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Abstract

Dispersion relations i’or the physical amplitudes in the center of mass system have bsen '
' derived following a method suggested by N.N. Bogolubov for investigating the processes of brems-

strahlung ‘of eleotrons on a nuoleon and pair produotion by f —quanta on a nuoleon in the

" lowest approximation in ne®,




. . years one gives much attention to the investigation of the nucleon structure

Introduction

At present one of the most effective methods of consideration of strong interactions is

that of dispersion relations,

In its application to the electromagnetic processes such asrcbmpton effeot on nucleons,

~ bremsstrahlung or pair production on nucleons et al this method allows under definite assum-
ptions to obtain‘information about nuéleon structure. It should be noted that during the last

x/ since this pro-

blem is not -only important by itself but also connected closely with the limit of applicability

of quantum electrodynamics at small distanoes.

Dispersion relations (D.R.) for the processeé of bféméstrahlung,of electrons on nucleons
and eleotron-proton pair production by g~ - quanta on nucleons allow to consider théofeticallj

strictly the problem of the influence of nucleon struoture oh the above piocesses. From this

« point of view the investigation of dispersion relation for the virtual Compton effect inolu—
ding both above mentioned processes is of quite definite interest, S *

\ s . :

In this paper one_obtains dispersion relation for the virtual Compton effect in the 1oﬁeét

€ - approximation by Bogolubov's method 1 .

The proof of dispersion relations for the processes of bremsstrahlung and pair production

(2] . Hence, in the present paper the attention is fixed on obtaining - dis -

has been made in
persion relation, available for practical applicationms.

Sinoe the method of the deduction of dispersion relation has been expiunded in 1- 3, in

thé'given paper many intermediste steps in deduoing dispersion relation are omitted. In
Seotions 2,3 dispersion relation are deduced in the most general form. One gives also a mi-

nimum number of calculations needed for understanding the deduction of dispersion relation,

Starting from Section 4 our consideration is only referred to the bremsstrahlung process

since there 1s no difference of principle in the dispersion relation derivation for the processes

etV —> Rty + ¥ and  yo¥—eTree N
The investigation of the unobservable region ( Seo. 4 ) allows to conclude that in brems -
strahlung process there 1s a finite interval of,;eooil‘momenta for which the»unobservable region
is not present. In Section 5 one caloulates an one - gucleon term and shows that the cross
section of the procesees calculated in one-nucleon approximation colnoides with that of the
process calculated in the perturbation theory, however, with the difference that the D.R. me- -

" thod allows to introduce in a strict manner Hofstadter form factors into the nucleon vertices

g

%/ One can find a detailed bibliographical information on nuoleon siructure in the review
% Nucleon structure " by D.I.Blokhintsev, V.S.Barashenkov and B.M.Barbashov, UFN ( in
print).
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of the Feynman graphs are connected with thé virtual photon line. This is one of the grave
advantages of the dispersion relation method in comﬁarison with perturbation fheory. In Sec~—
tions 6 — 8 one 5ives the relativistioally invariant structure of the virtual Compton cffect
and obtains disperéidn relations for structure coefficlents in the centre — of - mass system.
This 1s an ultimate end of our paper., These relations may be used further, at least for esti-
Vmatibn of the contribution of the qingle;—ﬁr- meson state to the processes under consideration

analogously as 1t has been made for photoproduction of T - mesons 4’5.

In‘the pza.})e::"6 one has been calculated the processes of bremsstrahlung and pair production
in the lowest approximation.of perturbation theory taking intb account only the Bethe-Heitler
graphs with the Hofstadter form factors. If 1s obviously that for the incident particle ener-
gies up to ~s 150 Mev when the contribution f:om the meson shell of a nucleon and electromag-
netic oorrections of theylowest orde: are not important yet, the results of the paper 6 can
be used fbr‘tegting quantum elcctrodynamiqs at smgll distances. The test of quantum electro-
dynamics’impligs,thé test of the locality of 1ntéfaction of the electrpmagnétic field with the
currént of‘the chafged particle. Analogous results have been given in the paper 7 . However -,
with the energy increase up to 500-600 Mev thekcontribution from the meson shell of nucleon
must become more appreciable and the single - % - meson approximation can change essential-
‘ ly the oross seotlion of the above mentloned processes.Therefore, 1f we take into account the
single f’ — meson state then we can extend considerably the‘energy limits of testing quantum
electrodynamics at émall distances to the photon and electron energies ~ 500-600 Mev. In
this case for example, in the bremsstrahlung process for ~~ 550 Mev incident electron and
emitted photon emnergy ~250 Mev the nucleon recoil reachgs -6OOIQ?L, this allows to test

quantum ‘electrodynamics at the distances up t01233- 10"'14 cm, )

