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A bstraco t.

" In this paper, first of all, a metric space /7 of certain
oomplex-valued functions of a point in space-time is introduced
with a symmetrioal, nondegenerate, indefinite metrics determined
by the Klein-Gordon operator.: The equations of the quantum
theory of a soalar field with selfinteraction are then formula-‘
ted as tensor-equations in the space /7 A new equation which
allows to consider the problem of computing the Green functions
as an "initial value problem" is derived and solved formally by

the method of continual integration.



Introductdion:

_ Bywinspecting~the equationsdof’the quantun‘field theory
one gets the impression that one has to do with a- sort of
tensor—equations in the function—spﬁce cf thc external poten~
tials. For instance, it is hardly poss1b1e to pass over with—‘

out observing that the Feynman [l] "diffusion equatlon"

-4
| /4 5B, /4))”5 ) I/UM/& ”’I‘

has the forw cf a teruor~equation in the space of cztc nal

electromagnetic potentials A5 (vC) E with a metrics determined;
by the "contra-variant metric tensor J{;v [ (//Z) . The
covariant metric tensor is »J— 5. (3/45) L where the

- function J- /@/-Z) S defined by‘the equation “

/;[/4.2)[-4/2 3) A -d/1 3}.

Another example is given by the Dyson [2] equation i'or
the Green function é?( 3&) i.e.

G{,;:,?) =;.f/it_,7) -Hf;x/,c”) Z?Vcl'?/) &{?{7} ﬁl@’d?/

It suffices to interpret the quantities é% Af“:'_aﬁa 2:¥_
as tensors (with continuous tensor—indices) and we kﬁke again -
a tensor-equation. It would be possible to mention a series
of further equations of the quantum field theory showing a
more or less striking similarity with tensor equations in a

function-space. This situation raises the conjecture that the



tensor—features which appear-et various places in the‘quantum‘
field theory are not accidental but are manifestations of some
general principle which remained unobserved up to the present
time. | R | -

In what follows we shall consider (as‘a retherlacademic
example) such a tensorial reformulation of the quantum theory

of a scalar fleld with selfinteractin.

l., The Funetion—Space /7

Let us considerjthe eef‘of all cemplek-valued functiens
yaﬁz) in space—time which fulfil the following boundary

conditions: : -
1) V(x,t) =0  for /v‘/"w ~ and all values of t,
I1) i .

dwi P —v — - =
_a/__i"_z&_.l /1//,5 y/w £) i %nt =0 s

for L = =00 , and
11T)
o, 0 yqﬂx'zf) 27
:!_. 32 + 1 /V(.c w)y//vﬂ f)oé"“ =4 (1.2)

for t'=’ f'°9’\-

The "nucleus" “P’ of the integral operatorl) in (1.1) and (152)'
is defined as follows:



4 ¥;;’":\‘,g<tﬂi ~\:wji; :
V/w) ‘52‘;}‘;// +x’/ T P (2:3)

1)mThis operator was introduced by Landau and Peierls ‘[J]
for 2=0. The equation (1 1) admits as solutions only waves
with negative frequencies and the equation (1 2) only waves
with pos1t1ve frequencies. (It is understood that Aiubﬂu,t

corresponds to positive frequency)

The set of all functions" ?{/JJA “satisfying the above-
mentioned conditions I) - III) willybe.called,the,"space /7}",
In the space /7 wez introduce the scalar product (¥ %)

‘ t 3 . ) S :
and the distance A& A,of two functions %;_/ 7: ‘,py the

following formulas: S - ) 4
'/75)72)‘/75”‘,)/:0*?‘772/*) 2% - @)
and

(f-%s>%-%) - @

The equations (1.4) and (1.5) determine the metrics of the
space /T . Notice that the metrics is,"indefinite",(‘/ﬂ can

even be a complex quantity) but symmetrical, The symmetry-is a

consequence of the conditions I) - III). In fact, by the Green

theorem and I) we get



Then in virtue of (1.1), (1 2) and from ﬁnﬁtj ;QA“V‘)
the integrals on the right hand side of (1 6a) vanish and we have

{}f) %_/ = /y;_)y; ) . (1'.‘6b)1
Since the équation

(-a+x)p=0

with the boundary conditions I) - III) has the 6nly solution

CL

‘]V/u&). =Y, = th'ef sp'ace”“"/7 ~does not contain isotropic

functidnsz)vahd hence its metrics is nondegenerate.

