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A b s t r a o t: ---
In this paper, first of all, a metric space fl of certain . . 

complex-valued func.tions. of a point in space-time is introduced 

with a symmetrical, nondegenerate, indefinite metrics determined 

by the Klein-Gordon operator. The equations of the quantum 

th.eory of a scalar field with selfinteraction are then formula­

ted as tensor-equations in the spaoe fl . A new equation which 

allows to consider the problem of computing the Green functions 

as an "initial value problem" is derived and solved formally by 

the method of continual integration. 



I n t r o d u c t i o n: -------------
By inspecting the equations of the quantum field theory 

one gets the impression that one has to 'do with a·~ort of 

tensor-equations in the function;;...spa.ce of- the ·.external poten­

tials. For instance, it is hardly possible· to pass over with­

out observing that the Feynman [1] "diffusion equation 11 

[ (1.t) ·c{'C "'r + I ·. f . ~ ·· 

has the form of a tenao:r-equa.tion in the# s:pa.ce of c:dcrnal 

electromagnetic potentials ~(~) with a metrics determined. 

by the "contra-variant metric tensor" ~21 ~ ( "'.2,) • The 

r r--" . covariant met_:Jc_ tensor .. is ~V o + (.~ R..). .·,. where the 

function ~ ( ~ t) - ·is defined by the equation 

j { r~.tJ ~--~f'J s) ~z;, = tfr" s J. 
Another example is giv-en by the Dyson [ 2 ] equation for 

the Green function ~( ..e, '7) i.e. 

It suffices to interpret the quanti ties G, Sc ana "2 .. :~ 
as tensors (with continuous tensor-indices) and we 'hii~e again · 

a tensor-equation. It would be possible to menti.on a series 

of further equations of the quantum field theory showing a 

more or less striking similarity with tensor equations in a 

function-space. This situation raises the conjecture that the 
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tensor-features which appear a~ various places in the quantum 

field theory are not accidental but are manifestations of some 

general principLe wh~ch remained unobserved up to the present 

time. 

In what follows we shall consider (as a rather academic 

example) such a tensorial reformulation ot the quantum theory 

of a scalar field with selfinteractm. 

1. !h!L£:uJI£1!£n-s l2~£!t_a_ 

Let us consider the set' of all complex-valued functions 

yvt~) in space-time which fulfil the following boundary 

conditions: 
~ 

I) Vf.,x,, t) ';. 0 for /.ZJ+o<> and all values of t, 

II) 

_ 1.. ') f;/ t ,1, t l - ,; f /l.t.1- :£1) lJ/ t ,£~1 t) tl. m...,r. / = ~ 
c,. "it - - j j I ' - - I 1 (1.1) 

for t ~ -oo ' and 

III) 

:1- ~ rr,;; t J + i jvr--t- it'J wr~' -c; ot(J),e' =-" c.. l.J. - ' - - /. I I - (1. 2) 

for t =+ r 00 

The "nucleus" V of the integral operator1) in (1.1) and (1.2) 

is defined as follows:. 
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- . ..., ..., - -

/lr:J; "'r~· f;tl~~?<~;/h'drJJK. (l.J) 

-----:-----.,..------------------------------------·--
l) This operator was introduced b;y Landau and Peierls [J} 

for ~o. The equation (1.1) admits as solutions only waves 

with negative frequencies and the equation (1.2) only waves 
-i-1~/t 

with.positive frequencies. (It is ~nderstood that ~ 

corresponds to £.2.§!1!y,g frequency)'~· 

The set of all functions ~~~) satisfying the above­

mentioned conditions I) - III) will be called the "space fl " .. 
In the space /7 we introduce the: scalar product ( 't -~ ~.) -

__,2- Y:: and the distance '~ of two functions uv by the 1./ I~ 

following formulas: 

(1.4) 

and 

(1.5) 

The equations (1.4) and (1.5) determine the metrics of the 

space n .t. 
• Notice that the metrics is "indefinite" ( 4 can 

even be a complex quantity) but symmetrical. The symmetry is a 

consequence of the conditions I) - III). I~ fact, by the Green 

theorem and I) we get 
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(~ t )-(Y: .'f:):LfU·Z·.(V ~ _ (p ~) d(.1~) ~-+~C1.6ei) 
J L ~) , t!.lj(lf Pt . I:L. Pt . 

. . . t•-o() 
-·--- -

...,. . ( -;. 

Then in virtue of (1.1), (1.2) and from J'(~) = /7 -~) 
the integrals on the right hand side of (1.6a) vanish and we have 

(~/ ~) =- (cJ:.~ ~) (1.6b) 

Since the equation 

(-a-~- ~ ~Jr.r·- o 
' '· 

with the boundary conditions' I) - III) has tiie &nly solution 

f.j/{&;t} s. ~ ·~. the space · fl does not contain isotropic 

functions 2) and hence its metrics is nondegenerate. 