2. Matrix element of the bremsstrahlung of an electron on nucleon

For the process of brgmsstrahlung of electron on nucleon e+ Nre+Nr ) the matrix element

of the S - matrix has the following form:

FISlir=<ps; 9,07k V519,606 > = (25) %ps |4 661 (K) SETG, &) R s, > oD

‘ where RS (F%,VS. ) is the 4-momentum and spin of the final ( initial ) state of a
nuoleon Qo, 60(q,0") _ 1is the 4-momentum and spin of the initial ( final ) stati of an
electroi;, # s V are the 4-momentum and the photon polarization; g_(q":,av) and éf((?:o,c‘;)
are the operators df creation and annihilation of an electron’in states ( Ei , 67) and
( EZO , 60 ) respectively; c)'ﬁ[:;l) . 1s the operator of the production of pho-

34 . .
ton with momentum & and polarization Y ; /P,5,>=(2%) E*(P.,, S/ 92 1s the amplitude
. T o — h .
of the initial state of nuoleon, C“'(P;,Sa )} - 1s the operator of the produotion of a nuoleon
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in-the state with momentum P and spin S, , &b is the amplitudemof the vacuum state.

‘ In the lowest approximatioﬂ in electric cha.rger e the matrix element (2,1) contains
two classes of diagrams (la.) and (lb)

In the given paper we shall only e.camine the class of diagrams (1b) ). Ca.rrying the opera-
tors qu,,U and a (K,V) to the right from S s, and g (90,6;) to the .
left from S and using the generalized Wick theorem for the chronological products 3

" we write the expression (2..1) in the form:

. m("g"'e -, m - ‘(9— q}X*lk J\ZS
(f/ Sll)-—em L({Q,tf‘)f U{%'f/t/(; dz dx d:@/x-z)(PS IW e'5°> (2.2)

‘where K, ’ c‘?, and Ch are the fourth components of the momenta K s 9o and ¢ _ \
accordingly, 9”’p is the metric tensor, u(i,f) 1s spinor, ‘describing an electron in the
state (6—2:, e) f" is the polarization vector of the free photon and RCT-Z)  is

the photon propagator, Ap (z) 1s the ¢ component of the qiectromagnetic field opera-
tor, the spinors are normalized so that a¢q,s)u (EL. 6)=1 ., Performing the integratinp |
-in (2.2) over the A function argument we get the final expression for the matrix element I

of 'interest

’ 2 (2.3)
. "9 a(Ge)rTul, ), [pi%E ks s
Slir-e=L ' = [¢ e (PS [ —
lo=er= eS| | 2.5 -
where
X=9.-9
3. Dispersion relations fg_r__they viirtugl Comp‘Qﬁ effecj:__a;xgp_];:l.tdde N

Before to proceed to the direct derivation of dispersion relations let us introduce

several notations and obtain some useful relations.

Let us insert the electromagnetic current operators

&S ..
/(2) J'J,(z) S
ds
J "”"M w7 S
J-( - (JP)

x) The class of diagrams (la) has been oonsidered in the paper oi’ I.S.Zlatev and P.S.Isaev,
JETP, 35, 309 (1958) Nuovo Cimento ( in print )

(3.1)




- and_the notations

S i) < epr] LS /
ne (KR = B e Teay S RS (3.2)
dj nv E
¢ﬂ? (z2)=(pe| 757 R0y (3.3)
7, /32’) (Pd‘/ 2 [z)/p &)
”( f/ {1} ey (3.4)
et , ady ,
( where % (R2)=0for x4 2 s F (%) 2)=0. for g% z ),
| 5‘7;,}=7l"</°»6"/(/'"rz,’},j"1:<)/2,6,“) ‘ (3.5)
? p= i <P6‘b [2) ] fz)/p 6o > e ©.6)
AFrom (3.1) - (3. 6) it follows _
7—': Tu'{_ '}_-&- .Tadv_ F° (3.7)
ret . _adv
f‘ -F . T 'f' .8
Finally let us ‘introduce fourier tra.nsform‘ for the‘ function F(xJ):
47- (k)= /dx.- e""" Fow (3.9)

