JOINT INSTITUTE FOR NUCLEAR RESEARCH
 Laboratory of Theoretical Physics

$$
\text { I.T. Todorov }{ }^{x} \text {) and O.A.Khrustalev }
$$

$$
P-345
$$

SPECTRAL REPRESENTATIONS FOR SOME VERTEX PARTS Ruck. Phys, 1959, v 13, n. 5, p 675-684.
I.T.Todorovx) and O.A.Khrustalev

$$
P-345
$$

SPECTRAL REPRESENTATIONS FOR SOME VERTEX PARTS

Dubna, 1959

[^0]$A b s t r a c t$
Dispersion relations (spectral representations) for the amplitudes describing the decay of $\dot{\mu}$-mesons and hyperons into two strongly interating particles are de rived. The singular integral equations for the amplitudes obtained in the " single meson " approximation are here solved following the method suggested by Muskhelishvili.

The works of kallen and Lehmann ${ }^{1}$ on spectral representation of the one-particle Green's functions and, especially, the development of the method of proving dispersion relations by Bogolubov ${ }^{2}$ drev attention of many physicists to the problem of obtaining spectral representations for the vertex parts (see ${ }^{3}$).

The existance of such representations for complete vertices (and not for some vertex diagrams of perturbation theory) is not evident and in order to prove their existence non-trivial mathematical methods are necessary. Jost 15 example ${ }^{4}$ ahows that it is impossible to obtain (basing on local commutation relations and the assumptions about the spectre masses) the spectral representation for the nucleon-meson vertex. Analogous difficulties arise in investigating analytio proyerties of the nucleon-photon vertex (photon and meson are virtual).

It is of interest that one easily succeeds in proving dispersion relations for the vertices which correspond to the real processes of decay into two particles (if the mass of the decaying particle is regarded as the energy variable). This fact was notived by Goldberger and Treiman ${ }^{5}$ who obtained and applied dispersion relations for the (π $\mu+\nu \quad$) decay.

In the present paper spectral representations for the amplitudes describing decay of $K-m e s o n s$ and hyperons into two strongly interacting particles are derived. The strict proof of dispersion relations following the method suggested by Bogolubor ${ }^{2}$ is in this case performed simply since the unobservable region is absent.

Dispersion relations in the one meson aporoximation are solved exactly by using the techniques developed by Muskhelishvili ${ }^{9}$ (the amplitude of the prooess is deter mined within the accuracy of a constant real factor). One obtains in this case re sults (for arbitrary virtual energies of the decaying particle) analogous to those given by Takeda ${ }^{6}$.

In the recent work of Okubo, Marshak and Sudarshan $11 \times$) in which one investi gates the decay of the \wedge - hyperon by using the theory of the axial-vector four-fermion interaction, one applies in particular dispersion relations for the \wedge - hype ron decay too. The authors of the above paper examine the auxiliary problem when the squares of the all four momenta (namely, of hyperon, nucleon and π-meson) equal the oorresponding squares of masses, but when the four-momentum conservation low does not take place, and they assume that the \wedge - hyperon is " totally uncoupled ". On the contrary in our work the conservation low (1.8) holds and the square of the four-momen-
tum of the hyperon q^{2} is regarded as variable quantity. Because of this the spin structure is in our case determined by two independent functions Ω_{l} while in il four functions M_{i} are introduced and hence both dispersion relations in the one meson ap proximation and their solutions become considerably complicated. In view of this the fi nal results are different although they do not oontradict one another x).

1. Analytical properties of the decay amplitude.
 Derivation of the spectral_representations.

At first we consider the case when a hyperon decays into a nucleon anda π - meson. At the close of this Section we indicate what changes we have to do in order to obtain dispersion relations for the decay of the K-meson into two π-mesons.

Let us denote the four-momenta of hyperon, nucleon and π-meson by q, p and \mathcal{R} respectively. We shall assume that only four - momenta of the decay products obey the usual relation

$$
\begin{equation*}
p^{2}=M^{2}, \quad k^{2}=\mu^{2} \quad / M \approx 6,8 \mu / \tag{1.1}
\end{equation*}
$$

while

$$
\begin{equation*}
q^{2}=\omega^{2} \tag{1.2}
\end{equation*}
$$

is considered as a variable quantity (if all three masses are oonsidered to be fixed then, in virtue of the conservation law there will be no invariant variable with respect to which one might consider analytic properties of the decay amplitude.).

