s easy to obtain the expression for the quadratic impulse of the meson produced.
2. .2 (V Vo) (V*Vo /QM)
Q.0 = - g > ;o Vos m-(1+2M
7+ 2
~
With an acouracy (better than 7.5%) one may put 1t equal to
2,2 )
grs V- % (63)
< //+2v
then
?‘ Vl—Voz
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On account of the mass difference between proton and neutron, Tt and &K° meson,
the ‘scattering amplitude near threshold has some fine structure. For a rellable numerical
calculation it 1s necessary to have a more detailed analysis Bf the photoproduction data
than that we have at the present time. Since we hope only to obtain the order of magnitu-
de of the anomaly near the threshold, we restrict ourselves by taking into consideration
the production mainly. of J'+ meson. Quantities £, M, and E, wewe taken from the ana-

lysis of Watson and others‘ 6l

. It 1is assumed that Jo.  are produced only in the resenant
state 'S: 'b/.z_ (through €2, My )+ The connection 'between‘ the amplitud\e'of photoproduction
and the phase shift in a-N ’ scattering is now well—knownf[See, for example'lé’l'”]l'n
the enerty region,where one can neglect the mass difference of and after summing
over the contribution of & and &Kx* production, the terms cqntainihg the phase shifts

cancel . - ° .each other. For example

1 g f® = 6 Mysf® + 2 [hg" - m“’l*wcmnfz”

Dispersion integrals are performad analytically ‘ ’ after approximating A
by some simple’ expressipns. ) ‘
Tet the energy be measured in the units Yo =150 M3¢ We approximate [£,[* in the

energy region 44V V=2,20 by the following expression

2 e, %, Vi e . M2 e
[Ef* ~ [£F] <A E ;A (3,210 ) “’*’P',Vé 054 &

(64)

It is Just the contribution of (E,[i in the dispersion integral which leads to the
cusp dependence of the real part of amplitude on energy. As can be seen from (62) the con-
tribution of |Ed? is characterized by. two integrals’

Jo -V
2 g S BN o } 2 j 1€, v’ |
FVE) aud U T%TT\T*) | (63

*In the general case it requires to parametrize the 3 x JSmatrix, ‘which describes5/
both the &~ -N scattering, the photoproduction and the scattering of - rays by nucleons.
The bart of phase shift in -y scattering due to the des-{zog of isotopic spin invari-
ance may cause a change in the scattering of § —Trays. :
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Substituting (64) into(65) gives

s [T AELE w0
J—F‘] .ES ! dat = __A_ (66)
' o'yt x qnc}%‘h(‘ﬂ - v “"—d—% i (red

and

‘, . ﬁ‘_— ‘ ﬁ;—- Ivﬁ?—? «uWeoy } o)

' V -1 =V, v x_ )
2\’5 lE.Iz M| - 2_&) \ L AR VE-1 (6?)

-5;,— \'\ (\‘ﬂ._vz) J I\)" \7’ “ -
| W—:‘,:,TT ‘ V& Mq'ﬁ ‘ EG- vt) @<

From (66), (67), (64), (62) and (56) 1t can be seen that both the derivative of the
imaginary part of the quantities R, and @_, {from the side V>4 ) and that of
their real parts (from the side v£4 ) turn out to be infinity at the threshold. At the
same time thelr derivatives from the opposite side are finite. This is a very general
oonclusion. Therefore,dispersion relations automatically lead to the threshold anomaly
which has been studied carefully withthe R-matrix formalism by Wigner, Bai", Brelt, okun;
Adair, Newton and many others#*. ‘

The application of the dispersion relation permits a more detailed analysis of the influen
ce of the 1lnelastic procésses on elastic scattering (or reaction) in some energy region.
Furthermore, the anomaly in the neighbourhood of the threshold(Suoh a "local effect"
is the only effect which can be obtalned by a dlrect analytic continuation without
using dispersion relation) i1s shown to be only a partof the general influence of ine-
lastic process on the energy dependence OFf the elastic soattering, amplitude,

From the example of soattering of 7 quanta by nucleon one may see how the exis-~
\tence of the 1nelastic process photoproduotion in the energy reglon V?Vo oan influen-
ce the characteristios of elastic scattering in the regiron with V<V, (the deviation
from the Powell formula, or from (2) at V<Ve),

The form of the nonmonotonic dependence in (66) and (67) 1s characterized by
a steep drop of the value of the function in the region V<Vo (with infinity derivati-

* Authors will return to the application of dispersion relation to this general problem
in a subsequent communication.
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ve at ¥=Vo- ) and a slow increase in the region V>Vo - (with a finite derivative at
V=Vo, )

10.
) 2
In the enmergy region 330-550 MeV (2.2 < V¥ < 3.34) the quantity | Eqf is
approximated by ‘ ‘ B
e X . .
,E']'L = 4,27 o (4~ 0,435 V) (68)

The contribution of photoproduction in this energy region to the real part of the
scattering amplitude near or below the threshold is shown to be small,