Using now the property of ste.‘bility of one-nucleon ste.te S [PS >= IPS > and that translational

invariance and 1ntegre.t1ng (2.3) over =¢ z' we get

et g 25) ¢ e
<fIslir '“,E—rr S weprap)T,, (£229)

(3.10)
where £ e.nd‘ £., v are the fourth components of the 4—momente. ,D and f,
acoordingly, <c u (CL )y U(‘Z 6”) 1s the virtue.l photon "ip‘olarize.tion"
Tae (52 )= fef g
(3.10a)
Further we shall work with the amplitudé - |
T () 06" T (222

For the purpose of deduging'dispara;on relations it 1s important to note that

: 7€ ’(-%‘i']s T"' /-f%f/ . . (3.11)
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in the region where the law of conservation of energy holds true, and for the positive values.

of energy, l.e. when % >O

Az*dﬁ
2

By analogous means for <0 the relation

7_, ( A/-"‘" ,-,aalr[ /(;g’ .

- | (3.12)

.takes place. In order to pick out explioitly the independent .variables of energy and momentum
it 1s convenlent to pass on to the Breit system ' £T+;5;0 ' . Let us introduce into this
system'of‘coordinates a unit veotoréi=]f/7fr/ orthogonal to ﬁ?: We get such relations:

’7’: al{ +(f—J_}é’

F-aA-(1+5)B - (3.13)
/\/o = X, -
X=VZr- (1+8)%F* = w2 -(1-5)*B*
where
. ,
. a mr _ 2.- _o,_ > .
G5, —ma=-% .

Now the relation (3.)) takes the form :

z/xox FXW -1~ va"* fﬁOY) ¢ :
o) fand ™I B,

One can see from (3.14) that 7”((?Z;EY) is only determined on the two segments of the

real axis:

— oo<k,<—;/(—1’—7)‘_f;'? (1-8)|P |k, ¢+ o0

The ambiguity in the exponential faotor 1s eliminated by lntroduoing symmetrical and

antisymmetrical combinations: -
— Ko, d Ko~
S, T (K@) T, @) T Ke,m G )

2 .
(4.,a) 7"(k~ q) (3.15)
) bed T”oa - o~ Q
S T,,a)- : :
(01 ) Z/i
As rega&ds the questions of the analytical continuation of 7_'c into the upper and lower

half-planes of the complex variabl £, and determination of its analyticity reglon they have
[2]

been considered in details 1n the paper

Followlng now the way glven 1n the paper[7]and supposing, that the virtual Compton -

effect amplitude behaves_a% the infinity . ”'75‘ [s] we obtailn dispersicn
- .
relation in the following form:

F 7, . _’ r2) oy N
Dlt)= - Jl((o)d//,_f_/ (—/()a’/( L AAG- 8B A [ jE-oF) | (.16)
AN a7 Ek—-/.(o . » EP,*A/O

l




where

' rel ady ‘ ";t ct olv
yo (-4 . () e L4
Dk, )= ST ¢ 1£ ST (4/); ﬂ(«.);ST %) :‘7’ (4/);

4" (4T85 )] 2L, é?”SBEs;//ﬁ)/-/la‘.xﬁp<-/26-47,3,}§ WlE, &>
(3.17)
f”/)a:fﬁ)-’{m) ,';i &flge 52<,o sy /01/,1a+.;;o><,{a+fp//l w0 |E 6 >

2

Fer the process of pfo&uction of pairs by photon on proton dispersion relations are obtained

) H—g+qe and mp-sel- F*

from (2.4) by simple substitution K — >

4. Investigation of the unobservable region
When deduoing dispersion relations (3.16) we examined the difference
- 1 d + - ’
ST-8ST - sT*™. §ST-ST

in the region of the real variables . 4 + Then, one made an assumpticn that one considered onl
ly 'Stroﬁg interactions. The weak interactions were negleoted and the electromagnetic interacti-

tions considered in the lowest € approximation.