,--------------------------------------------------------
2) Let us remark that isotropic functions are orthogonal (in 

the sense of the equation (1.4) to all functions of the space /7. 

-----------------------------------------------------------
As the metrics is of the·usual type we can take the 

advantage of the standard tensor notation. The fundamental 

metric tensor is 

1r.e~'J = ;ru:-'.e.J =f-a.;3t&J!r<~!-..4 .e(-a~:~e'Jii.t-..r!}. (1. 7) 
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We shall agree to consider the components (1.7) of j as 

.Q.QY~ri§:nt and to emphasize this convention we shall write 

f} ( :z;;J) instead of jf«: •"-') 
1 

in (1. 7). (The bar over 

the "indices" ,..C:, and · vt:' of -~--~~- v~il~~~!llind us that 

this are the 1~~! indices) •. In accorda~ce with 
. ) } we shall consider the "index" (~ of the . ~ S 

as an YE]~!· index and shall write it like ( ~ ) 

are .Q..Q!!1!!¢YQ:~iagi components of the vector f.-Y~ 

this convention 

in (1.4) 

. c ~(~) 
·similar 

notation will be used also for hi~her order tensors in the 

space n . Besides this the summation over a pair of indices 

i.e. the integration as in (1.4) or (1.5) will not 

be depicted explicitly. (Einstein's summation-rule of the 

tensor calculus in the since f7 ). 

With these conventions the equation (1.4) for instance can 

be written in the form 

(1.4) 

I 
The contravariant components jf~ ,t:.) of the metric tensor J 
are determined by the equation 

~ ( ,Cd ~ 1 (,); II~ 'J = j.f ~!:! /) 
- II "r 1/. whe~( ~ ~ } =- tJ 1 t.¥. -~) • By the help of .the tensors 

j (.A:. ,cl) and ~( •::E_!:Jf . .') we can raise and lower, the 

(1.8) 

"indices" in the usual manner. -Thus, {or instance, the 

relations giving ~~~) 

read 
in terms of ~~~) and conversely 
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yr:i; =?f,U/J 'ft0 , 
SVI~) G ,~.~ d.

1
) 't' t2J 

(1.9) 

(1.9 1 )_ 

I 
The .Q.2!ll.!~E:!:ia!!i tensor j (-:f ~ ) is the Green function 

of the Klein-Gordon equation for ~ problem with the boundary 

conditions (1.1), (1.2) and is connected with the Feynman-Dyson 
~ AF '; -causal function 4j f..e.-tJt. by the relation 

- • F 
jf.~J.'J - t Jj (~-,x'; . 

(1.10) 

2. Q~at!QB_~B&_DestructiQn Ope~~£!§ 

Let us define the operators ,? f ~ J and ~ ( ...K- ) by the c:.- c.,..-

commutation rules 

{ l;r!!. J/ l;r!!: U = "-jfd! .<! ') , 

[la,r~.Ji/at~~-].: [1;..~/ f.r!f:.'J] = /). 

From these operators we can. coltr~ct the operators 

!f-!!!1
J = "- {fc~l fc:f} -1r~'J -!t::!.l) 

which fulfil the commutation relations 

[ Ir .y,.'J i fr ff:."J· jf./:!"J ~ r o&.J - jf-!.::: ~ 1:.. c""" ) ' . 
•. 

rrr .t...t.'). ?c..t'' 7 = t;.f./"'"J "-rvt; .:.. af._ ~.,c1) .. t r ..x.
1
) • 

L-!. - ' e. -IJ ' - e.. - r·- c -

·,. 

(2.1) 

(2.2) 
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Finally, using (2.2) we obtain the relations 

[Irvtt;C~; I(.-<'.K.-1!!;} = 1r ~.,c:,'''JR~~''J-1-jf..c_~~'J Ir .L.L
0'J­

-~ r,.e.~'!JZf~~#IJ -;r~~J;Ir~~' 
(2.J) 

which show that I{...t:...t:~ are the operators of infinitesimal 

rotations in t.he space /7 
the group of rotations3). 

, determining a representation of 

J) Golfand in the paper [ 9} constructed the operators of 

infinitesimal rotations in an euclidean space with infinite 

number of dimensions starting from creation and destruction 

operators of the usual type belon.ging to Fermi particles. Our 

operators I (~1) are constructed from the so calle.d causal 
I 

operators belonging to Bose partioes. 
. 6) 

(See below footnote . ). 

This representation is reducible since the operator 

IV-= i tt(.£~ 11'Jic~~ .tr~IIJ = i 1-rc.L II; ~t.7/t) I c.-~- c.- l2-

which is not a multiple of the unit ope.rator4), commutes with 
I 

I(~): 

[rr~1; tV] = o . (2.4) 

4) 2.1he fact that N .is :riot a -multiple of the unit operator 

is clear since N does not commute for instance with the 
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operators ~{~> and "-r~) 
4L--

. . 