A previous analysis of photoproduction and, in particular, the result of Qkifa and
Sato indicates that

(Myt* TIE* T Re(EX M) S 6 My, |* , (69

For our estimates we shall use (69). The polarization of the recoil nucleon is especial-
ly sensitive to this assumption. In the energy region 1<V<¢ :;..o the quantity [M”]?" is appro-
ximated by

IMs3)* = Bev (Vf-')ah ; Be=0009 %‘ ~ (70)

It follows then

: . . ‘ ] . =0.05Y g:-
lM&l‘l."-6/"433,2=5V(V""I);/z I'B 0,0: ~

The contribution of this term corresponding to the photoproduotion of meson in P/ state -
is given by the following disperéion integra.ls k
JI -5 (22 O foda ~Toby (v>1)
v [E,|% 2 YR P vE-| - .
& p 2 v 3BV i 2 N3 2 vRoge =T
I . m ! = -—JIT- 3 (V, () -+ (\’I l) (\) l) +
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and

v
Q“PEJ;‘@ JEJ*  _ 303[ (vz,) + (v2- 3)5"/"’""—"-_‘/_
V-1
S anedg |0 | (ved (72)
(E 0. VW1 Y, V—;—!l
e -

in which the seoond derivative with respect to energy tends to infinity at Vad (f.fbm l
the side V<4 ) '

- (v-9)

(¥>1)

In the energy region 2 << 334

6 [Ms3]? = 2,17 £ o (4 0,244 \))" \ | (73)
contribution from (70) and (73) are given by 1ntegrals ‘of the form o
Vg . . I S s f e

T SMM | | o

I’ (QR V"')

NI e & \hxv 24 (74)
=i/€m% \L_V) P (v 24V \ %P (V) } A
J V-V -\ \l,-r\) 2
and
\,l B
T, W= &i‘fg ot (d+ p's ,w) v v el .(+xvz< iyt ]
K ) - ICIRNTY %2!\?(\7 -Vi) +'eﬂ. (\,'_\, ‘7:.*“) v, —vz 75)

4d.

The energy dependence of the real part of the amplitude R, ... Rg - (:I.nvla.bor_a.tory
system), Calculated with thé help.of the 'dispersion relations 1s shown in fig. 1-3. The‘
half widths of R, and R, are equal to '_'o v, and %ovo y respectively, which are deter;-
mined mfa.":l.nly by ‘thé quadratioc ratio of the real part of the amplitude:to. the coefficient

A in (64)

g (59

(76)

In the general analysis of the nonmonotonic dependenoe near threshold Raqz’' gave
a restriction for the width of the peak kR, | (where R, 1is the radius of interac-

tion). In the present papera more accurate criterion (76) followsin a natural way.
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The influence of an inelastic process on .RL R3 is very strong but the contribution
of QL 23 in the observable quantities 1s rather small, so that the experimental study of
the energy dependence of Q693 seems to.be quite difficult.

The energy dependence of QLQ.' and Re RG are determined with great accuracy by the
formula (4). i _
The nonvanishing values of ReR, and QeRs are due completeiy "~ to the inelas-

tie process, although the photoproduction in the S-state does not contribute to these
Quantities.

.Diffe:ent1a1~cross-section (in the center-of-mass system)(12)can be written in the

form

Tolow) = Ao + A(r)cas® ~h (D080 = A,() Cos>0 1)

The numerical ‘results for the energy dependence of differentidl cross section at 9¢0° and

0° are presented ‘in figs. 4 and 9, in which T (30° v) is calculated in the labora-
tory system while 1,(0%V) 1is calculated both in the laboratory system and in the center
of. mass system.

The energy dependenoe ]:o(d%%) has been calculated by Cini and Strofollini. Qur
result gives a agreement near the threshold region. Qutside this region the agréement
is very good. .

OQur result for J_ (90 v) in the energy region near 200 MeV also agrees with the
other published resultsllJ lBl. In the present work the energy region near the threshold
is consiﬁered more carefully.. ) v

On fig.4. the total scattering cross-section Q”Qm, is presented. The cross section
according to formula (16) and (18) is also presented for comparison. The local effect in

the neighbourhood of the threshold is practically nonobservable, but is seen more olearly

in the difference

& fw = To (807

or inthe energy dependence o; Az(ﬂf(fig.69“47). In order to obtaln the experimental data
of ALQO it 1s sufficient to measure the cross section I (o,v) at 0=45° 9p° and /135°
with suoh an accuraoy that 1t is possible to study the energy dependence of the diffe-
rence

I, (4 «Lo(359) - 2T, (90°)
It is interesting to note the energy dependence of the polarizationof a recoil nuc-

leon. Below the threshold the imaginary parts-ofR,... R 1in the e® —approximation va-
nish, then the righthand side of (13) becomes zerc and the polarization of the recoil

proton also vanishes. On account of the invariance under time reversal the orcss section
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for scattering of - quanta from polarized proton will not differ from I} (e8)
below the threshold.