. -+ ~ :
Expanding now ST - and ST in a oomplete system of functions and integrating
over three-dimensional momenta of intermediate states, we get:

ST ™ 0.a)- ST 21 o5 o5 o] | g
(Alo,a)"S (I.,Q}:l(ZF) S%{(B 5[/(0}/',13—675-/9).(_/{a’_fgf&'?o}/é’ﬁ >-J“/x°*/2[°_£* (o}_

- n - — - 7. - 4.1
(Bl la-bFp > Ad-Ehp | wlpsy £ Rtk bE g | -0

The first argument of the d  funotion has a form K- IM*+B%r Mo +A % 5%3* and the second:

Rt M+ B > = /Y e A2 8P % where Nj’ : is the mass of intermediate states.

In one-nuoleon state ( /‘1 =M ) the right first term of Eq. (4.1) 1s not zero under the
" condition-

¥ = E ~ (”f}ﬁ’z .
. P- VM"-I'IE& (402)

and the seoond ~ under the oondition

X, "E‘— {/—J")p |
Vm*. B> ’ _ (4.3)
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' The continuous spectrum starts with tha wyra.lu‘es‘ My = H+p : “i.e. for IA’.,’ISE, » ,/‘ -

" being the mass of 4 - meson I i o B

s . =2 ’ . : , = »
2 & . ~ ( the sign ¥ are related to
I[ = F 2HMu+ M- 201-9)P the first and second § - funo-
-t 2 VM* B v \ tions, respectively).
In order that the one-nuoleon poles =* £, might not 1lie in the reglon of the continuous '
spectrum /Xl 2 E, i.e. in order that /£p/< E, | B2 o has satisfy the condi -
tion . » o . -

2 2

4

(4.4)
' which imposes some restrictions to the electron energy .
- It is important to note that in the considered dispersion relations the unobservable region
is absent for the finite momentum transfer 51' . The interval of the momenta for whioh the

~unobservable reglon is absent is defined by the inequé.lit;y"

_ - 2 Myrpi=201-5)B*

. Solving (4.5) with respeot to /3/ -we obtain

— 2% ‘ . — :
1)< / (210 40) % (W) e 1 M (ot s o o Pt e
§ (1 +p)*

(4.6)

' 2 T T
- For the real Compton effect m,.=0 and we get

' ;
= AMatr”
P« ZZ/N*fJ'

which coincides with the results given in the paper 2 .

5. Calculation of an one-nucleon term

In order to calculate one-nuoleon terms in (3.23) firstly let us. examine the 'e‘xpression

L. _ . ‘ )
<B,e[jto|-qa-dp,p> . (5.1)
whioh we write in terms of variational derivative: .
(5.2)
—_- e mOCP=P)X 5 —rn ’
<Belftos|p's"y=ie Bl w7 1P, 5"
where . - L
P--Ad-8.P, p-s"
Passing on from the variation over ﬂp (¢) to that over jt’ (L’.,)we -get
(5.3)

. " -~ - ﬂ =" . ( Ireq va —*u
JV/P-P_'(/}<PI6\‘/J/0)/P) $o= (.1;/)‘ <P'6~/J‘Jf((,() [P)s">




- 10 -

—_rd ) .
It is easy to verify that P yo0 - This allows to work with //-? 5 } like with a real state.

Performing oommutation of the operators of creation and annihilation of nuoleons <from the

a.mpl‘i.tudbe’s - < P, 6"/ and / 15»”5 D ) v\ivith‘ Jg(i) ‘ we obtain that
3
— : " u [ M“' = ) J\- -.S ’
- '[‘) ,o~ . >
P’ d"-'f (k) /P (,,2'.7)’ EE" (P ) </yl{l(P}.yj[{,().d"qi(ﬁ'y/)V(P *S) (5.4)

’ ey w o - .
where E- VP +n* and E=VE*n" Aooording to the relativistic invariance reasons it fol -

lows

- _ " o W : 7
</ Jv S ):( 7.(/(7 f?M .(f'{p_.p”,'é)’ Z’=J‘/\’, ‘ (5.5)
L EVp) SA WYY (rterr=s yu ) o

qc-'(_/t")'. - are the scalar functions (form factors of a nucleon). Now from (5.5), (5.4), (5.3)

and (3.21) we get: _

o (a) g G szwrp, )(w/r-w)ﬂf*ffwfpsfxw(ps//fww/ e

J[n//?a) {Ji‘)’ /‘1:;_,_6;;; SZ(/E—E_-—

. e z /“ /I,J'” 5. 63- -
*w(P, ,}ﬁ:()(yf,;?‘(}( j /w[’ B hiw(Bs )ﬁ(t"){ A /'—[Zw—] )”(Po,""o)( )
Taking the sum over s and _performing the symmetr:!.zation operé.tion ( see 3.15 ) we obtain:

Sor® #ﬁ’,ﬂ”ﬁliﬁr)n.“"/f’?f)/f @f?)r'*%l)’m T 7//" ) (£ 9“("‘9/'[ ‘()

: (5.7)
2 PN 6B 2 "l 2 2 AL J‘/
Aue™ " ZroT S FIEIEE. e T0)= //J'E*ff’ ") /f”“/f 260925 ) (%)

In the relations (5.7) Fi(e)=1 ., Fale)=1, € 1is the eleotrio charge of a nucleon, and _u

is the anomalous magnetic moment of a nucleon measured in nuolear magnetons.

It 1s important to‘note, that in one-nuoleon approximation, i.e. when

el (27)* . ﬂ,, Jne
4_//5/z>_ Lem vl J‘(lnpae Pe) [ € £ ) (5.8)

the expression (5.8) ooincides with the sum of matrix elements corresponding to the graphs 2a)

'a.nd 2b), in which at the vertices related to the virtual photon instead of the form faotor
functions ? (x p"}a a2 (J€ P ) there are F (a¢”) and % (3¢°)and the vertioes related
to the real photon-instead of g‘;J'{o) P } and [ QFL/D,F"Z) there are /p) and % (o).
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Thus, the‘use of the dispeision relation allows to introduce in a strict a manner'into the
- process of bremsstrahlung and pair production in the lowest 4 approximation the form faotors de~
pending on one variable which have been 1nvest1gated for the negative argument values by Hofstad-—

ter lO.

6. !lgtual ggmptog_g;fect amplitude structure

We expand the virtual Compton effect amplitude T in relativistioally invariant

structure obeying gauge .invariance requirements.‘Let us write 71c'1n_the following form

© ¢ (6.1)
T e’ The=w(P)C" Ko & Wiph)
where
'Pn[ :'e”( {pﬂ; p{ 'l(/ "Y)JN}
. .
T,c.e must satisfy the conditions X, Te=0 ‘ and a(; 7,':(- 7] (6.2).
Let uslintroduce, as it has been suggested in Zil] < factors:

(p“loo)n‘/-l- . . L
O N v (6.)

(P+P)eX,”
- _ (7t R/ed,
‘9«», % (P+B, )

where (P'*R” k) denotes scalar product of the two vectors P+ P and X . Let us write:
- o 6.4
G Yy T, \ (6u8)
In the .expression (6.4) ¢ _ raotors automatically take into aocount the gauge 1nvar1ance

condition. The choice of ¥ factors yields:
(‘p “Dﬂ}a( ‘yna( =0

) L%/ =e

'(:L‘%u‘_‘ /(n .
Using the general theorem of expansion of the matrix element ( see 11 ) let us represent 7"c

(P+p

in the form:

c _ n. @ ’ (s) ’ ‘
T-wipe's Z0. N5, %, % 2, (R) (6.5)
I ..
where 115,_ are .some scalar functions, depending only on scalar produots of 4 — momenta
of initlal and final states. ‘ '
. ‘ ) ) -
A = f) A = k )
[0} ) @) ‘ (4)
RoL: R,=L0; R =0e. R - D
ag ltlg s yi d 1 = ; = Jﬂ'g( , o
_ S N L P dp A (6.6)
(5) {6) - (7
£ 2 s 2




- I2 ~.
‘Thus, from (6.4), (6.5) and (6.6) we obtain

I

Tr: Pné(’sé‘-‘ ' T'i,t_{zs-l.

t=1,..
However, the fourteen structures _7}?‘(”5? o under consideration are not 11near - indepen-
. . s
dent ones: the combimations iz (7'~ 7°*) ana (7"' 7 )are expressed in terms of other

structures, -The final form of our twelve linear -:independent structures is

DL, T ) e ) fo- ”;’ﬁifﬁ)/é /r(;;}j:)) “(p)

