





Abstract

Dispersion relations ( spéctral representations ) for the amplitudes describing
the decay»of K -'mesons and hyperons into two strongly interaoting particles are de -
rived. The singular integral equations for the amplitudes obtained in the " single -
meson " approximation are here solved following tﬁe methdd suggested by Muskhelishvili.



The works of Kallen and Lehmann 1 on spectral representation of ‘the one—particle

Green s functions and, especially, the development of the method of provinp dispersion
relations by Bogolubov 2 drew attention of many phyoiciats to the problem of obt ining
spectral representations for the vertex parts ( see 3 ) ' ’ '

The existance of such representations for complete vertices (‘and not for some
vertex dlagrams of perturbation theory ) is not evident and in order to nrove their
existence non-trivial mathematical’ methods are- necessery. “Jost t's example 4 shows
that it 1s impossible ‘to obtain ('basing'onrlocal‘commutation relations and the assump-
tions about the spectre masses ) .the .spectral representation for the 'nucleon-meson verten.
Analogouu difficulties arise:in investigating analytio:~ properties of the nucleon-pho--

ton vertex ( photon and meson are virtual ).

It is of interest that one easily succeeds in‘proving dispersion relations for the
vertices which correspond.to the real ‘processes-of decay into-two particles ( if the-
mass of the decaying particle is regarded as the energy variable ). This fact was -noticed
by Goldberger and Treiman 5 who .obtained and applied dispersion relations for the (% —

w4 Y ) decay. k ‘

In the present paper spectral representationsbfor the amplitudes describing decay
of K-mesons and hyperons into two strongly interacting particles are derived . The
strict proof of disperoion relations following the ‘method suggested by Bogolubov 2 is in

this case performed simply since the unobservable region- is absent.

Dispersion relations in the one meson aporoximation are solved exactly by using
the techniques developed by Muskhelishvili 9 ( the amplitude of'the prooess is deter -
mined within the accuracy of a constant~real factor );“OneyobtainS'in this case re -
sults ( for arbitrary virtual_energies ofrthe,decayingﬂparticle‘) analogous to those

given by Takeda 6.

In the recent:work:of Okubo, Marshak and Sudarshan 11 x)- "in which one investi -
gates the decay of the A - hyperon by using the theory of the axial-vector four—fer—
mion interaction, one applies~in rarticular dispersion relations for the A - hype -
ron decay too. The authors of the above paper examine the auxiliary problem when the’
squares of the all four momenta ( namely, of hyperon, nucleon and % = meson ) equal
the oorresponding squares of masses, but when the four-momentum conservation low does
not take place, and they assume that the A - hyperon is " totally uncoupled ", On the

contrary in our work the conservation low (1.8) holds and the square" of the four-momen-



2 ' ‘ :
tum of the hyperon q 1s regarded as varilable quantity. Because of this the spln struc-

ture 1s in our case detgrmined by twobindependent functions _FLZ while in‘ll four

functions M, are introduced and hence both dispersion rélations in the one meson ap -

proximation‘and their solutions become considerably complicated. In view bf this* the fi -

nal results are different although they do not oontradict one another x).

1. Analytical properties of the decay amplitude.

Derivation of the spectral representations.

At first we conslder the case when-a hyperon decays into a nucleon anda 4 - meson.
At the close of this Section we indicate what changes.we have to do in order to obtain

dispersion relations for the decay of the K-meson into two o7 - mesons.

Let us denote the four-momenta of -hyperon, nucleon and % - meson by q, p and &
respectively. We shall assume that only four ~ momenta of the decay products obey the

" usual relation
: 2 LR 2. .2 ~ . ’
P MY o= M8 (1.1)

while
2 2
= 4)
. ? o (1.2)
is considered as a variable quantity ( if all three masses are oonsidered to be fixed
then, in: virtue of the conservation law there will be no invariant varilable with respect

to Wh;ch one might consider analytic properties of the décay amplitude ).