Introduoe the current operators

$$
\begin{equation*}
j(x)=i \frac{\delta S}{\delta \psi(x)} S, \quad j(x)=i \frac{\delta S}{\delta \varphi(x)} S \tag{1.3}
\end{equation*}
$$

where $\psi(x)$ and $\varphi(x)$ are the operators of the hyperon and the meson ftelds accordingly.

The matrix element of the process $Y \rightarrow N+\pi \quad$ may be written in the form

$$
\begin{equation*}
\langle p, k| S|q\rangle=i \frac{(2 \pi)^{5 / 2}}{\sqrt{2 k_{0}}} \delta(p+k-q) T^{7 e t}(k) u_{y}(\vec{q}) \tag{1.4}
\end{equation*}
$$

where
x) Comp. the foot-note to the Eq. (2.8).

$$
\begin{equation*}
\tau^{i e t}(k)=-\frac{1}{(2 \pi)^{3 / 2}} \int\langle p| \frac{\delta g(0)}{\delta \varphi(x)}|0\rangle e^{i k x} d_{4} x=-\sqrt{2 k_{0}}\langle p, \kappa| \mathcal{L}(0)|0\rangle \tag{1.5}
\end{equation*}
$$

Is the retarded amplitude $\left(d_{4} x=d z_{0} d x_{1} d x_{2} d x_{3}, k x=k_{0} x_{0}-\vec{k} \vec{x}=k_{0} x_{0}-k_{1} x_{1}-k_{2} x_{2}-k_{3} x_{3}\right.$, $\delta(z)=\delta\left(i_{0}\right) \delta\left(z_{1}, \delta\left(z_{2}\right) \delta\left(z_{3}\right) \quad\right.$. We assume that the spinor $u_{y}(\vec{q})$ satisfies the Dirac equation describing particle with mass ω (see Eq. (1.2)).

$$
\gamma q^{q} u_{y}(\vec{q})=\left(\begin{array}{cc}
q_{0} & -\vec{\sigma} \vec{q} \tag{1.6}\\
\vec{\sigma} \vec{q} & -q_{0}
\end{array}\right) u_{y}(\vec{q})=\omega u_{y}(\vec{q})
$$

The quantity hermitian conjugated to (1.5) which is equal to the advanced amplitude may be written in the form

$$
\begin{equation*}
T^{a d v}(k)--\frac{1}{(2 \pi)^{3 / 2}} \int\langle p| \frac{\delta j(x)}{\delta \psi(0)}|0\rangle e^{i k \cdot x} d_{4} x \tag{1.7}
\end{equation*}
$$

In virtue of the conservation law (following from (1.4)) :

$$
\begin{equation*}
q=p+k \tag{1.8}
\end{equation*}
$$

and according with the Dirac equation the amplitude posses in usual space a structure of the "following type

$$
\begin{equation*}
T^{r e t}\left({ }^{k}\right) u_{y}(\vec{q})=\bar{u}_{N}(\vec{p})\left\{\Omega_{0}^{z}+\Omega_{1}^{r} \gamma_{5}^{\sim}\right\} u_{y}(\vec{q}) . \tag{1.9}
\end{equation*}
$$

A similar structure may be written for the amplitude $T^{\text {adv }}(1.7)$ (the indices in the isotopic space are omitted). Here Ω_{0} and Ω_{1} are invariant functions ; as inva riant variable it is convenient to choose instead of ω the quantity :

$$
\begin{equation*}
E \equiv \frac{1}{M} p k, \quad / 2 M E=\omega^{2}-M^{2}-\mu^{2} / \tag{1.10}
\end{equation*}
$$

The matrix ∂_{5}^{\sim} will be considered as an Hermitian one:

$$
\gamma_{5}=\gamma_{1} \gamma_{2} \gamma_{3} i \gamma_{0}=-\left(\begin{array}{cc}
0 & I \\
I & O
\end{array}\right)
$$

Let us introduce a frame of reference in which the nucleon rests :

$$
\begin{equation*}
\vec{P}=0 \tag{1.11}
\end{equation*}
$$

and

$$
P_{0}=M, \quad k_{0}=E, \quad \vec{K}=\vec{q}=\sqrt{E^{2}-\mu^{2}} \vec{e} \quad /|\vec{e}|=1 /
$$