_2) Let us remark that isotropic functions are orthogonal (in

the sense of the equation (1.4) to all functions of the space'/7.‘

- As the metrics is of'the'usual type we can take the

advantage of the standard tensor notation. The,fundamental

metric tensor 1s

7 () = 9('e) - (-4 %) o= w (-1 DU E). 2.0



We shall agree to consider the components (1,7) of &4 as
covariant and to emphasize this'convention wemshall write

ﬁ[wu/} instead of ;fbﬂ'u&) in (1.7). (The bar = over

kthe "indices" and - u( of 3;\ w1ll\remind us that
this are the lower indices) . In accordance with this convention
we shall consider the "index" (L) of the “yV«S in (1.4)

as an upper - index and shall write it like ( c_«_C )] -',(1 WwiL)

are contravariant components of the vectoiffb“)" dSimilar'

notation will be used also for higher order tensors in the
space /7 o Besides this the summation over a pair of indices
&£ , & i.e. the integration as in (1.4) or (1. 5) will not
be depicted explicitly. (Einstein S summation—rule of the
tensor calculus in the space /7 ). | | o

With these conventions the equation (l 4) for instance can

be written in the form
W) I gte sy

;The contravariant components ;Z/QCLI.} of the metric tensor;?
are determined by the equation. ’
;”*

;/««wﬁjﬁﬁc ") = ;/PC |

| (1.8)

where (L "5 y["e -.,z « By the help of .the tensors |
;/»cw/} and ?(:C__t;t’-__) ' we can raise and lower, the
"indices" in the usual manner. -Thus, for instance, the
relations giving 9V7L27 in terms of 9’7&2) and conversely

read



y(o?)é;/ﬂf)'yfi’) - | (1.9)
v = gles’) wix) L (1.91)

The contravariant ténsor éZ(sz‘ ) is the Green functidn

of the Klein~Gordon equation for 2 problem with the boundary
conditions (1.1), (1.2) and i1s connected with the Feynman-Dyson

F ' :
causal function 4 /.c-a;’) by the relation

gliasy = £ 2pan) )

2. Creation and Destruction Operators

Let us define the operators ‘éf_{) and /ﬁff_) by the

commutation rules
[o’-/.c) /—fm] ";M" ),  <2.1)
1z 4[.:)] [4(_) 4/»51_7 ..

From these operators we canwcdﬁ%ruct the operators
- . ‘ Y 4 ¥ 4 \
Jlxr’) = o/é(g_) {:@3) —f,éfg&,_ ) é/ﬁ))

which fulfil the commutation relatioﬁs_.

ey "*’9]‘2’4"0’4’“—”7{&”) b)), |
(2.2)

[’/,C«r:) /—(,c’)] ;{x&} () -7{.{«:/ éf*“)



Finally, using (2.2) we obtain the relations

[T tax?) : Tiuche”) | = ;/xx”7_(?vrw /7/»6»6” 77»“”/

=g leey e’ ;f%’”/ffg_vg ) (2.3)

which show thatiI{Lcucs ~ are the operators of infinitesimal
rotations in the space /7 -y .determining a representation of

the group of rotationsj).

3) Golfand.in the paper [@{]' constructed the operators of
inflnitesimal rotations in an euclidean space with infinite
number of dimensions starting’from creation and destruction "
operators of the usual type belonging to Fermi partlcles. Our

operators I(ggff) are constructed from the so called causal

operators belonging to Bose partides. (See below,footncte 6) Do

This representation is reduclble since the‘operator,
4
W= gee ”’}4;(«4'/4-{.»:) el Loy

which is not a multiple of the unlt operator4), commutes with

I(v(u: D

[Teehy V] = 0 . - (2.4)

4) The fact that A/c',iS'ﬁct a multiple of the unit operator

is clear since /V does not commute for instance with the




= I0 -

operators fé,[_{) ""_i“nd é[i) :

[% ff@] -£ (£) ///V,ff:‘_)]=-'4 (X )

Hence N is a scalar dperatbr which remains unchanged
under rotations, To find its 'eigenva.lues Y  and -1:0'

construct the eigenvectors ?/‘ o 'satisfying the e'quation

 LgrEr) ) bolt) Y= o
/ )4,; )vc@)ax}}/ }‘/'} »(’2.5)

we can start with the vector K satisfying the equation

é(ﬁjk‘ =4 . : | (2.6)

The existence of such a % is clear in the "standard"
representuation in which the operation of 4 (X£) on 3‘/‘
means simply a multiplication whereas 'é,',é) is given by

the help of a functional derivative, namely

- 5
éfgs)/.y-‘ ='-¢;/o_(_~_g’) m?ﬁ

Then /}C is simply a functional whiéh is independent of
/é—(:z_) .