) (6,P+R)R (HXNEP+ D)
R=wip) e—(P+P ) (( K)‘m w(r,)
6 = (G {eppg)/([ (gp,,))(}
= w{
R=wip (e /( X)- St W R

. _(&Ptr)Kx) P+p)(/(ad (& pfp‘,)x
P i) (ce- TR (6 ) )

(5) — _(6P+RI(KX) (& P+P, (&P+B)(Hx)
R —wfp)(f"“) TP RK) - (E4)- (Peh o ) (B)

(6) - (€, pr)(A’J() <, P+ %
,? —w(P){fex} (PP }({ £a)—- ( )K/W{P)

7—1 2,2 (€P+P)/£ (5“0 B
J (777 w(P)k(F 2 K))( - x)) w(p) (6.8)
W, NP*P)/«’ {{P B)(K
=w(p R{t (Ek (&6P+7)(KXx)

) v}l(.))( ) (p+P )() W(P)

R
0k (- e et ) &)
4

(6 P+P,) j¢ - e,p+R) N /e P+p){/u?)
(Pe+p, x)) (- (P+B, x))"]{’ Tren,q )W (R)

o - o [6,P+ p)/Ax) (6, P+P)(Kkx,
A’(- 0 (PIR (cex) - S22 W e L (rew)- v }/w(/’)
(P) -e!p“PZ(H)CZ + 2 .z
R W ((0(} (P+P,K) )((éx) (;5,;;:;9; )W(p)

fr0) ,
Zar 2 " up [ -

Thus

2 i .
T3 RO (6.9)
T4 . _

The etruotures (6 8) oomply with the requirements of relativistic 1nvar1ance, gauge :anaria.noe

h and conditions of the type of the "crossing symmetry" theorem H
' P—P, =6,
R-* ('e) (H-.,l( x—-—x)v

The last oondition leads to the following relations for the coefficientsf; : -
: o » .
-Ql':.*ﬂi =156 .
' .  ieas . (6.10)
| -Qz =’-()-i _ . (=2,3,4,2,8,9,10,11,12, .
o C o - °2 '
For the real Compton effeot the struotures Pi R, Rg and. R vanish. Thus,
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for the real Compton effect there remains eight independent-structures. This result .

coinsides -with that of the paper[]'z:.’

But dispersion relations can not be written directly for the coeffioients: _Qg sinoe

~the structures of ( ?‘. are not symmetrical in x e Therefore, at first it is necessary
to expand T in the system F’; +f7 =0 in twelve independent three-dimensional s_truotures»
We choose the following independent struoctures » RN
2. €& %=L (GR)(E[Be]) 2 =£/L?E)(e‘~[ﬁ;)‘]/
2= (EP)(ER) 2= (EPIGE)(GLPTT)  2,5=l6R) @ Lint]) (6.10)
2= (2 ) (EP) =gz (CPNENSLET] 1 = EN)ETFd])
2 EFNE 2] %e ( (2p) (6 [P<E]) 2= ()& [ xED)
’.l‘hus, in the system ,5:-» ,D =0 the amplitude T oan be:writfen in vthe form:
TC=2L.I,.,((K,,,5‘)?”. (6,12
where ZLy¢ (#,,P?) are the scalar funotions of the va.riable Ko .and reooil Bt . 'I‘he'sym‘me't‘-‘-"r
rization operation S overlis now fulfiled trivially in consequence of explicit dependence

of the structures Jx on the vector A .

7. Dispersion relations for the Lorentz - invariant c'o;eff_icienfs

It 1is obviously fhat due to the 1ndepend‘ence of the structures ‘ZK dispersion relations
(3.16) can be written for each coefficient «{/( " taken separateiy.' Each eoeffieieﬁt must—-eon. -
duct itself in the complex Ao fvariable plane not worse than the a.myplitude 71: and decrease
at the infinity not slower than A—’{. . The symmetrization operationSleads in addition to the

fact that the coefficients for the antisymmetrical in X structures wily deorea.se not slower

than /;f:z .