In order to prove dispersion relations let us consider firstly a fictitious case when

$$
R^{2}=\tau<0
$$

In this case the retarded amplitude (1.5) takes the form:

$$
\left.T^{\gamma e t}(E, \tau)=-\frac{1}{(2 \pi)^{3 / 2}} \int \exp \left\{i\left(E x_{0}-\sqrt{E^{2}-\tau} \vec{e} \vec{x}\right)\right\}<p\left|\frac{\delta J(0)}{\delta \varphi(x)}\right| 0\right\rangle d_{4} x
$$

(from (1.7) the similar expression is obtained also for $T^{\text {adv }}$).
In consequence of the causality condition ${ }^{2}$ the amplitudes $T^{\text {ret }}$ (respectively $\mathrm{T}^{a d v}$) are analytic functions in the upper (accordingly, lower) half-plane of the complex variable d. We show that their difference vanishes along some interval of the real axis. $\ddot{\text { Ith }}$ this aim we shall investigate the anti-IIermitian part of the amplitude:

$$
\begin{equation*}
A(E, \tau) \equiv \frac{1}{2 i}\left\{T^{\tau e t}(E, \tau)-T^{a d \nu}(E, \tau)\right\} \tag{1.12}
\end{equation*}
$$

Let us use the equality

$$
\begin{equation*}
\frac{\delta j(x)}{\delta \psi(0)}-\frac{\delta y(0)}{\delta \varphi(x)}=i[j(x), g(0)] \tag{1.13}
\end{equation*}
$$

and expand (1.12) in the complete system of the elgenfunctions of the energy-momentum operator :

$$
\begin{aligned}
A(E, \tau)= & \pi(2 \pi)^{3 / 2} \sum_{\pi}\left\{\langle p| j(0)\left|p_{n}\right\rangle\left\langle p_{n}\right| \gamma(0)|0\rangle \delta\left(M+E-\sqrt{M_{n}^{2}+E^{2}-\tau}\right)-\right. \\
& \left.-\langle p| \gamma(0)\left|p_{n}^{\prime}\right\rangle\left\langle p_{n}^{\prime}\right| j(0)|0\rangle \delta\left(E+\sqrt{M_{n}^{\prime 2}+E^{2}-\tau}\right)\right\}
\end{aligned}
$$

(. \sum_{n} implies integration over the continuous part of the spectrum and summation over the disorete characteristios of intermediate states. Λs is well known from the theory of spectral representations of the meson Green's function in virtue of considerations of stability of one-partiole states and invariance with respect to space reflections the matrix element

$$
\left\langle p_{n}^{\prime}\right| j(0)|0\rangle=0
$$

for $M_{n}^{\prime 2}<(3 \mu)^{2} \quad$. Since $P_{n_{0}}^{\prime}$ is positive we conclude that the second term of the right hand side in (1.14) vanishes when

$$
\begin{equation*}
\tau<(3 \mu)^{2} \tag{1.15}
\end{equation*}
$$

The singularities of the first δ - function of Eq. (1.14) lie at points

$$
\begin{equation*}
E_{n}=\frac{1}{2 M}\left(M_{n}^{2}-M^{2}-\tau\right) \tag{1.16}
\end{equation*}
$$

One can see from (1.14) that, generally speaking, there exists one discrete pole of the "one-nucleon" term for $M_{n}=M$

$$
\begin{equation*}
E=-E_{1}(\tau)=-\frac{\tau}{2 M} . \tag{1.17}
\end{equation*}
$$

The residue at this pole is proportional to the product of the strong and weak coupling constants and has the same spin structure like the amplitude (1.9).

The continuous spectrum for the first term in (1.14) starts with the value $M_{\pi}=$ $M+M$:

$$
\begin{equation*}
E_{n} \geqslant \frac{2 M_{\mu}+\mu^{2}-\tau}{2 M} \equiv E_{c}(\tau) \tag{1.18}
\end{equation*}
$$