The vector % v belongs’ obviously to the eigenvalue
n = 0 of the operator /V ‘e« -+ Further eigem}ectors ?/’ of
/A/ can now be obtained by applying the operétors /{@)7

on ¥
Yoy <> Y]
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generally5)

%u(' v \:/J-( ).-.é(_{&)‘%' R " H(2.7)"

5) In the paper [8_7 s in which a formalism simllar to ours
is developed, the space of all ':kﬂ ~vectors 1s denoted by the

symbol ijjl .

From (2.1) and (2.6) it follows that the application of the
operator Aﬂ'ﬁz ) on an eigenvector ik/, of the type (2.7)

gives

i) Vewy )< - gl Wit o) -
B AN 4 R IR B
' (2.8)

—4;49&)7%5“.x%4)

Using (2.7) and (2.8) it is easy to show that the vector y‘w tdy )
is an eigenveotor of /V ~ belonging to the eigenvalue /h/
where T = 0y 1, 2 ees o |

| Considering the analogy of our_ operators 4¢'?vf) and
AL(L() with the usual creation and destruction operators of

Bose particles we shall call our operators also creatlon and

destruction operatorsé)
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6) They belong to the”category of the so oalled.gausal
operators as introduced for instance by'NoVozhilow [—4] .
See also [5]and [8_7 . .

Similarly the operator '/4/ oill be called the operator
of the total number of particles and the vector jk: the

vacuum vector7).

7) The‘problem of the connexion between the veotors i}ﬂ
f the space _52. and the usual state;vectorsvof the Hilbert
space (as used in the customary formulation ‘0of the guantum
field theory) is not at all trivial or simple and will be

considered and solved in a subsequent paper,

Notice that the operators 'l'("‘f) 4'[.,&) 1‘4[«1) are

commutative o
[’4/5’_/' %,/35’) J=0 . (2.9)

This circumstance will be of importance for our further
oonsideration. ; |

For the purpose of normalization of the <jbﬂfveotors Wé
introduce a symmetrical matrix .Z) (metric matrix in the

,52 -space) which in the interaction—free case has to satisfy

the following conditions.a).‘
/; () D =D 4 (x)
,47}44)0 =D 4 (x)
a — [~

.(2;10)
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41, 47
( T (X) and (L) are the transposed of the matrices
/&-[,_{/ and‘é('_{_)).

8) mhe existence of the matrix'_Z> can be made ‘clear as

follows: From (2.1) we obtain the rglations

: . : S v- .
.‘_/.//.X} 4&:/ =vf?;/-%"*"‘/,_ | etc.

which are of the same form as (2.1).

Therefore a gxmilarlty transformation

J{;; ﬂ//x/D—1
érfz_(,) = D 4/&’/ D-

must exist which is equivalent to (2.10).

The wvacuum vector 'jﬁ:' can now be normalized by’thé'

equation - S :
r '.7,, . - R »,4 . ‘ : . ': .
The normalization of other 'iy/tvectdrs is given already by
(2.7) and (2.11). .Thu53 for instance, it holds
‘ , .
?//x)ﬁ%ue’} =""”[_——”"”// -
. I (2.12)

?//u: X, ] D y/x /f/xx4)



Besides (2.12), it is easy to show*that the following orthogona—
1lity relations:hold;

5, @E: n_ﬂgngg;g L

In tﬁié paragraph we*introduce”the dreen”functionsrcorres;
ponding to a scalar field which is in a "quadratic"g)‘interaction
with 1tse1f. Even though such :a - field, apparently, does not
exist in nature, its invegtigation has at least some heurlstic
value.1 ) We shall show below that the Green functions
transform as tensors under the rotations in the space 5/7 .

Therefore we shall call them ‘Green tensors.