Introduoe the cﬁrrent operators

.S x S o+
(J)=1 ’ X =i——-—— . '

F S, . I i S (1.3)
where ¥(x) and Y(%*) are the operators of the hyperon and the meson fields according-
1y. ‘

The matrix element of the process 9-—» N +TF may be written in the form
_ 2%)7 vel —
<P,K/5/i)fz-£f;;qr cf(/:-r/(-q,)']" (K) Uy () (1.4
where

%) Gomp. the foot-note to the Eq. (2.8).



el g0 ‘
Tt <l Eo03e b= lbg pil o) 0> (1.5)

1s the retarded amplitude (dx= d.z‘,d.z,d:r,.ddj K= l( T~ T= 4, oK, LK T ~ Ky Ty,
tf\(zj—_-(f{?o}ﬁ?,/f(?z) dv/@} ). Ve assume that the spinor U},{q—,’)satisfies the Di-
rac equation describing particle with mass &/ (-see Eq. (1.2)). :

—__,

-6 - = : ’
Iqu @)-(Q , _;)WQFU‘/M‘Z/- - (1.6)

The quantity hermitian con;jugated to (1.5) which is equal to the advanced amplitude may
be written in the ‘form '

adv /(X (Kt '
T (‘(/'"fzﬁ%[‘/o/frwo)/ >€ d,T. a.7n

In virtue of the conservation law ( following from (1.4)) :

g =P
(1.8)
and according with the Dirac equation the amplitude posses ;m usual space a structure
of the ‘following type o
TmW@)w@quMﬁ(w
(1.9)

A similar structure may be written for the amplitude 17 24V (1.7) ( the indices in the

isotopic space are omitted ). Here _.Qv and _Q, are invariant functions ; as inva -

riant variable it is convenient to choose instead of @ the quantity :
. /Z f 2 Mz 2
£ ——*P’( - ME=w'™= M= - (1a10)
The matrix 2’; will be considered as an Hermitian one:
= . ()
Ir =00.0; idy = - 7 o

Let us introduce a frame of reference in which the nucleon rests :

P =0 : » - (a1

Pox M, do=b, W-G-feZp&  []3]-y/

and



In order to prove dispersion relations let us consider firstly a fictitious case when
' =T <0,
In this case the retarded amplitude (1.5) takes the form:

vet, 4 . . YL -
s (@l}f“/;;ﬁ/,u/e!p{f(Eml/E‘—T 67)}<P/ mﬁﬂ)/wdﬁ

( from (1.7) the similar expression 1s obtained also for T adv e

In consequence of the causality condition 2 the amplitudes T ret ( respectively
T_adv> are anélytic functions in the upper ( accordingly, lower ) half-plane of the com-
plex varlable L. We show that their difference vanishes along some interval of the real

axls. With this aim we shall investigate the anti-llermitian part of the amplitude:'

; el a
AlET]= -2!7 {7’7 (67)-T d"/,_c,fr/}.
' ' (1.12)

Let us use the equality

550 9 i Tiey 9 -
e~ o= g ~ e

and expand (1.12) in the complete system of the eigenfunctions of the energy-momentum

operator @

| A (ET)= 7/‘(271‘}3/2%; [ ZPy(é)lpnx,b;. 1;(«:}/0) SIM+E~VME + BT ) -

(1.14)
o =<pljo)lph X paljialloy & (E+ MEERT) )
'(»-Z implies integration bvef thé continuous part of the spectrum and summation over
rl -

the discrete characteristics of fhtermediate states, As 1s well known from the theory
of spectral representations of the meson Green's function in virtue of considerations
of stabllity of one-partiole states and invariance with respect to space reflections the
matrix element y ,
{ bn Lj(o),0>=0

'; 12 2 ) ;
tor M, <{(3n) . Since P,, 1is positive we conclude that the second term of
the‘right hand side in (1.14) vanishes when L

T< (5_/ﬁ ' ' (1.15)
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The singularities of the first 5 - functiohrof Eq. (1.14) 1lie at points

En =27'7(M:-M‘—’r}. (1.16)
One can see from (1.14) that, generally speaking, there exists one discrete pole of the
"one-nucleon" term for M, = M o .
E=-F r¢)=;—T’ (1a17m)
1 2M .