Thus one can see that the functions $\left(E+E_{I}\right) T r^{r e t}(E, \tau)$ and $\left(E+E_{1}\right) T$ adv (E, τ) coincide for $\tau<(j)^{2}$ and

$$
\begin{equation*}
-\quad \infty<E<E_{c}(\tau) \tag{1.19}
\end{equation*}
$$

Therefore, according to the well-known theorem of Bogolubov ${ }^{2}$ (see also ${ }^{7}$, where one proves more precise theorem) there exists a single function $T(E, \tau$) analytic with respect to E and τ in the region

$$
\begin{equation*}
\left|I_{m} \sqrt{E^{2}-\tau}\right|<\left|I_{m} \sqrt{\left(E+\zeta_{\mu}\right)\left(E-E_{c}(\tau)\right)}\right| \tag{1.20}
\end{equation*}
$$

which coincides with T ret (E, τ) and T adv (E, τ) for real E and τ whioh satisfy (1.19). It is easy to see that the inequality (1.20) holds for $I_{m} E \neq 0$ or $E=\operatorname{ReE}<\mu$ for $\tau=\mu^{2}$. Consequently the function $T(E, \tau)$ oan be continued analytioalIy with respect to τ up to $\tau=\mu^{2}$. For the real case of interest to us $\tau=\mu^{2}$ the boundary of the continuous spectrum

$$
E_{c}\left(\mu^{2}\right)=\mu
$$

coincides with the treshold of the reaction under consideration. It is well known ${ }^{2}$ that the functions $T(E)$ increase at infinity not faster than a polynomial. We suppose (for the sake of simplicity) that $T(E)$ is bounded at infinity. By using the Cauchy integral theorem for the function $E T(E)$, after performing transition to the limit $7 \mathrm{mE} \rightarrow 0$ we get the following dispersion relations

$$
R_{e} T(E)=\frac{E}{\pi} \mathcal{P} \int_{\mu}^{\infty} \frac{\operatorname{s}_{m} T\left(E^{\prime}\right)}{E^{\prime}\left(E^{\prime}-E\right)} d E^{\prime}+\frac{c}{\pi} \frac{E}{E_{1}} \frac{1}{E+E_{,}}+T(0) .
$$

According to (1.9) and using the fact the anti-Hermitean part $A(E, \tau)$ has the same structure like the amplitude :

$$
\begin{aligned}
A(E, \tau) u_{y}(\vec{q}) & =\pi(2 \pi)^{3 / 2} \frac{\mu+E}{M} \sum_{n}\langle p| j(0)\left|p_{n}\right\rangle\left\langle p_{n}\right| \mathcal{j}(0)|0\rangle \delta\left(E-E_{n}(\tau)\right) u_{y}(\vec{q})= \\
& =\bar{u}_{N}(\vec{p})\left(A_{0}(E)+A_{1}(E) \gamma_{5}\right) u_{y}(\vec{q})
\end{aligned}
$$

one oan easily see that the invariant functions $\Omega_{e}(E), \quad \ell=0,1$ obey the same dis persion relationg. They can be written in the form:

$$
\begin{equation*}
\Omega_{e}^{z}(E)=\frac{E}{\pi} \int_{\mu}^{\infty} \frac{\lambda_{m} \Omega_{e}^{\eta}\left(E^{\prime}\right)}{E^{\prime}\left(E^{\prime}-E-i \varepsilon\right)} d E^{\prime}+\frac{E}{E_{1}} \frac{a_{e}}{E+E_{1}+i \varepsilon}+\Omega_{l}(0) \tag{1.22}
\end{equation*}
$$

where a_{l} and $\Omega_{e}(0)$ are real constant quantities.
The relations (1.22) and (1.21) give spectral representations for the invariant fun otions $\Omega_{C}(\mathbb{E})$ (the variable E is also determined in an invariant manner (1.10)).

An approaoh to the process ($K \rightarrow 2 \pi$) is much simpler since its amplitude has no spin structure. The use of the stability of states with one π-meson yields an error of the seoond-order smailness with respect to the constant of the weak interaction. In the ($K \rightarrow 2 \pi$) decay a discrete pole in the imaginary part of the amplitude does not appear by pseudoscalarity.

In this case dispersion relations assume the form

$$
\begin{equation*}
T^{r e t}(E)=\frac{E}{\pi} \int_{\mu}^{\infty} \frac{J_{m} T^{r e t}}{E^{\prime}\left(E^{\prime}-E-i \varepsilon\right)} d E^{\prime}+T(0), \tag{1.23}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{m} T^{r e t}(E)=\pi(2 \pi)^{3 / 2} \frac{\mu+E}{\mu} \sum_{M_{n} \geq 2 \mu}\langle P| j(0)\left|P_{n}\right\rangle\left\langle P_{n}\right| \gamma_{k}(0)|0\rangle \delta\left(E-\frac{\mu_{n}^{2}-2 \mu^{2}}{2 \mu}\right) \tag{1.24}
\end{equation*}
$$

 $J^{(1.3)}$.