P

9) Underathehﬂquadratic"Fself—interaction~we understand?an
interaction in virtue of which in the simplest elementary act
the particles /4 corresponding to the field are created or

annihilated according to the scheme*

In this sense a "11near"gdnteraction would mean that~thersimplest

process is /4 :’--B
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1100
Hurst and Thirring €ee investigated this case in
_connection with the question of the oonvengenoe of the

expansion series in the perturpation'theory. E§,7],

The interaction is introduced by substitutinp for the
conditions (2.10) the more general conditions

[4@() +a7'/xyc.,c”/4—/uc/4/,c )]A A //.x)

(3.1)
/4/&)—wf/xwuc”}//~¢/4""{]4 -4 %(“‘)
where /4/“)"' J'(K)“& (K) , O( :l.s a coupling constant, .
7/-‘\'.)(»(”) _7("”‘ ?’/"C”"r/""/l) - 1s some form—~
faotor) ;V/JZEJCE_) L being a symmetrioal tensor in ‘all
its indices v(uf’b(” , 11) and 4 is again a
symmetrical matrlx, the explioite form of whioh will be
determined below. From (3.1) we obtain ” |
r _ o S . ;
M) 8 = 4 4/_{_) . (3.2)

The Green tensors are defined by the formulalz)

C(ug 4 /}/ 4 Jm /@m‘ )}f’ - (3.3)
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In the local theory '7{.,(‘,(_{,(’/}: 5[‘,(_,,¢5 )74.’,,{”) .

In the interaction-free case (o= 0, A =’.D»
have in virtue (2.11), (2.6), (2.10)'and‘(2.12)

) AT . .
/LG/(L:.,:) -%_%JD%:‘_/) "‘;?/-"—('—"-E/) -

which has been :Lnterpreted’ as the metric tensor in the

/7 ~-space. If we should introduce the base of vectors X as

folioﬁs |
; /_ v

'X("C\ =l'/——‘ /4/«()2/7

X(x1 - .,(,m,) 4[0() ’4/0(44,) 2//’

and should define the scaiar products olf these vectors by J
means of the matrix a [i.e. as X[-*- ,,‘_)AX,[-& M)j
~we could look also upon the whole set of the Green functions
(3.3) as components of the metric tensor in some other space.
This peint of view would ylevad to anbthe‘fr "g’eomet.rical: model"
of the quaritum field theory under consideration. However, we

do not intend to develop it further in this paper.
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Now we can derive an’equatidn for the generating functionai
Z[J/.u?)] of the Green tensors (3.3). Using (2.1), (3.1) and
(2.6) we can perform C-z(ur. K, -~ ./(,,V) as follows

. / L |
G Lo o) g?f'd 4zx; big) - Fle ) ¥ #

T .
*3% A&{uz)l/.e .,4.4/,¢)7V'

='"”f/““‘ )6/‘9 )—.o;/.cx )G/.,z L, - -'f«.)----,- -

'wﬁﬁc L) G, ... oy Ly ) = QL xwygm./u ,z,,,_/

Multiplying this equation by ;[.{ /) we get

?(JEI) G(x@ xu);w f/me’,c'fjém’w’w, e ) =

= -S4(% ) Gt i) = oo = £HE L) Gty -it,.,).

| (3.4)
Note separately the specigl cases
R’ [y foc yf ki ?) Gpe'?) = 0

ey ey
| 7/»«7’) bie'ts) 1"0(7/“"“2"‘ 7)brete'z) = 2R e

which can also be deduced in similar way like (3.4).

O0LeRUHEHMH HHCTHT YT
AALCPHMX HccnenoBanui
BUETAOTEKA
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Further multiplying (3.4) by the product JQJi)...Vﬁia;)/
then dividing by ~nf ana summing up over 4t - from
n=2 to n = o , we obtain after some .rearrangement on the

right hand side the equation

© _

b3 m?[xxl@(x’x" e I HE) o T )+

M=y | A

/—a(2__ %, 7/1(»/.4’"} g'/quC xf.-'.ue”)ﬁécj/...f[,aujz

me=2

= -1 «Cﬁz‘) ;2: é:?k' e 44‘)v27“9) ‘/?uz;v}

Ao:q

To this equation we add the equation (3.5) and the equation
(3.6) multiplied by J7«&,) and obtain

- q0iz) [Gre +Z_‘o‘f7' Gl o) i) I (% ) [+

a Q’?’(»nc x”}[@(x’x”) +Z_ n7 G/{w L oened, v ) Jix ) . . T J

ne=q

e TR+ e Gl ) Ty Ty T

A=A

This last eqﬁation-can be written down in the form
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J "fz: .