Above the threshold for production of I -~ meson polarization of the recoil pro-
ton differs from=zero Numerical result for the energy dependence(ene:gy~in 1.59 of po-
larization at 6=90° (angle in c.m.s.) 1s shown in fig. 9. It is seen, that in a rather
large: energy region from 180-220 -MeV the polarization reaches 90 +2S % -

The-magnitude of polarization is sensi44ve to the assumption;made‘in the analysis
of tlhe photoproduction, and especially to the assumption (69).It follows that the_expe-f

rimental study of the polarization of the recoil nucleon might give useful infermation on
the photoproduction of mesons.

In the expression (20), the contribution of the term ]Rd z is deoreased in compa-
rison with that in 1, (§) and the term containing | Ry 2 has a minus sign , therefore

the energy dependence of <:T22(90°)j> near threshold has a deep pit € Fig.7 ),

12.

A-detalled study of the scattering ot'ff -rays by nucleon near the threshold of meson
production with the help of dispersion relation permits us to see how the photoproduction
in the S-state gives Tize to the anomaly in the neighbourhood of the threshold.The scatter-

ing of fﬁ-rays by nucleonand nucleons, the photodisintegration of deuteron and other -
nucleons are examples of processes, invhich the inelastic process has a verys« 1arge in-
finence on the energy dependence of the elastic amplitude in a -wide energy region.
Although the local effect for a series of observable quantities in the. case ‘of bt
scattering 1s shown to be great, however in the experimental study of the local anomaly .
it i1s necessary to have a good experimental condition. Espeoially this refers to the -
high energy resolution - since the nalfwidth of the:cor-
responding cusp equals approximhtely 5=+10 MeV.

The experience obtained in the numerical.evaluation shows that the COntribution‘df
other states may smear out the sharp energy dependence of the observable quantities

near the threshold. Therefore, for the experimental study of such an effleot it is more.

favourable to have cases not at very high energy and with particles of low spin.
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The scattering of 1” rays by deuteron near the threshold of photodisintegration will

be reported in other place. The local effect 1n this case seems to be not very small.
From the point of view of general influence of one'process'on‘another itis of in-

terest to study the photodisihtegretion‘of deuteron in the energy region pear and below

the threshold of meson production. It seems tofbe possible to study the well—known"re— ‘

sonance" dependence of the cross-section in photodisintegration:by the method of disper-

-

sion relation.

Local effect in photodisintegration of deuteron might arise also from the reaction

¥ +d = d+xo | ‘

It is usually adopted, that at very high energy the"x M’ soattering iS‘completely
determined by the inelastic process (i.e. the imaginary parts of the amplitude) On ac-
count of this it may be very interesting to study the va scattering and especially the’
polarization of the, reeoil ,nucleon near the production threshold of new particles
like m : e

N > Yk
and many other processes. )

We are much obliged to B. Pontecorvo and J. Smorodinsky for valuable discussions¥*.

* J. Smorodinsky kindly informed us that G. Ustinova had considered cusp problem in réﬁ/
scattering near the threshold by Baz' method (in press).
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0,5+

Fig. 1.

‘The dependence of Ke A, (the upper .curve) and -of A f,  upon energy.
The values of the functions are expressed in the fractions of eiﬁt
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h

Fig,2

The dependence of & A, ( the upper c\irve) and of K Ag upon ene:_:gj.
The values of the functions are expressed in the fractions of e%/.
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Fig' 3.
upon energy.
dence of AR, ( the upper curve ) and of 4 4. |
The dependenc
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.
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J
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Fig. 4. :
The dependence of the differential cross section J, (90°) upon energy (the curve
A ), of the total scattering cross section O /4% ( the curve B ), of the dif -

ferential scattering cross sectlion without the account of the diépersion part ( the
curve C). The values of the functions are expressed in the <fractions of (3:/»)"
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N

Figo 5.’

The dependence of the differential cross section .Z'o [0’} upon energy in the lab.
system. The upper curve shows the eross section in the lab. system, the lower one -

in the centre of mass system. The experimental data are taken from 18 +« The va.lues Qf
the functions are expressed in the fractions of {——)



Fig. 6.

The dependence of 65%/?‘ -I.(907 , upon energy. The values of the function are
expressed in the fractions of (—f,—} ‘
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Fig. 7.

The lower curve shows the dependence upon energy of the 2’92-[1)) coefficient at
0032 e in the cross section. The upper curve shows the dependence upon energy
of the photon polarization 2<T,(90°)>

expreséed in the fractions of L’;)’“
M

« The values of the functions are
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Fig. 8.

The dependence of the imaginary parts of the amplituzt_ies upon energy. The values of
the functions are expressed in the fractions of [%—)2

"VC —



<Bp >y

Fig. 9.

The depeﬁdence of the recoil -proton polarization at &

]
O
o

N

upon energy.
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