. . o) - (.z) - ) L
/? ﬂ{ (l(} 'D// .../(' )Jfllf(lk, (‘/, }d(a’ E‘z: + m ;. Nal, 2'5 (7'1)
F’ o .
P [ K(?) o . )
’?e’(x“’*”:FE/(/e 7, ,“,(}7,"1 (K)dx+ ffk+5—’.(—_-/(=4/,5,' ..... /2

In order to proceed from dispersion relations (7.1) to relations for the coefficients N, , at
first it is necessary to establish the comnection between -Qi . and Z,( and then analyse

. the behaviour of (), (¥,)  in the complex plane.

From (6.9) and (6.12) we have

71c= ‘Z p(ii(z‘:

{

£, 7,
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In the system - /5.: -*,E =0

~the four-dimensional structures P; are connécted with three< ‘
‘dimensional ones % as follows: ‘
m
2E(1+d)
bt / [ ? . + I-l: ?-’!)
’ 2) 7 Pz yx) :
R =Z;'{('2*H+i/)( ))?q ( 24_‘

& %144 2*
R [Za

’ : . .12 i
,QMJ 2 (‘ —J*:.r7 - F3 2;!+ ?d’}

w 2E{(I(X) ? (2 [nf) (;(xj qu

A’l
2, " ' 7.2
f6) zE{ - 3 (1 6‘)2 - (7.2)
p M ET 2 "—““-——M: 3
(e ’ 2
NS 24 ;w(/ﬂr) 201+5) 24
R=/‘T[ I‘(.,‘H-Z,+,l{ak2z PR - K= 2 - 72 g+ ?9j
{J) +d. 7 'y >
P =;-I_( {I(?C)Z ,(’ (2 ’_)ﬂ/)? + M3 f}(z +KJ:(L })?r M- /J(‘/l((x/ 2y
245~ (/+f)(/ar} w1t

: (hd')/l)(} BRI
T (EmK: % WE(E 2T £(2- )2 KE '"}
’ (9) PR 2eeed) (1- )M o2 M(1- J'!.?c

R-gl-%ar A % o

5y 2* 2,2 ° wd) 3p 2 2R
(4 XA ?+E(¢ }a\(_2 +E:(ﬁ‘2"}

RE (E+H) % N (E*H) &z ) K*
(10 9(2*11 . +* 2 l
R'- II{FI):' % K, 2yt siu 2H[$/‘f}75 H 2?—"’(/ fj? *E 2%
R("): _Z_{H(I(K)

3 2
2, -M¥; (2 (1+ J}(A’x))g flffj[llél’})? ()2 Z;f

u3
R(M) {ﬂ_’f 2 M1+ d) 3¢* » (1+8)ac* 9(“"_,1‘1
TR % TR ?e'Ti?'v '

Let us write (7.2) briefly K/ =ZQu? , Thus, ‘Z- —Q Quy 2y Zo{ % or Z_Q Qe = Zp

‘Let us write down. oonneotions between _(2[ and Z in the explicit form'

) —Qlo Io,u_"«f{:.

\ ?-)-O-p'a?,q =g

3)0,.a,+0,q,, =Z,
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Lf} -Q‘l'a’l,f -~ 'QID aio,l =v;{’

5 A Ilo -n-gaqxo:o{,o

’

‘b)f)_a A%, =A,,

g L. 9 9,11

?) _()_202,,, + 1, A3y +-Qza<r,a +Loag 4 = Z,
3} ﬂz 02,5 +—[)-_50.5,5 +_Q&,C{,15 "‘ﬂg agl__;- = 0(5 - )

9)'0'4' a‘l,6 "'"O'P A6+ ‘()'Ja 'Q9a96 +—Q1oa/a 13 +—Qu 10,6 +—[2/z CI , 6 —oi 7 3)

Z-

10}ﬂ4 4,7 ‘Q"? 77 ‘Q 8,7 +'Q'9a9?+"n' a"/?*—[)-u //?+—[l-42. 12,725 x

41)_”_1 b2 *fls Q5,5 #). <%, 2. *,a 2,2 —/23 “ff)- ayz"'ﬂm /oz"'—D-

1 2 2. /2,2- z

/2)_(2,0,,5 "‘.”.5 05._5 -+ _Q60“5 'I‘_Q?Q?’_,) —'—n-aad’,s"ﬂg 9,5 " f)_m /05

+_(2”Cl —(2 alz, =Z5

Now we have only to answer the questions: whether. 0,

(A

acquires additional poles in comparison -
with a(/( and how _(2‘ behaves at the infinity, One can’ obtain the answer from the éolut;loﬁ
of the system (7.3). ‘ ’

c

We first make the following remark:for /1 =0 in T all thé struotures, oontaining the

—_

vector A  must vanish and, consequently L, = L#= 17) for this value of 1 .