7% oy (LX) - = -2 JiE .
7 “"Nm PG A S sy T R EL oD
where

7= /,LZ_ G(x . ,‘,_)‘//z).’-- \//d ) . . (3.8)

M=y

The équation (3.7), considered as an equation determining the

functional E?Zl]l] A,_must be completed by the condition

Z[0]=1.

Now let us return to the equations (3. 1) and look for zﬂ
satisfying these equations, Assume ﬁ”; DJ = ..5' O - where
D is the matrix satisfying (2.10), Then f  has to fulfil

the,equatiqns ; ’ B

, = a e "Af;r”/J"
[4/&5),5] “.’//ff“d/%/_«!./ £ y 3.9)
[bic); S] == Pl <<% b b5} S

Develop ﬁp in a series'according to powers of e
p (e e '
(R N R N

Then from (3.9) we get a recurrent system of equations

[J-(x; J“‘] 47«/,(.,5 ’”) 4{x ,Z/x/,j”“ 2
[/-(x} Asw(dc]_ —«7{&«\’ .r/ 4[_{.}4(_{ ) )J‘{ "'/

e =7/

which can be satisfied b& putting



=20 -

(e _ e 'uv)"" -
J, n/ L
where

[ £ 7/x J(x) e, 4(.»\' )

Hence the matrix AS) can. be expreSSéan- in the','form

dal | o
'__gv;:.,& o ) | '(3,10)‘

 4. Pransformation Propert‘ies of the Gréen Ftinctidns

We shall investigaté the transformation. properties of the
Green functions firs.‘{: of all in case of free field (=0 ).
Under the rotations in the /7 ~-5pace the operators /4/3_\")
. transform as contravariant vectors, l.e.

’ |
bty = e/ &) brx) (4.1)

where

Clx L) C(vc ”’j;{uz 'w?) = ?/»c«:”) . (4.2)

The operators /J’[v() and A(u() ktransform in the same
manner as /4[\«\’) « Since ,5‘ () and /J-(vt’} fulfil
(in virtue of (4. 2)) the same commutation relations as /4(.*)
and /4-[.(/ y there exists a matrix IQ - for which

/ - - —
Bl < R Meeh R = ¢ (%) ) (4.3)
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Clearly R in a matrix representation of the rotation (4.1).
For infinitesimal transformations (4.1) wewhave13) ,'

Clw’' %) =?/g_c’.,?) # (X X)

“and i? is given by

Rel +% Tlex YE(RR')

13) Let us-remark that the grdup of rotations (4.1) contains
|as a subgroup also the group of inhomogeneous Lorentz transfor-

mations,. Indéed, under an infinitesimal transformation
—(&v+£ﬂw)xv €,
or

&, = /fvf Sf»‘-é‘ )

a Lorentz scalar 9“736) transforms as follows

y/zx, )= Wi ) =[?[uc w.”) " 5/.4 ,u”)]y/u:

where ) T T

E(fel)y= & (ut

Inserting for R and C'[b_f/u() ~into (4.3) we
obtain the condition |

Tte'); $x5 [= 20£") b12) -9 2 ?) b057) ;
[Tet), (—’-7 Hes1402) -3 N
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which is consistenthwith (2.2);-'From'(2.10) we have

-7 - 3
Tlaw’y D= = D Tre s’y T (a.5)

so that S
| pTh _ N p=7
R D,,;Dk
Now we. can investigate the transformations of the Green

ro) :
functions é; ""vVQM/) B (corresponding to free

particles) under the substitution ‘ :
o 4, IN Lo ‘

' | | | /0)
First of all, it follows from (4 6) that the quantity LS’

is scalar since due to (4 6)

570 2% 7 VANV
Theiefore, using (4.6),-(4.3) ano.(4 l)‘we'can write
.G/?f/__‘_’_:‘i)’?&}'?ﬂ D%/u:’) 4/,,, )?V'

- glro‘) Q‘/’/?D&(g,) /4/«':,,‘)/?2“

—_ /) o S 8 l
- () -V--V'C(V‘/ ,.v)é’ g x) (4.8)
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()

From this we see that the Green functions é:ﬁz e kg )
Sy .

transform as tensors under rotatins which entitled us to give

them the name Green tensors. Of course, from (2.6) we have

QVO' = R J{' = Q‘:' L | L (4B

so that also

4.,)

(“( ses (u(, Y ) el -(4.9)

i.,e. the Green tensors in case ofof = 0 are reproduced by (4 8)