2. Approximate solution of dispersion_relations. A. The decay of K-mesons.

In using dispersion relations obtained here we restriot ourselves in the expansions (1.21), (1.24) for anti-Hermitean parts of corresponding amplitudes to the "one meson state".

Let us start with the decay of K - mesons. In this case the "one meson" approxi mation corresponds to an intermediate state with two π - mesons. For the sake of definiteness we restrict ourselves to the investigation of the K^{0} - meson deoay. The decay of charged K - mesons into two $\mathbb{\pi}$ - mesons may be considered in a simpler manner since this reaction goes in one channel only.

As is well known ${ }^{8}$ fram CP - Invariance $1 t$ follows that only the $K_{1}^{0}-$ meson decays into two π - mesons where

$$
\left|K_{4}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle\right)
$$

We write dispersion relations. for the amplitude T_{I} which corresponds to a definite value of the total isotopic spin I of the system of two π - mesons. In decay of $K_{1}{ }^{0}$ meson I equals 0 and 2 , the amplitudes T_{I} are related to the amplitudes for the decay into particles with definite charge by means of the Clebsh-Gordan's ooefficients.

$$
\begin{align*}
& T_{0}=\sqrt{\frac{2}{3}} T_{+-}-\frac{1}{\sqrt{3}} T_{00} \tag{2.1}\\
& T_{2}=\frac{1}{\sqrt{3}} T_{+-}+\sqrt{\frac{2}{3}} T_{00}
\end{align*}
$$

where

$$
T_{+-} \equiv T\left(\pi^{+}, \pi^{-} / \kappa_{1}^{0}\right), \quad T_{\infty 0} \equiv T\left(\pi_{i}^{0} \pi^{0} / \kappa_{1}^{0}\right) .
$$

By restricting in the expansion (1.24) for the imaginary part of the araplitude to intermediate states with two $\pi-m e s o n s$ and in virtue of the isotopic spin invariance of scattering of decay products we get

$$
\begin{equation*}
\mathcal{I}_{m} T_{I}^{7 e t}(E)=e^{-i \delta_{I}(E)} \sin \delta_{I}(E) T_{I}^{7 e t}(E) \tag{2.2}
\end{equation*}
$$

where δ_{I} is the phase shift for the S - wave with isotopio spin I of the π - π soattering amplitude (since K-meson is scalar only s-waves contribute in the soattering amplitude of the decay products).

From (2.2) one obtains

$$
\begin{equation*}
T_{F}^{r e t}(E)=f_{I}(E) e^{i \delta_{I}(E)} \tag{2.3}
\end{equation*}
$$

where $f_{r}(\varepsilon)$ is a real function of E. In order to determine this function we make use . of the dispersion relation.

Using (2.2) one can represent dispersion relation (1.23) as follows

$$
\begin{equation*}
T_{I} \mathcal{T}^{\text {ret }}(E)=\frac{E}{\pi} \int_{M}^{\infty} \frac{\infty}{h_{r}\left(E^{\prime}\right) T_{I}^{r e t}\left(E^{\prime}\right)} d E^{\prime}+T_{I}(0) . \tag{2.4}
\end{equation*}
$$

We have here introduood the notation

$$
h_{I}(x)=e^{-i \delta_{I}(x)} \sin \sigma_{I}(x)
$$

The singular integral equation is easily solved by Muskhelishvili's method ${ }^{9}$ (see also the paper of Omnes where the author examines specially the equations of the type (2.4) only without the factor $\frac{E}{E}$, under the integral sign). Let us consider with this aim the funotion $T_{z}(z)$ of the oomplex variable z :

$$
T_{I}(z)=\frac{z}{\pi} \int_{\mu}^{\infty} \frac{h_{I}\left(E^{\prime}\right) T_{T}^{R e t}\left(E^{\prime}\right)}{E^{\prime}\left(\varepsilon^{\prime}-x\right)} d \varepsilon^{\prime}+T_{I}(0) .
$$