The residue at this pole 1s proportional to the pfoduct of the strong and weak coupling
constants and has the same spin structure like the amplitude (1.9). S

" The continuous spedtrum for the firstbterm in (1.14) stérts with the valué» M, =
M .+ /m - : . ,
. 4% -T : : .
E ) 2fnza=t o f (7). | »

= 2N (1.18)

: , ret ' adv
Thus one can see that the functions ( B + E4 ) T .(E,T ) and (E + E{) T (E,7)
"

coincide for T(Gﬁ) and , '
-~ o< E<CE (7). (1.19)

Therefore, according to the well-known theorem of Bogolubov 2 ( see}aléo 7, where one
proves more preclse theorem ) there exists a single function T ( E, T ) analytic with

respect to-E and 7 1in the region

[ 7 VETT] € | Tm VCEZu)(E~E. ()|

’ (1.20)
which coincides with T *®Y (E, T ) anda ? 2 (8, T ) for =~ real E and T . whioh
satisfy (1.19). It is easy to see that the inequality (1.20).holds for m€ £ 0 or
E = ReE <M for i“zjm‘ « Consequently the function T(E, T ) oan be continued analytioal—

: . :
1y with_respect to T ~up to 7‘fyﬁ . For the real case of interest to .us 7~ i/%zthe

boundary of the continuous spectrum

E (f9=p
coincides with the treshold of the reaction under consideration. It is well known 2
that the functions T(E) increase at infinity not faster than a polynomial. We suppose
( for the sake of simplicity ) that T(E) is bounded at infinity. By using the Cauchy in-
'tegral,thgorem for the function % 7(E), aﬁtei performing transition tb thé 11m1£,7 mE- O

we get thg followlng dispersion relations



R T ATy e
S ”eT/f)=f7?’f,f e T T e T

According to (1 9) and using> the fact the anti-Hermitean pa.rt A(E,T ) has the same
'structure like the amplitude :

A (E,T)Uy () /’ar)/‘ ?EZ(PU“’”P") (Pul el o) b% L)ty ) (1.21)

- gﬂfﬁ)/,yo(f)u/,zfm‘) Uy ()

one oan easily see that the invariant functions‘Qé‘ (E), € = 0,1 ovey the same :dis -

persion relationg. They can be written in the form:

. 7 ‘
4 E = /Jm.().e (g) E ’ "a
50, (£}=_4. FrEE dEf 5 EVE, = +A) ) (o) - .22)

where 4, and .Q. fo) are real constant quantities. '

The relationS"(l 22) and (1.21) 'give spectral representations for the invariant fun -
otions Q(D) ( the variable E is also aetermined in an invariant manner (1. 10) ).

An approaoh to ‘the process (K - 27°) i1s much. simpler since its amplitude has no ‘
spin structure, The use of the stability of states with one “% - meson ylelds an
error of the seoond-order smallnéss with respect to the constant of the weak interaction.
In the (K— 29 )bvdécay a d‘iscrete pole in the imaginary part of the amplitude does

not appear by pseudoscalarity.

In this case’ di'spersion relations assume the form

re . .7m 7"727‘ ’ i |
1.23
(E)_ ¢/ ’[E Fe) dE+T (o), | ( )
where
T T™e) f(2f) Z <Pl Xp, ﬁ/o}/o}f (E —"—ZL ) (1209
- ; M,,az/, )
gf - 18 the; K-meson current which 15‘ determined in an ‘analogcus manner as the current

2(1.3).



2.'Approkimate solution of dispersion relations.

A. The decay of K—meéons.

In using dispersion relations obtained here we restrict ourselves in the expansions
(1.21), (1.24) for anti-Hermitean parts of correspondéng amplitudes to the "one meson

state®,

Let us start with the decay of K - mesons. In this case the "one meson" approxl -~
mation corresponds to an intermediate state with fwo % -~ mesons. For the sake of defi-
niteness we restrict ourselves to the investigation of the ko - heson déoéy.'The decay
of charged 5 - mesons into two T ;‘ﬁesons may be conéidered in a simpler manner since

this.reaction goes in one channel only.

As 1is well known © fram CP - invariance it follows thht only the Kol'- meson decays

into " two % - mesons where .
KPSl (JK*> + 1K)
IR = g (UK ).
We write dispersion relafions,for the amplitude T, - which corresponds to a definite
- value of the total isotopic spin I of the system Qf two & -~ mesons. In decay of K°1—me—

son I equals O and 2, the amplitudes T, are related to the amplitudes for the decay into
particles with definite charge by means of the Clebsh=-Gordan's - ocoefficients.