L~· fr~>]~ fr~J/ !~· ~r~_>]-: ~~r~} 
L__ __________________________________________________________ _ 

Hence N is a scalar operator which remains unchanged 

under rotations. To find its eigenvalues /Yl/ and to 

construct the eigenvectors ~ satisfying the equation 

~ qr~~'l tr""'> kr~)- Y= ~JV' rf c - ¢ ) (2.5) 

we can start with the vector -f: satisfying the equation 

~ { c.t' ) 1';: ;:: I) . (2.6) 

The existence of such a 1-;' is clear in the "standard" 

representatJon in which the operation of ~ (,.,() on Y 
means simply a multiplication whereas £1~) is given by 

a.- -
the help of a fUI1ctional derivative, namely 

fi: (v() y = --<- tl[.<'.t!/) ~ l "Y 
a. - , . . {.Jt.. ) 

G-

'1-; Then is simply a functional which is independent of 

~(!5.). 
'l'he vector r belongs obviously to the eigenvalue 

n = 0 of the operator N . Further 

N can now be obtained by applying 

on Yo . . 
~(c-!) -= 4 (c.( ) 1: ) 

eigenvectors ~ of 

the operators _,t. (...(' ) c-
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generally5) 

(2.7) 

----·------------------------- -----· ---· 
5) In the paper [a] , in which a formalism similar to ours 

is developed, the space of all ·~-vectors is denoted by the 

symbol J2 • 

-------------------------------- ---------
From (2.1) and (2.6) it follows that the application of the 

operator ~(!f.) on an eigenvector r of the type (2. 7) 

gives 

. 'a_ t ':5. /f{ ..e., . .. ...,-"' ) = - i j M.-t:, ) }'( ..t*' ••• t.£"'- ) -

- -i, jfi£~z.) Yt~, ~ ..... ~.~)- ... 

- ,; ;r !! .. ::~11:) ·rr ~ ... ~-u-., ) . (2.8) 

Using (2. 7) and (2.8) it is easy to show that the vector'!('<, ... a.1i..-) 

is an eigenvector of N belonging to the eigenvalue ~ 

where n = o, 1, 2 ••• • 

Considering the analogy of ~- operators ~ {~) and 

.~{v() with the usual creation and destruction operators of 

B.ose particles we shall call .Q!!L.OEerat~2 also creation and 

destruction operators6). 



- I2 -

--------------- ' ---------------· 
6) Theybelong to the category of the so called ~~al 

operators as introduced for instance by ~ovozhilow [4] • 

See also [5}and [a] • 

----------- ----------------------
Similarly the operator J1! will be called the operator 

of the total number of particles and the vector ~ the 

vacuum vector7). 

7) The problem of the connexion between the vectors ~ 
of the space ..52 and the usual state-vectors of the Hilbert 

space (as used in the customary formulation of the quantum 

field theory) is not at all trivial or simple and will be 

considered and solved in a subsequent paper. 

----- - --------------------

[tr~J i tr~'J] =- !) 

This circumstance will be of importance for our further 

consideration. 

are 

(2.9) 

For the purpose of normalization of the ~-vectors we 

introduce a symmetrical matrix 1) (metric matrix in the 

_52 -space) which in the intera£!!QB-free case has to satisfy 

the following conditions:8) 

i~,c)j) ::: ]) ~ (~) ) 
(2.10) 

~J!!;).D =]) f (~) 
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and 
7 1- (...< ). · are 

a. - the trf!!!.§.E.Q~ of the matrices 

and ~ {~) ). 

r-;;:he ::tenc~:;the mat::z;-::-:e ·:de:le=-=--
1 follows: From (2.1) we obtain the relations 

~ 

l?j~)· • -?~~ 1;· J = ,-iqt~') etc • . ._,-t..- I c. _ _. tf .I 
. . ' 

which are of the same form as (2.1). 

Therefore a similarity transformation 

-~~~) =- ~ tr~ J.b-~ 
a. - c. -

/T I ;"\ ·~ I j)--1 tz (~) = v ~~~~ 

must exist which is equivalent to (2.10). 

~-----=----------------------· -·-------------
The vacuum vector K can now be normalized by the 

equa_tion 

. '(2.11) 

The normalization of other Y-vectors is given already by 

(2.7) and (2.11). Thus~ for instance, it· holds 

(2.12) 

T 
~~t-(;]) Ytvt.' J : ---i J r~~';) 
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Besides (2.12), it is easy to show•that the following orthogona­

lity relations hold, 

T . 
"1/' 1'\ ~ I I _ . ) fi ., - .. -- ~ - --£{~ ·~· ~4l,)'V Ll"':t ---~~ ~- .. ::::. I I1Jt., I /J;V • (2.1~) . 