Indeed, in this case, they can be expressed in terms of the metric

tensor ;L{L(uz ). B

Before we proceed to investigate the transformation

properties of the Green function in case of o # 0, we derive
some relations which will be useful later. jFirst of all, we

rewrite the equations (3.1) in the form

a /ZC) 43 43 2 (L) , (4.10)

4(_)4 AQ[«'&)
where | |

@ (x)= ,{—f.,a)vﬁic\’y[x .,c’.x”),ﬁ(.,c,) 4(.1,)

) ,4{.,(_)-—-0(/[0{ .x:.x")éﬁc}»&/»&
o U (4411)

It is easy to show that 6L (v(‘) o and . fﬁlfil

the ‘same commutation rules as 45L(;¢')

Therefore there exists a similarity transformation
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4&) U'ﬁ(,,()&"
qe)=U" 4-/4:)0 " (412

Défine the operators

—

-’ » " . -/ .
-,.7/—“‘,—"5/)""5/‘%@)%‘%,) ~qda x )) U_/_v_\’_f}ﬁ-.'(%n) |

~From (4.10) we have

;;L/Qcpc‘)zﬂ - ét;Z/ltuz )

‘and

;;QT 4 = QAJ’Z“

(4.14)

12

| f’@ [+-‘ ?/‘cw/)z_‘ﬂcw =UTRU .

From (4. 11) we get dﬁ‘)-—-@ ﬂ(}-ﬁ% () = 4/‘()
and then from (4 12)

[«/ﬁe) U] ﬂ o | ’(4.15)

and therefore from (4. 4)

[;fx"‘l/ /ﬁ& ] ;/—50&”///«;/ —;/¢¢/4{¢/) (4. 16)
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so that also »

Now we can already prove that the Green functions (3.3)
transform as tensors under the substitution
Yoy =RY |
Again from (4,14) we can see that Lj; is invariant, and -
from (4.14), (4.17) we find at once that

G’_;‘e/ w,:') =C/‘*_‘?,,“E:) ce- C/ﬁ,{tzw)éﬁg’ vt%) . (4.18)

Notice that in case of o # 0 the Green tensors are not- repro-

~ duced by (4.18) since (%2‘/‘ # 2‘/’

Inserting from (4,12) into (4.10) and using (2.10) we find

T : . :
a4a=-0U'pVuUu . (4.19)
\ | .
Therefore the Green tensors can be written also in the form _
| d 4T SN
= 2L : \
G(bz?... L, ) -s ;5 Dl(u;,).-.//xa’)ﬁ B (4.20)
. ] o S : . _
where

¢_= vy, | L ‘. (4.21)

Explicite expression for Z7P oan be obtained from the
equations (4.11) and (4.12) by the same method whioh was used. at

the end of §3. We find that

7 - —6- 7/w.z u:”) /(:_c) Jfgfﬁ '4/;5_”)
=2 ; B o

’§4.225
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Comparing (4.22) with (3.10) we see that o
' 2
S=U | (4.23)

' 722 s '
and therefore also 4 =05 =D o This is consistent

' r
with (4,19) since from (4,22) and from Agkf)jD =)D t@d&) we
have D =DU .
Notice finally that under the rotations ﬁé transforms

according to

o, / - R¢ ) | (4.24)

5, Equation with Functional Derivatives for LZJ‘K,}?)

For determining the Green tensors from the géneral for-
mula (4,20) it is neceséary to know the vector 96 as given
by (4.21). Evaluating of /¥  meets with aifficulties
connected with the disentanglement of the operator 571
Usually such an operator 18’ expanded in powers of ’cx and
individual terms are‘rearraﬁgpd into theynormal products
oficreation’and.des@ruction.dperators. This method 1s con-
venlent 1f the coupling parameter | x is sm#ll endugh. It
X | is large, it 1is necessaryvtorlook for other methods,

In the following we shall derive an equation, by the
help of which, as we hope, it will be pessible to evaluate
' ¢§ without using expansions in powers of X . For this

purpose we introduce the functional

| >

= - & pram ) bus) bpe ) it ¥
Cityy) =

e | - ¢ (5.1)
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where (L) are functions of the spacé /] . Then it
holds .
r—
- ~ 0 =
where ¢ is given by the formula (4.21). 4 J |
o /L)
Proof: Let us develop the operator &  Oprx)

in powers of o :

by P s

Stnce it holds -

(4{ )i ) 6‘7/“““‘);/‘“/{‘”}”‘119/‘ |
}"(05) _ 0 =

—4

" %7l | |
/1«0(7/’(’5.‘/)//“(/,/{,(/4/") P ‘/‘ 1‘4“:)'{/;&1}#5)’#%)/
we obtain from (5.1)