_ /2 _ L
7:'/;7:“ s oo (2.1)

where
T.=Tenta[4) Ty =T ;T (K]).

¢

By restricting in the expansion (1.24) for the imagipary paft of the amplitude to
intermediate states with two < - mesons and in virtue of the 1sotopic spin invarlance

of scattering of decay products we get
2t -{d7 (€ .
T T )= €5 ) i = ) T ) (2.2)

where d} 1s the phase shift for the § - wave with isotopio spin I of the 7-%F seocat-
tering amplitude ( since  K-meson 1s scalar only s-waves contribute in the scattering

amplitude of the decay products ).

From (2.2) one obtailns
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1e1‘ ‘fff}
ST ) - f f }e R (2.3)
where ﬁ:(&) is a real function of E . In order to determine this functlon we make use .

of the dispersion relation.

Using (2 2) one can’ represent dispersion relation (1.23) as follows

7t 4,(5)717@1/5} ,
/ '{'E'—E é’) dE+th?/. . _ (2.8)

We have here 1ntroduoed the notation ,

A /:t) = e "'gm sin &)

Thebsingular integral equation 1s easily solved by Muskhelishvili's method 9,( see
also the paper of Omnes‘wneneythe,anthor,exemines specially the.eauations .of the type
(2.4) only without the factor %, under the integral sign ). Let us consider with this
aim the funotion.T, (z) of the eompiex variable z :

4 T” .
T(z)= 2 4 J—,%g__y_{fi— dE'+ 7, (0).

From the definition of T (z) follow the relations ( for real values 0f E )

T (e } (E) - {/ e-21J\(E}) G(E/ﬂ)T"t(E)

where E.=E2UE, &0, 6 («)= {4 ~§iz

Thus, the funotion Tz (z) is the solution of Hilbert's‘boundary preblem
T(e) =T (E) 2P {.zzd;(ej 0{5-/«}] '

Under our assumption that T, (z) doés not increase at 1nfinity the solution of this pro -

blem has the form ( for real values of E )

//""’f(E) C ezp{fy)[ x(;li_)dx—ud;(fje[f/,)} _(2.5)

where :
G=T; (0)
1s'a real oonstant. It may be defined ( if we consider the phase shifts of the F~%
scattering to be known ) by the experimental values of the deoay time or theoretically.
( following the perturbation theory ); for this purpose we have to make hypotheses about
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the concrete form of the interaction responsible for the ‘decay under consideration.

In order to deal with'measurable'physical quantities weimake use of the relétions
(2.1). For the real decay ‘ o '

&7:(/9_11;-/71115\‘:1/94/\42!/,

2 ' :
£=b,= ﬁ‘jﬁﬁ&‘/’f’&% 750 Hev
v

which corresponds to the total kinetic energy in the center-of-mass system:
4)/(=/71,(-Z/u R 220 MeV.

[~

According to (2.1) and (2.3) for the probabilities of decays intoe 7 +F~ and @ *7%

we obfain : , /_ o
[Tl f 1206 )+ 216 025 FE )L (6,) s (5-57)

N , = . ] )
/7:"/2: _:5-}:(5")*.3/-7(0 (Ea_)-szo (Eo)-é (Eo) Oﬁ[d; —();)‘. (2.6)
Introduce thé notationt
' 2 = -7(2. (Fo)
’ fo [Eo) '

For the ratlio of these probabilitles we obtain thus the well—kngwn result 6

W Tege)  2M1-2/Zhen (63~ 65)
W~ feq)  Ar2r2B A (5-4,).

It 1s evident that this ratio equals 1/2 not only for A = 0 ( whioh corresponds to

the selection rule with respect to the isotopic spin /al/ = -é ) but for one more

definite value A which depends on §; - 4,

B. The decay of hyperons

The solution of dispersion relations for the hyperon deqay 1s carried out in an
analogous’manner but with some insignificiant complication beoause of the Spin struoture
and the "one-nucleon'" pole in amplitude. Therefore, the detalls of solution are not re =~
peated. A

Since 1n F - meson—nuoleon scattering the parity is conserved then in scatte-
ring of products of the'hyperon decay together with total.angular momentum‘ Jﬂ of the’
/

system the orbital momentum £ = Jf + -5 1s comserved too, It is not diffioult
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to see that the invariant functions 2 and _().4 introduced in (1.9) are eigen -

o
functions of the orbital moment epera.tor which correspond to the eigenvalues € = 0 and‘
£ = 1, For this purpose At is quite sufficient to note that in the center-of-mass
system /ci’:ﬁ' K =0/ the decay amplitude has the form

"M +pe - JP)J'
To ()04 (F) = B2 (1), (€) i =10, ) } 2.

where

w" +M‘+/1¢ Ly N /1/ +E
Aw /,4./-1,./,.*+,z ME

is the energy of the nucleon in the center-of-mass system.