, <- -. ·,. ~ 

. J. ~he_!lre..en~n2m 

In thi~ paragraph we introduce the Green functions corres­

ponding to a scalar field which.is in-a 11quadratic"9) interaction 

with itself. Even_ though such:a fieldt,apparent'ly, does.not 

exist in nature, its inve~igation: ha~- at least some heuristic 

value.~O) We shall show below that the Gre~n functions 

transform as t.ensors .under the rotati·o~s in the space n 
Therefore we shall call the'hl Green tensors. --

• 

. .:....,;........;;....;.~......;;_;;,...;..,..,._...___ . . f(f7 
·- --------·------ . -----

9) Under ,the "quadratic" self-interaction we understand an 

interaction in virtue of which in the simplest elementary act 

the particles A corresponding to the field are .created or 

annihilated according to the scheme 

. . .. A'" -~ A.' tl/.11 , 
In this sense a "linear":interaction would mean that the simplest 

process is A ;!3 

-----~------------- . --------------------·-~-------

\ . 

I 
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10) 
Hurst and Thirring e.g. investigated this case in 

connection with the question of the convergence of the 

expansion series in the perturbation theory, [6,7]. 

-----------------..----------------------• 

The interac.tion is introduced by substituting for the . 

conditions (2.10) the more general conditions 

[-t} .q + ()(' 1 M . .c '.c 11)?';~~ t"g~ J .:j "' Ll ~(5_ ) J 

[ (r:! I'-o(lf..: .7.£''1 ,t-"&:5 1-'i:i_ljtl = L1 tr~ J 
(J.l) 

where ktl() = ~ (~) ~ ~ C~) ./ 0( is a coupling constant, 

if:! .x'cx. 11
) = jf~ 11~ ')'( tA:

111 ~/,.,<II) is some form-

factor/ fl,.( ,.(1,c 11
) being a symmetrical ten~or in ·all 

its indices Z ~1 cZ1,. ll) and Ll. is again a; 
I .J 

symmetrical matrix, the explicite form of which will be 

determined below. From (J.l) we obtain 

(J.2) 

The Green tensors are defined by the for~ula12 ) 

C{..:. '·· .x"") = -f Y.~ 1-r:!:J.) ... ~f~J .f: (J.J) 

where s() = y ~ y: 
" " 
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·---------·-------------------------
11) I \ . I r · II 

In the local theory f(.x.vt.x 1')= l)(t-<-v<..) rJ(t-t-vt J 
_______________ , ______ , 

-----------------·-------
12) . " 

In the interaction-free case ( «'= o, L1 =./.../ ) we 

have in virtue (2.11), (2.6), (2.10)'and (2.12) 

fc) ~ r ·'\Vl 1 
,t,{; (~J = LfcJt)J)Lf,rc 1

) ==- jfvC.vr:.) 

which has been interpreted as the metric tensor in the 

/7 -space. If we should introduce the ~ase of vectors ·)( as 

follows . . . 1 x::-Y. 
·0 I~ . 0 ) . r~,. . 

,., . ~ AI~) =-·~(.X) . - l'r - () 
D . . ) 

.. .. . . . . . . . . . . 

X-l.c,- .. ~,....)=If: t~J ... -t~} '?: 
and should define the scalar products of these vectors by 

means of the matrix Ll [i.e. as x~j ... ...C:-k..)LlX,r..t: ... ....c.~)] 
we could look also upon the whole set of the Green functions 

(J.J) as components of the metric tensor insome other space. 

This point of view would lead to another "geomet.rical model" 

of the quantum field theory under consideration. However, we 

do not intend to develop it further in this paper. 

------- -----------------· ·------
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Now we c~n derive an equation for the generating functional 

~{~f~J) of the Green· tensors (J.J). Using (2.1), (J.l) and 
/J / .(2.6) we can perform C:::r(,c. ...(.1 .. ... ,...<l"'v) · as follows 

,._i?~~J G(.t..: ... ..t..,)- "';tL.:t.._J Gt~ '-'
3 

: •• ~)- ••• -

. • / I ./ ) P ) . ./ I h · IIi J /' /1 HI ) -f.,,,~~~ t:r( c.!, ... &.o(~_, - 0( /t!! v( ',;(; / o-( J! ~ .. ~ ••• ,(;If... • 

Multiplying this equation by ~(~~1} we get 

Note separately the special cases 

which oan also be deduoed in similar way like (J.4). 

OOueAglleimwl\ HIICTwrp 

JU:-<=pWU HCCJJe,ll,DBaHJJ!t 

6HE.JIHOTEKA 

(J.5) 
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J?urther multiplying (J.4) by the product Jr:L.,) ... Jt..e.A-v) 
... / 

then dividing by ~/ and summing up over /'J"V . from 

n=2 to /11/ =- od , . we obtain after some rearrangement on the 

right hand side the equation 
00 . 

L-1iJ 7r:iX~ &r""'~., -~-~;f.~.J Jr£;1 -·· Jr,r~ J +-
""".::.,2... 

,..e2 ,( . ./ 11 /'"» I II · ) T- T-
I- « L ;:n:f J' I t.t ~ d ') 0 ( c.e .,<, K't .. : t£14-- J.( ~1 / ••• J ( .x~ ) =-

""--=<-
00 . 