From the definition of $T_{T}(z)$ follow the relations (for real values of E):

$$
\begin{gathered}
T_{I}\left(E_{+}\right)=T_{I}^{r e t}(E) \\
T_{I}\left(E_{+}\right)-T_{I}\left(E_{-}\right)=\left(1-e^{-2 i \delta_{I}(E)}\right) \theta(E \mu) T_{I}^{r e t}(E)
\end{gathered}
$$

where

$$
E_{ \pm}=E \pm l \varepsilon, \quad \varepsilon>0, \quad \theta(x)= \begin{cases}0 & x<0 \\ 1 & x>0 .\end{cases}
$$

Thus, the funotion $T_{T}(z)$ is the solution of Hilbext's boundary problem

$$
T_{I}\left(E_{+}\right)=T_{I}\left(E_{-}\right) \exp \left\{2 i \sigma_{I}(E) \theta(E-\mu)\right\}
$$

Under our assumption that $T_{r}(z)$ does not increase at infinity the solution of this problem has the form (for real values of E)

$$
\begin{equation*}
\tau_{I}^{\text {ret }}(E)=C_{I} \exp \left\{\frac{E}{\pi} \mathcal{P} \int_{\mu}^{\infty} \frac{\delta_{r}(x)}{x(x-\varepsilon)} d x+i \delta_{\mathcal{L}}(\varepsilon) \theta(E-\mu)\right\} \tag{2.5}
\end{equation*}
$$

where

$$
G_{I}=T_{T} \quad(0)
$$

is a real oonstant. It may be defined (if we consider the phase shifts of the $\pi-\pi$ scattering to be known) by the experimental values of the deoay time or theoretically (following the perturbation theory) ; for this purpose we have to make hypotheses about
the concrete form of the interaction responsible for the decay under consideration. In order to deal with measurable physical quantities we make use of the relations (2,1). For the real decay

$$
\begin{array}{r}
\omega=\sqrt{q^{2}}=m_{\kappa} \approx 494 \mathrm{MeV} \\
E=E_{0}=\frac{m_{R}^{2}-2 \mu^{2}}{2 \mu} \approx 5,5 \mu \approx 750 \mathrm{MeV}
\end{array}
$$

which corresponds to the total kinetic energy in the center-of-mass system:

$$
\omega_{K}=m_{k}-2 \mu \approx 220 \mathrm{MeV}
$$

According to (2.1) and (2.3) for the probabilities of decays into $\pi^{+}+\pi^{-}$and $\pi^{0}+\pi^{0}$ we obtain :

$$
\begin{align*}
& \left|T_{+-}\right|^{2}=\frac{1}{3} f_{2}^{2}\left(E_{0}\right)+\frac{2}{3} f_{0}^{2}\left(E_{0}+2 \frac{\sqrt{2}}{3} f_{0}\left(E_{0}\right) f_{2}\left(E_{0}\right) \cos \left(\delta_{2}-\delta_{0}\right)\right. \\
& \left|T_{00}^{1}\right|^{2}=\frac{2}{3} f_{2}^{2}\left(E_{0}\right)+\frac{1}{3} f_{0}^{2}\left(E_{0}\right)-2 \frac{\sqrt{2}}{3} f_{0}\left(E_{0}\right) f_{2}\left(E_{0}\right) \cos \left(\delta_{2}-\delta_{0}\right) \tag{2.6}
\end{align*}
$$

Introduce the notation:

$$
\lambda=\frac{f_{2}\left(E_{0}\right)}{f_{0}\left(E_{0}\right)}
$$

For the ratio of these probabilities we obtain thus the well-known result 6

It is evident that this ratio equals $1 / 2$ not only for $\lambda=0$ (whioh corresponds to the selection rule with respect to the isotopic spin $/ \Delta I /=\frac{1}{2}$) but for one more definite value λ which depends on $\delta_{2}-\delta_{0}$.

B. The decay of hyperons

The solution of dispersion relations for the hyperon deoay is carried out in an analogous manner but with some insignificiant complication beoause of the spin struoture and the "one-nucleon" pole in amplitude. "herefore, the details of solution are not re peated.