P, -

_We rewrite dispersion relations for t_he—amplitudes of the state with definite iso -~
- topilo spin of the system of decay produots _n_” //=0,/,‘ I"z". , 2_ / . After perfor-
ming a phe.se shift a.na.lysie for the meson-nucleon scattering amplitude in the expression

for the imaginary part (1. 21) we obtain )

mfZﬂ(E):ﬁo, J(£+£)+A,([E)Q (£)6(c-4) (2.8)
where ' A%
‘ Eﬁj;/':
\ (2.9)

‘ /7_1( [E):(-‘:‘G?(E)‘f’fﬂé;[ (E} ;

( a,, are real oonstant quantities, (};e'ff} are the phase shifts of the meson -
nuoleon soattering ). From (2.8) follows that for E >/u : ' ‘

N5, f£)= ”('E)‘e"‘s}" (E) - ~ (2.10)

f” ()  being a real function. In order to determine this function we make use again

of the dispersion relations whioh-oan be written in the form

o E T hte) e, o
Q () E€+E-N£,+k/.7i“‘/u WC{E-{.H [Oj | (2’11)

X) mne relations (2.8),(2.9) are obtained easily from Eqs, (25), (26) in ‘the work of Okubo

‘et, al!* under the e.ssu.mption that the spinor Yy (¢L) satisfies the Dirac equation
with o mass © . Between the amplltudes M’ of the above-mentioned paper and our ampli
tudes_QI there exists the simple conheotion :

' 2 o M —w=p)ME K= ME-MT(0-M)

Io
As was already volnted out, in the pa.perll one assumes that '-/y(‘?—) obeys the Dirac
eque.tion with the real hyperon mass. Therefore, here and further the authors Tobtain
‘oonsiderably more complicated relations.
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The solution of this equation whioch does not increase at infinity for-a complex argument
Z has the form: -
E,/ [7(1)

Z a“’ :r{.rrt‘,)d } / trf(")
”[z) [E, .z+E ' +"ﬂ' (O)ex'oﬁ‘/ sz:) /

For reai t£>/k it acquire the following form
: . »
,Qrev(fj):_QN (€ +¢ é}: ) o
| ‘ " | | (2.12)
= JE Ge iy d"(.zg . @) g _
) ,[/_:, £, p_x/o["jr / ?T(-;w, a’.z]-’-.QIe (0}]"1/"[7:0/ _zc_.dx«c({z_‘(‘(e{]?

Z(x-E)

It 1s interesting to apply the obtained results to the processes of the decay on
and A - h,yperons whioh go in two channels with respect to the oharge. With this aim
1t is necessary to proceed from the amplitudes with definite' isotopio spin to the a.mplitu—
des of the deacy into definite particles by using ‘the Clebsh — Gordan coefficients (see

for instance ) and to put .to be’ equal to the real mass of the oorresponding
hyneron. This yields : ' v 2 2 2
I . _/1/__
£= —4———/‘ = 185 HeV
AM :

( the total kinetic energy which releases in the center—of—mass system is w,(~38 Mev )
when deca.ying / - hyperon. '

- M oy f:oi o
E- 2/’7—»}/ , 2?5 Mev /t«)“z{;:b- “MeVf
when decaying Z - hyperon.

It appears to be quite interesting to compare the formuias obtained with the
experimental data. on the decay and the meson-nucleon scattering (after determining

the constants entering (2. 12) vy uaing the perturbation theory, starting with a con -
crete kind of the interaction ( comp. 11) D).

In conclusion the authors express their deep gratitude to A.A.Logunov who guided

this work. The authors thank aiso P.S.Isaev, S.M,Bilenky and R.M.Ryndin for valuable

remarks and useful discussion.
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