:= - i, J( w(.-) 2.. 17 ~( te1 ... cA!.,u. ) J( ~) 
4=1 • 

h.-t4V ) 

To this equation we add the equation (J.5) and the equation 

(J.6) multiplied by Jfei;} and obtain 

00 

?t.c-:i'J /Cr!!:1J + f ft ~t""-'..r:, ··· ..<:....) Ji<{.J · · · JtZ J] + 
0() . 

1- rK ry(.K ,.(,' x'' l /(;r..L t.l!./1) + l_ t@ ~~~h.t; ···~~.J .Tt~; ... 7t~J 7-
I L 1.:. ~=.f . '_/ . 

. . o.l 

=- ~ Jr~f .f-1- Z.._ 1; Gr_,r1 ... ~M..J Jr,ZJ ... Jr.A:~J 7 
/lt.,.:._.f 0 

This last equation can be.written down in the form 

' ,. '-..-, 
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where 

(J.a) 

The equation (J.7), considered as an equation determining the 

functional ~ [vT_l , _must be completed by the condition 

2LD]::1 
Now let us return to the equations· (J.l) and look for Ll 

satisfying these equations. Assume Ll .:::: f)S = S r D . where 

D is the matrix satisfying (2.10). Then S has to fulfil 

the equations 

{ /er1:5. Ji S} = t:Y?ft-ta':7) ~~-~ t-0:_'';. S / 

[J;,r~JiS] =-~?&. ~~~~-; ~ k~) S . 

Develop ~ in a series according to powers of ~ : 

Then from (3.9) we get a recurrent system of equations 

[lcr-"' ~· tS '"'~ ==- ~rr:!. ..:' ...:.n_; -t-r,5) ~t:!!j ,JD~--.. : 

[~r>!. J; tfr"'] = -?f~.x'.x'J -1-r::!5 h:1."J J'f'U-<) 

which can be satisfied by putting 
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~ . 

$ (M.) :::: ~,: ~) l ~ 
t?t.-, 

where 

l:: f 716( .A:.
1
tA: ''J J.0:_; ?r@ trL~J 

Hence the matrix S can. be expressed· in the·.-form 

rr- ,i()(L 
}-) - ...e. (J.lO)' 

4. ~~~rma:t,!.QB.J!!:2l!~tlllLof the G~!Lf:B!!ill£B2 

We shall investigate the transformation. properties of the 

Green functions firs.t of all in case of free field ( P( .= 0 ) • 

Under th.e rotations in the fl -space the operators ~IrK ) 

transform as contravariant vectors, i.e. 

/ 

#r !;:!(; = c r :5:.1 cZJ J-r -:r J (4.1) 

where 

C.(~ ,7 /) (!. ( ~ II...[, 1!1) Jf. cAt. I~ Ill) = ?f. ,c ~ //) (4.2) 

The operators ~(_!) and fr~) transform in the same 
~ . ' I 

manner as .Q"{-.6.) • ·Since { (::!f:J and ~ (:!,_) fulfil 

(in virtue of (4.2)' the same commutation relations as· k(.t) 
'I a, -

and _,t.. ( .,r } , there exists a matrix R for which 
c. -

I . 

.J.r~'J = 1(-1,/-r~/; I< = c r~ 1 ,7; tr~J - ........ .__ - (4.J) 
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Clearly /<.. in a matrix representation of the rotation (4.1). 

For infinitesimal transformations (4.1) we have13 ) 

C(•!J/.:ZJ = 7'/6/ :XJ t-- d .x! .X> 

and f<. is given by 

. -

--------------------------------
lJ) Let us remark that the group of rotations (4.1) contains 

as a 2UbB£~E also the group of inhomogeneous Lorentz transfer~ 

mations. Indeed, under an infinitesimal transformation 

or 

a Lorentz scalar V /':5:_) transforms as follows 

~ ·.::: ,J. ·~· 

. . ------------------------------------
Inserting for 

obtain the condition 

and C(~1.7) into (4.3) we 

(4.4) 
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which is consistent with (2.2). From (2.10) we have 

rT ' J)·· D.I . ' - (t-tve.. ) '·= - (,c ,X. ) 
(4.5) 

so.that 

_ . R.r!J. = D ~-~ 
(4.6) 

Now we oan investigate the transformations of the Green­
J"fDJ 

functions l.::r (.:.i1 .... ~M.;.) (corresponding to f!~ 

particles) under the substitution 

Y;' ~. . / . 

Y! ~ ~·~ " \ .· . . . . ~ . 

(4.7) 

. or~) First of all, it follows from (4.6) that the quantity tJ 0 
is scalar sine~ due to (4.6) 

Jr";l_ tlJ/11)) ~~::::. ~r.O?: = J:"'J =I 
() L () . L(J L t) p . D . 