— -Jf (XX )4{04’@4&'/ -2 (4L, L ) be,) brie, ) l)
/‘/,y) P Z 'e 6 7 3 fac = il 7

o
and putting }V/:'—;}E 0 . we get (5.2). ‘ ,
The functional 1:4:7/0/, ¥ as defined by (5+1) repre-
sents the solution of the equation
f{£§: = 4r bz) 5“‘ :
A o YrL) | G
satisfying also the initial condition |

..._.7{.,5(1 x)»t‘ﬁz,)#/d)}"/“‘ ) }
Sl < z
0 - (5.4)

This condition can be put into another form if we apply
the operator é/-"—‘) . Using (2.1) and (2.6) we obtain

é(u_z),_?/o, ¥)=~% gl £ 27) 41y ] 5/”, Y. .5
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This last equation can be solved directly in the “standard®
representation ,@ (-X) = —1-;/:5_*5 I)r, J/{é(g_/)
The solution reads14>

iA "rx x)B/uu’) J‘/«x/é(“ )

—
Sloy, &)=t | ?{'
B/wx) = —7’/~¢ e, ) wiL,)
and A /p&”a&) ~1is defined by the equation N

/4"1[«,",:,) A(vaf) “; (A" )
with

Alavc’)—-z,jf.x.x)-—— 7'[.&.,( “:_) y//ucz_)

14) This remark is owing to V. Votruba. o

The equation (5 3) reminds of the Dirac equation. The
~analogy is useful for investigating the properties of the
equation (5.3), For instance, quite similarly as in case of
the birac equafion, one can prove the_covariance of the
equation (5;3) under the rotations in the space 7 . 1t
is easily found that under the rotation
}"/«x’ -C’/w .x) wor)

the functional 44 transforms in the same way as }é ’
le€s . /
Slyy ~RE ta,p)

Thus, to show the covariance of (5. 3), we multiply this

equation by ./Z " and obtain )ﬁ )
T AP )
‘ / —'
T k({w)k b‘y E .) J';U/ut ) e )



Let us remark that the initial condition (5.5) is not

covariant under the whole group of rotations since,the;tensor,

3’/_{%’.,( ") is, generally, not Ijep‘roducéd by all transforma-
tions of’the group, It is,)of'course, in any case reprbduced‘ -
by the sﬁbgroup of the inhomogeneoﬁs Lérentz transformgtionsj
but one can expect that there exist(distinguishe&_fo;mfactors
which, in addition, are reproduced élSo by horé_geneéal‘m
tfansformations. | . |
In complete analogy with the Dirac equation-we can derive
also an equation of the typre of continuity equation. Define
S =5 .Dl_.l ;- | o
y{.x)--z_, p%(«) .
Then it holds . | S
s s Sj‘*—“ = ¢ | R
Ao X'f“ﬁ) | ? o (5.6)
Besides the transposed equation of (5.3), 1.e.
. 257 §~L, 4; -
— V()

= (
Ao Tpex) T
also the relation D/&"(q’) = 4‘[« ).D was used,

(5.7)
new
Generalizing (5,6) itris possible to obtain a/System of
coupled equations for the Green tensoré, For the sake of
simpiioity we shall write out these equations fqr’the modi-

fied Green tensors
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g[w . )-1_., Dg/-—rq) 4“ ) /—J . (5.8)
Taking the tc<.-denvative and»using'(5 3) and (5.7) we obtain
A 7/«&; - ) Xg/,yu e L)

- | X‘lf(vz_) . (5.9)

The system (5.9) must be supplemented by the initial condi- .
tionS‘(obtained’b&”putting (=0 in (5.8) and using (5.4)):

ﬁv “ 3¢7ﬁzuﬁx!)44k¢)4ﬁﬁs wie? ‘
%)= ?/,DJ’ K/,,,;, ) ... e ?a/

R~ ) & |
These tensors ¢  satisfy the recurrent system of equations
[:;/oex)f—y/uc.c.z”)yf/aeﬁjyﬁe,g ek, ) =
i (5.10)
"‘—-t;[axué )g[« L, ) - ...-.4,;/‘4:.4: )Q(@, £ )
(5.11)