Since in \mathscr{F} - meson-nuoleon scattering the parity is conserved then in soattering of products of the hyperon decay together with total anguiar momentum f of the system the orbital momentum $l=j \pm \frac{1}{2}$ is conserved too. It is not diffioult
to see that the invariant functions Ω_{0} and Ω_{1} introduced in (1.9) are eigen functions of the orbital moment operator which correspond to the eigenvalues $\ell=0$ and $\ell=1$. For this purpose it is quite sufficient to note that in the center-of-mass system $|\vec{q}=\vec{p}+\vec{k}=0|$ the decay amplitude has the form

$$
\begin{equation*}
T_{s^{\prime} s}(E) u_{y}(\vec{q})=\sqrt{\frac{M+p_{0}}{2 M}}\left\{\Omega_{0}(E) \delta_{s^{\prime} s}-\Omega_{1}(E) \frac{(\vec{\sigma} \vec{p})_{s^{\prime}}}{M+p_{0}}\right\}, \tag{?.7}
\end{equation*}
$$

where

$$
P_{0}=\frac{\omega^{2}+M^{2}+\mu^{2}}{2 \omega}=M \frac{M+E}{\sqrt{M^{2}+\mu^{2}+2 M E}}
$$

is the energy of the nucleon in the center-of-mass system.
We rewrite dispersion relations for the amplitudes of the state with definite iso topio spin of the system of decay produots $\Omega_{r e} / \ell=0,1 ; \quad I=\frac{1}{2}, \frac{3}{2} / \quad$. After performing a phase shift analysis for the meson-nucle on scattering amplitude in the expression for the imaginary part (1.21) we obtain x)

$$
\begin{equation*}
I_{m} \Omega_{T l}^{z}(E)=\pi a_{I e} \delta\left(E+E_{1}\right)+h_{T l}(E) \Omega_{T e}^{7}(E) \theta(E-\mu), \tag{2.8}
\end{equation*}
$$

where

$$
\begin{gather*}
E_{1}=\frac{\mu^{2}}{2 M}, \\
h_{I e}(E)=e^{-i \delta_{I e}(E)} \sin \delta_{I l}(E), \tag{2.9}
\end{gather*}
$$

($a_{r l}$ are real oonstant quantities, $\delta_{I l}(E)$ are the phase shifts of the meson nuoleon soattering). From (2.8) follows that for $E>\mu$

$$
\begin{equation*}
\Omega_{I l}^{t}(E)=f_{I \ell}(E) e^{i \delta_{I \ell}(E)} \tag{2.10}
\end{equation*}
$$

$f_{I \ell}(E)$ being a real function. In order to determine this funotion we make use again of the dispersion relations whioh oan be written in the form

$$
\begin{equation*}
\Omega_{s e}^{i}(E)=\frac{E}{E} \frac{a_{x e}}{E+E_{r}+i \varepsilon}+\frac{E}{\pi} \int_{\mu}^{\infty} \frac{h_{x e}\left(E^{\prime}\right) \Omega_{T l}^{i}\left(E^{\prime}\right)}{E^{\prime}\left(E^{\prime}-E-i \varepsilon\right)} d E^{\prime}+\Omega_{I l}(0) \tag{2.11}
\end{equation*}
$$

\bar{x}) The relations (2.8), (2.9) are obtained easily from Eqs. (25), (26) in the work of okubo et. al under the assumption that the spinor $u_{y}(\vec{q})$. satisfies the Dirac equation with a mass ω. Between the amplitudes M_{i}^{T} of the abovementioned paper and our ampli tudes $\Omega_{x \rho}$ there exists the simple conneotion :

$$
\Omega_{r 0}=M_{1}^{I}-(\omega-M) M_{3}^{I} \quad, \quad \Omega_{I 1}=M_{2}^{I}-M_{4}^{I}(\omega-M)
$$

As was alread, pointed out, in the paper ll one assumes that $\psi_{y}(\vec{q})$ obeys the Dirac equation with the real hyperon mass. Therefore, here and further the authors"obtain oonsiderably more complicated relations.

The solution of this equation whioh does not increase at infinity for a complex argument \nexists has the form:

$$
\Omega_{I p}(Z)=\left\{\frac{I}{E_{1}} \frac{\bar{a}_{r p}}{Z+E_{r}} e^{-\frac{E_{r}}{\pi} \int_{M}^{\infty} \frac{\delta_{F p}(x)}{x\left(x+F_{r}\right)} d x}+\Omega_{I e}(0)\right\} \exp \left\{\frac{\frac{x}{\pi}}{\frac{\infty}{\mu}} \frac{\delta_{r p}(x)}{x(x-x)} d x\right\}
$$