Therefore, using (4.6), (4.J) and (4.1) we can write 

I . . . . G (fJ) I I. ;.·. 1'}('/7.: . I 
(~ ... ~ )a 7::;: ~L .. · • · .. ./) 1-ta:J; . .... .1-rc.K/}/?,/1 = 

. . "k s , ·. , . . 3 . ""- . L:". 
·. ,' t) •.. . . . . . . ~ 

_ .d_ r\,J/IT T· /·. ,· .. / I D'lt/1. _ 
- ~~J L~ ~ /)'fr(t.t:.") ·• · ~M-..J 1\ L. -

I - I - ) ~ (11} . · 
=- c r~~ ~1J .. h cr~'!l- ·~"" e:r r,.,e1 ••. .A~J (4.8) . 
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{tJ) 
From this we see that the Green functions C.r "'t ..• ....c::""') 

transform !!U~~!! under rotat:lms !!hich entit~d us to gm 
. . ~. 

!h~BLi~-~£LGreen ~nsor~. ·Of course, from (2.6) we have 

(4.~ 

so that also 

i.e. the Green tensors in case of oC = 0 are .reproduced by.,(4.B). 
. . - . ' . . . .. ~ -

Indeed, in this case, they can be expressed in terms of the metric 

tensor f( '::!: .. !:~f) . 

Before we proceed to investigate the transformation ... 

properties of the Green function in case of c( ,l o, we derive 

some relations which will be useful later. 

rewrite the equations (J.l) in the fo:rm 

tl. rr~) L\ = Ll q_ (...f) c.- . 4,.-

t:l:r ~ tJ ' "' Ll t'lJ -5:) . 

where 

First of all~ we 
·:. t<;' 

q,c r ':!:.) = fr ':!!:. ) + 1 ~ 7 (_ ,c .A::,t ~ ~) ,?r ~ k !!:.."~ . 
•'. " -. ., 

~(.<:)= ~f~) -}O(f(~ ve'vr.')-kdl"-t!:6~. J 
··c4.11) 

It is easy to show that t:L ( 6.) and 
. G . ~ f wr;} fulfil 

the same commutation rules as ~(~) and ~ (~) .• · 
. 4. . . .. 

Therefore there exists a similarity transformation 
. ·, .. ' 
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,~/,..tJ = u-"~r~) lT 

qe (~) ::. u-t 4 (~) u· 
Define the operators 

~ 

(4.12) 

Jr~~~ ~..,;ftc (~J~f:!!;1) -~ r:!J t:t,._r~!) = lf
1
Tf.,,.)!f. (4,13) 

. From ( 4.10) we have 

I io4:.~'J 11 =- LJ I (--r:,..,.'} 
and 

£ L1 = Ll r:J(-4 
(4.14) 

if 

.Y<- =£+1/-t.e.cL'Jer~'J = lr
1
1{ lJ . 

From ( 4.11) ~e get Cl.(tA:.) ::. ~ (,x) -1- t:l. (~) =- 1-t..t) - c:z..- (!- - . 

and then from (4.12) 

[ 1-r~~· U] = P (4.15) 

and therefore from (4.4) 

[}r.y,'J; 1-t-!:.'5] = y.e.'..tt~:lt.r,; -jf-t.4:.'; k~J (4.16) 
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so that also 

(4.17) 
Now we can already prove that the Green functions (J.J) 

transform as tensors under the substitution . r. --) 1; ~ == &, 'r. 
Again from (4.14) we can see that S~ is invariant, and.· 

from (4.14), (4.17) we find at once that 

Notice that in case of 0( # 0 the Green tensors are ~ repro­

duced by (4.18) since ·&?; :/: J:' 
Inserting f·rom (4.12)" into (4o10) and using (2.10) we find 

(4.19) 

' 
Therefore the Green tensors can be written also in the form 

(4.20) 

where 

(4.21) 

Explicite expression for lT .can be obtained from the 

equations (4.11) and (4.12) by the same method whioh was used.at 

the end of § J. We find that 

_,;otl/J(;~'~'' J 1-r&;l-r~ #&.'iJ 
lJ:::_.L 6 . . .. (4.22) 
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Comparing (4.22) with (3.10) we see that 

. s ::: u.t (4.23) 

and therefore also L1 ~.DS = .DV 
2 

: This is consistent 

with (4.19) since from (4.22) and from ~~).D c]) ~(~) we 
r: :' 

have lf .D = Z>ll · 
Notice finally that under the rotations 

according to · 

~ transforms 

¢1=7<¢. (4.24) 

. ~ 

5. :§9.~ ti.Q!L~1-~!L ~n.Q~~.QB.@..J:~§l:'!Y~~~~§_f.Q~.-0~_r1. 

For determining the Green tensors from the general for-

mula (4.20) it is necessar,y to know the vector ~ as given 

by (4.21). Evaluating of lf~ meets with difficulties 

connected with the disentanglement of the operator lf. ,. 
Usually such an operator is·exp~nded in powers of oc and 

individual terms are rearrang~d into the normal products 

of creation and destruction operators. This method is con-

venient if the coupling parameter ex is small enough. If 

o< is large, it is necessary to look for other methods. 