[ﬁﬁhx)!- 7/0!@&”) yf/~¢ ]y (.,c") '=-ﬁ
The equations (5 9) - (5, 11) are equivalent to the equations
(5¢3) and (5. 5) and mean, in fact, the record of these equa—
tions in a certain representation of the matrices 45%2&)

Notilce that the equations (5.10) are in some respect simpler
than (3.4). Of course, in addition to (5,10) we have now
also the equations (5.9).

| Let us makekfinelly a look on the problem of solving the
equation (5.3). One can exploit also in this instance the
analogy with the Dirao equation. Thus e.g. One can use
the method of the development ofrzszﬁjja) into a superposi-
tion of "monochromatic plane‘waves".which makes it possible
avold the expansions in powers of o + In the present paper,
however, ‘we shall not discuss this method but instead we

~shall be satisfied by shortly showing how one can deal with



- 3T =

r~z
the problem of determining 4~ (¥, ) ‘as an "initial value

problem," i.e. how one can express ey /“’ 7”} ‘ekplicitly in
“terms of Lo /0, }V) -
For this purpose we define the functional /:}Gf ??) by

‘the equation (5.3) with the initial condition
Flo,w) =y
| ,,/7}/ ¥ : (5.12)
where 5}309 is the Dirac delta—-functional in the space /7,
In analogy with the formula (5.1)- the functional /:739 ¥) - oan

be writteno(iél( :;1 ;7;;“;;':) q,j/ fx) =— ffl;r) < /,/.Z/} y{_«g’)
| iy = 7 -

Flyy) =2 L/L)-

. £

=/~&1J¢x/a/u?/4[£) w/o/»wyl jd/ﬁ )

The first factor can bé'expieSSed by the help of normal
~ products of creation and destruction operatorslinthe form
o - 4 2 o T
o (L) ) ;«;/ﬁ/);’(x)ﬁ(ﬂ) LA PUK) Fle)
= £ . oAf/Li»

2 (5.13)

To prove this equation (5,13) we first of éli remaﬁk that

the Jleft. hand side, whioh will be denoted vy A fex) ", satis-

fles the equation ,

with the initial condition ///d/ 7 . Taking the of ~deriva-

tixg of the right hand side of (5.13), which will be denoted by
/y/d) s we obtain |

6”/40( = A qlas’) I Pl H # Ep) i) Ht e PEcx)
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‘Since it holds

(b, A7 = o«;m’ /vf«w 7,
we f£ind that also ~~

d% - ,o/;f.z)z?/x) V4

. ) o
‘Besides this we have also //[0) '-'4 « Thus H=H and
the equation (5.13)yis“proved. |
‘ S By the help of (5.13) the e#pression for /:ﬁ*;}VV can -

be cast in the form

J ;
/__/“ y/} «&lx)a.’w‘x / ;(«tx )ﬁ{-c)/n(.x )+4»/¢/x)f/;z_}

44,.).
If, in addition, we perform the substitution
PR =N -5 ;/—?2’) pie),
we obtaln finally . R
o 61 )
F/«},,)__C',/l/' Sptxy o o
where the constant CT 1s given by
<o / - ~7 ‘
T g(xx!) A(x) A7)
, : 22X , v PO

By the help of the functional /(e ) the solution

;,(« “ y/(uuy//,z”/
- (5.14)

of the equation (5, 3) can now be expressed in terms. ofL4/byd
‘ by the formula

(=, ) =/F/0(, ’V-f)ff/o,y)df ; G
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"Concludigg‘remarks

‘fhe conslderations of the last paragranh ehow that the
quantized scalar field withkselfinteraction can be characterized
by the "wave functional® [57%( y/) from which all the Green
tensors can be determined. The changement of this functional
with the coupling parameter ,6‘ j is determined by the equation )
(5.3). This equation is so general that it does not depend of
the character of the interaction (i e.»of the order of the interao—
tion and whether local or nonlocal) One can therefore expect
that thils equation will remain valid in the Quantum field theory
of any future form, The character of the interaction is speci—
fied only by the "initial condition" (5.5).

The purpose of this paper was not so much to provide
effective methods for solving the equation (5.3) with the initial
condition (5.5). The aim was rather to show that.the fundamental
equations of the quantum theory of‘alfield can be cast in the
form of tensor equations in the function space /7 and to
exhibit examples of the tensor algebra as well as tensor analysils
in this space, _ |

The author is grateful to Prof, V. Votruba for his interest
in this work and for many valuable suggestions which contributed
to improve the text of this paper.
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