For real $E>\beta$ it acquire the following form

$$
\begin{gather*}
\Omega_{I P}^{7}(E)=\Omega_{T P}(E+(\varepsilon)= \\
=\left\{\frac{E}{E_{1}} \frac{a_{I}}{E+E_{1}} \exp \left[-\frac{E_{1}}{\pi} \int_{\mu}^{\infty} \frac{\delta_{T p}(x)}{x\left(x+E_{1}\right)} d x\right]+\Omega_{I P}(0)\right\} \exp \left[\frac{E}{\pi} p \int_{\mu}^{\infty} \frac{\delta_{I P}(x)}{x(x-E)} d x+i \delta_{I l}(E)\right] \tag{2.12}
\end{gather*}
$$

It is interesting to apply the obtained results to the pracesses of the decay of Σ^{+} and Λ - hyperons whioh go in two channels with respect to the oharge. With this aim it is necessary to proceed from the amplitudes with definite isotopio spin to the amplitudes of the deacy into definite particles by using the clebsh-Gordan coefficients (see for instance ${ }^{8}$) and to put ω to be equal to the real mass of the oorresponding hyneron. This yields :

$$
E=\frac{m_{\Lambda}^{2}-M^{2}-\mu^{2}}{2 M} \approx 183 \mathrm{MeV}
$$

(the total kinetic energy which releases in the center-of-mass system is $\omega_{k} \approx 38 \mathrm{Mev}$) when decaying Λ - hyperon.

$$
E=\frac{m_{z}^{2}-M^{2}-\mu^{2}}{2 M} \approx 275 M e V \quad / \omega_{\mu} \approx\left\{\begin{array}{l}
110 \\
116
\end{array} \operatorname{MeV} /\right.
$$

when decaying Σ^{+}- hyperon.
It appears to be quite interesting to compare the formulas obtained with the experimental data on the decay and the meson-nucleon scattering (after determining the constants entering (2.12) by using the perturbation theory, starting with a con crete kind of the interaction (comp. ${ }^{1 l}$)).

In conclusion the authors express their deep gratitude to A.A.Logunov who guided this work. The authors thank also P.S.Isaev, S.M.Bilenky and R.M.Ryndin for valuable remarks and useful discussion.

The Russian variant of this paper was received by Publishing Department on May 7, 1959.

Referenos

1. G.KAllen, Helv.Phys.Aota, 25, 416 (1952).

Nuove Cimento, 12, 217 (1954).
H.Lehmann, Nuovo Cimento, 11, 342 (1954).
2. N.N.Bogolubov, B. V.Medvedev and M.K.PA yvanov "Problems Releted to the theory of Dispersion Relation ", Mosoow, 1958.
N.N.Bogolubor and D.V.Shirkov, "Introduction to the Theory of Quantized Fields ", Mosoow, 1957 (oh. IX).
3. G.Kullen and A.Wightman, Mat.Fys.Dan.V.Selsk, 1, no 6 (1958).
J.Nambu, Nuovo C1mento, 6, 1064 (1957).

R: Oehme, Phys.Rev. 111, 1430 (1958)
K.Symanzik, Prog. Theor. Phys., 20, 690 (1958).
R.Karplus, Ch.M.Sommerfield and E.H.Wichmann, Phys.Rev., 111, 1187 (1958).
G.F.Chew, R.Karplus, S.Gasiorowicz and F.Zaoharidsen, Phys.Rev., 110, 265 (1958).
4. Res.Jost, Helv. Phys.Acta, 3.1, 263 (1958).
5. M.I.Goldberger and S.B.Tre1man, Phys.Rev. 110, 1178 (1958).
6. G.Takeda, Phys.Rev. 101, 1547 (1956). ©
7. N.N.Bogolubov andvV.S.Vladimirov, Isv.Akad.Nauk, SSSR ser.math. 22,15 (1958). V.S.Vladimirov and A.A.Logunov, "Proof of some dispersion relations in the quantum field theory" (see preprint J.I.N.R. 1958).
8. M.Gell-Mann and A.Rosenfeld, Ann.Rer.Nucl.Sc1. 7, 407 (1957).
9. N.I.Muskhelishvili, "Singular integral equations, boundary problems of the function theory and their applioations to the mathematical physios", Moscow-Ieningrad, 1946.
10. R. Omnes, Nunvo cimento, 8, 316 (1958).
ll.S.Okubo, R.E. Marshak and E.C.G.Sudarshan, The V-A Theory and the Decay of the Hyperon, Phys.Rev. 113,944 (1959).

[^0]: x) On leave of absence from the Physical Institute of the Bulgarian Aoademy of Soiences.