In the following we shall derive an equation, by the 

help of which, as we hope, it will be possible to evaluate 

¢ without using expansions in powers of o< • For this 

purpose we introduce the functional 

. -irt~~~~)J.f!!.,)I-~JJP~J ~ 
\ ...e. jb 

(5.1) 
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where rt~> are functions o"f the space fl . Then it 

holds 

(5.2) 

where ¢ 
Proof: 

is given by the formula (4.21). ~ J 
0( q(.,t.) ...;..-

Let us develop the operator ...e. - Of"/cA:.) 

and putting jf5 J!: tJ we get (5.2). 

The functional E/ct
1 

)Vl as defined by (5.1) repre-

sents the solution of the e~uation 

dE ~ rs 
= ;fr{...!.) 

do( - r r t!!, 

This condition can be put into another form if we apply 

(5.3) 

(5.4) 

the operator ~(!::!-) • Using (2.1) and (2.6) we obtain 

(5.5) 
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This last equation can be solved directly in the "standard" 

representation .( {~ l = - '-JI.X: .x: 
1
) f tf {r ~1) 

The solution reads14) 

r: / -fA-1t~~J Br~ :i'J fr!:!~ ff~'JJ:: 
1....1 I() lP lr ) :: . .t., 

l'ttl e. ' 
~ 

where ' 
.. "' - -Br!!.~'J = 3f(!!- ...c"~.,J yr~-~) 

A-1-
and ( ..t,II~J. is de:Bned by the equation 

. A-1 (c.!.,. d:-) A ( ~1&K ) a. J f ,c7i vt I) 

with 

A (~I) = - ~ ,i ( ~ 'J -1 ;l ':'!::!:' ~ ) "r { ..;;_ ) 

E:his r~;~ is-:;:;:--;. vo:U-:::=--
The equation (5.J) reminds of tpe Dirac equation. The 

analogy is useful for investigating the properties of the 

equation (5.J). For instance, quite similarly as in ca3e of 

the Dirao eqvation, one can prove the covariance of the 

equation (5.J) under the rotations in the space 17 
is easily found that under the rotation 

. Yf~1J •Cf!:!/ ,7j yt~) ,_.. 
the functional C, transforms in the same way as f> 
i.e. I 

~ ~ /) ,_., 
t..:t fet.;Yl = r:.. c /Pf, y) 

Thus, to show the covar.iance of (5.J), we multiply this 

• It 

' 

equation by f<. . and_ obtain I 

d£
1 l>·~- ~--~ fE1 ~ D / D-1 f~'l~'l JS -

-- = 1\ 1r{_t.k) 1\ - 1\ tr/c)() 1\ . -
dr)( - . frt!Z) - rrr~J rr'r!!.'J 

- ---~ --- ·- -----



Let us remark that the initial condition. (5.5) is not 

covariant under the whole group of rotations sinoe the tensor 

is, generally, not reproduced by all transforma-

tions of. the group. It is, of course, in any case reproduced 

by the subgroup of the inhomogeneous Lorentz transformations 

but one can expect that there exist. distinguished formfactors 

which, in addition, are reproduced also by more general 

transformations. 

In· complete analogy with the Dirac equation we can derive 

also an equation of the type of continuity equation. Define ·r . 
(fJ ::. ~ lJ ~ 
) 1-1 L..J ) 

r-1 T. ~ ,..., 
;t~):::.- £; j) ,(]-{~) ~ 

Then it holds 

~+ do( 
(} 

Besides the transposed equation of (5.J), i.e. 
dE!.,. '"r-rr r 

(5.6) 

== b c, trvt > 
d,.o( Ty (':£ )c - (.5. 7) 

also the relation Dkt";!) = d.-1(~)./) was used. 
1le.w 

Generalizing (5.6) it is possible to obtain a~stem of 

coupled equations for the Green tensors. For the sake of 

simplicity we shall write out these equations for the modi­

fied Green tensors 



- 30-

m ~r . ~ 
~(~ .•. .X.~) =C., j) &~.,) ... "~) Lj (5.8) 

Taking the o< -deDvative and using (5.3) and (5.7) we obtain 

d fjr t.tt ~ .. ~~) 
do< 

- r flr.x. .L.f -~· ·~-k.J 
f"Y"t~) 

(5.9) 

The system (5.9) must be supplemented by the initial condi­

tions (obtained-by putting 0{=0 in (5.8) and using (5.4)): 

q(oJ · . · ~J)r - ~ 1r~rA1.x.~J,tf3::Jk~'; ~~t-.r:.') · . 7! 
{ c..t: ~· ) = L .L . / ~ . 

1 ... ""' . tl -11-lc.~i!) ./._e ) • 
{iJ) I~ ••• ~ 0 

These tensors ~ satisfy the recurrent system of equations 

ljt~-:i ~ '~-};! "".r"·"-''J rr~11J] ~ 1:, '.e:, ... .£..._) = 
• - - I•J f/

(11) . (5.10) 

, == -~ J r.x. ~., > r t.t2 ••• c.t:~J - ··· - ~ j r~ ~ ) f! ttJC.., ... ..cAt._.,> J 

f}t.K-:i') .ff f{c.f.Je,~"ii).'f'l~"Jlf!/(()i~ :::. /) (5.11) 

The equations (5.9) - (5.11) are equivalent to the equations 

(5.J) and (5.5) and mean, in fact, the record of these equa­

tions in a certain representation of the matrices .t-{f!.) · 

Notice that the equations (5.10) are in some respect simpler 

than (J.4). Of course, in addition to (5.10) we have now 

also the equations (5.9). 

Let us make finally a look on the problem o'f solving the 

equation (5.J). One can exploit also in this instance the 

analogy with the Dirac equation. Thus e.g. one can use 

the method of the development of~~~~~) into a superposi­

tion of "monochromatic plane waves" which makes it possible 

avoid the expansions in powers of o( • In the pre~ent paper, 

however, we shall not discuss this method but instead we 

shall be satisfied by shortly showing how one can deal with 
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,....., 
the problem of determining ~ {o(, YJ as an "initial value 

problem·," i.e. how one can express £ (K
1 
/) explicitly in ,...... 

· terms of C, ( 0 1 SV) · 

For this purpose we define the functional F(o<1 y-') by 

the equation (5.J) with the initial condition 

Ft~ 'f'J - J'fyJ 
where J/p; is the Dirac delta-functional in 

(5.12) 
the space n. 

In analogy with the formula (5.1)- the functional· Fro(, ~J . oan 

The first factor oan be expressed by the help of normal 

products of creation and destruction operators in the form 

i« fi.'ZJ .1-r_ ~ J f. <><) rd; I' riii i'(;"t; vo ;,;~ /"fXJ -tr -:V . 
,e. == ,.t.. . c/f ..e. ( 5 .lJ ) 

To prove this equation (5.1J) we first of all remark that 

the .].eft. hand side, whioh will be denoted by /1{0() ·, sa tis-

fies the equation 

d.o/d o( - ,£, rr ~ J t-r ~J II 
I 

with the initial condition 1/(1) =--1 • Taking the 0( -deriva-

tive of the right hand side of (5.1J), which will be denoted by 
"" fl (Of) , we obtain 
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Since it holds ,.._, 

{{r~) i liJ= 0( :J r--t~') ~f~/) II, 
we find that also ,..., ~ 

d~tJt_o( - 4-jof~) tr:; f! . -
·Besides this we have also II (0} ::::.4 • Thus 1/ # II and 

the eq~ation (5.1J) ii proved. 

By the hefp of (5.13) the expression f~r ;:(~1 ~) can 

be cast in the form 

r · J/' 0(6f.Jt> { . j j.ot2,'1f':!::f1J/Jf.FJ~(..~t'Jr~~t'.;-Jyt&.,) 
r(ot wJ =vr ...e. Jl'f&X> ..e.. r · · d,/~) . 

I I ' . _ lJJi' 

If, in addition, we perform the substitution 

f't.:i) = Xt~)- f._ ~t-u/) lf/l'!!f'JJ 

we obtain finally. _ . r ~ . 'h , , . c J/'Oft(.rJ . -~Jf.X.X)~{!:!f:.J'f/f!:!:.'} Fr« w) .:: t/Y ./!.. - &'f't.X, . .,e_ _ 
II' (5.14) 

where the constant { is given by 

C. I ~,_cttJES... 'J ). r:i'J 'A r:ztJ x 
= ..e.~- (f . . . d.(:;r) • 

. ~ 

By the help of the functional ~(~1 ~) the solu~ion 
. ,..., 

of the equation (5.3) can now be expressed in terms of~(~~) 

by the formula 

Ercsy-1 =/Fro(, Y'-yJEr~yJ d. y (5.15) 
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Cortclud!gg_remarks 

The considerations of the last paragraph show that the 

quantized scalar field with selfinteraction can'be characterized 
: '-" . 

by the "wave functional" L:., (o(
1 
'j/) from which all the Green 

tensors can be determined. The changement of this functional 

with the coupling.parameter c( is determined by the equation 

(5.J). This equation is so general that it does not depend of 

the character of the interaction' (i.e. of the order of the interac­

tion and whether local or nonlocal). One can therefore expect 

that this equation _will remain valid in the Quantum field theory 
·: ~ ~ 

of any future form. The character of the interaction.is speci­

fied only by the "initial condition" (5.5). 

The purpose of this paper was not so much to provide 

effective methods for solving the equation (5.J) with the initial 

condition (5.5). The aim was rather to show that the fundamental 

equations of the quantum theory of a field can be cast in the 

form of tensor equations in the function space /7 and to 

exhibit examples of the tensor algebra as well as tensor analysis 

in this space. 

The author is grateful to Prof. v. Votruba for his interest 

in this work and for many valuable suggestions which contributed 
• 

to improve the text of this paper. 
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