The coefficients l, and L,, are analytical functions of X, and can be expanded
in Taylor series at the points A =02

Ly (bo) =Ly ((+-8)]B1) +Ly (01-6)B]) (k.- (-7 [B)+ ... (1- ,'7,,,_)'.

L L : , ;
Thus, the expression #h’-‘(/-cﬁ/ﬁl]zi’*ﬁ-ﬁ/ﬁl_] contains no additional poles for A = O,

Solving now the system (7.3) with respect to -QL and analysing the behaviour of Q‘- with

Tegard to K, (taking into acoount the above remark) we £ind that a1l coefficients (),

¢ -are
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. " N . e
Ko ~ 1in the same reglon where the function S7  1s ana-.

analytical functions cf the variable
‘1ytical toc. The coefficient _()_‘* at the infinity conducts itself like a oonstant and,there—

fore, dispersion relations should be written with one substruction.

Taking into account the condition (6.10) we get the fcllowing dispersion relations for the

coeffiocients (), ( in the system P +p=o0 )
. P ) (2)
. P / 1 Q. IL.,
:ﬁﬂ;“’o) T 6\’,,'-’\’., ;(04,( ) ; 1=15
Eph E,ﬂ’.,

’

, ' = o 2)
R’eﬂ‘.//r'o) —:—// P k+l()7 _(2 (¥, )‘{/(,L Q /_;Q:;(' (=2,3,42....12

1

(7.4)

. )

202 )l hy Y “ iy

40, (e.)- 2 9[ Lﬂj’“ e Dy fo) e e, L6
Ry e, " Epra,

1-d . ‘
{2, (o)~ _zT-Qf fo). + - S0

In the relations (7 4) the coefficients -O-i and _Q ‘ are oorresponding parté of the  one- =
nucleon terms j,,, (-1@)  and Ay (AG) . The explicit form of these ooefficlents is given

by the following expressions:

I) Ef,-’o EPM(., (27!)"25

ﬂ!:) —(2_(2) . Meg
. 7]]

r2)
BEL _Q. " _()_ M,* [ S* 201 (pR) (/ KM -8 ) 7
Ep-Ko  Epehe  CaPZELAW T [pyreip) T 2Ea%
()} (2} .
0, 4L Me* - Fe, MU~ 5)*

)EP-AI Ef,\*/(o- 25726 L2727 T e 42

@)

z,)_-Q_fv _()_() rMe® /_]_7 “Exe /v/z(f.rj/
T (2P 2E +L 2p= R EQ*

5) Ep-/( 5[‘04/( (27)’25 _2(/{,{) gpzﬁl 2 am b+
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) (2)
6) ﬂb -+ Qf‘ =0
EP-"" 7 EF"'Ko
[ Iz)
?
E,rf{f E,m' - (1 A% flﬁ) 2a)2F |
» O] _Qf‘) ‘ML'Z .
Y] ' e (““ \ (7.5)
: * = * .
g) Ep"/( * EP-H(, (277)"25 2_5]" ]J' // /")-7] |

_()_m (»:) ) Mez /_ Mlafhfj ]
9 YA (am)P2FEL 26X ]

EP-A’O, Ef’ ’ R
0% 0% M wol-5) 5 M
o B L e (2R L)
£ =Ko Ep*k, (am)2E HEA in
) c2)
I/) -Q{f + ﬂli N ( 2 L 71')
Elp-'l(., EF+I(° (,27‘)325 ZEP-/? 2/‘{ j
o) ) A ’
Elb—,/(a EID-'”‘
where
2
Do A%+ (114) %)
z ' . .
L= =2 G+ (ta) (Feu5) L - L ' ,
b= 27 % //'/(,/a)/,,,( p.K) | | 76

In order to proceed to dispersion relations in . o.m.5. 1t 18 convenient to write down firstly

the relations (7.4) in terms of invariant variables 2, T ~ which we chcose by the following
means ’ ‘ '
2=k (p+rp)

'f"' (7(" ”)1 . . (707)

For the Breit sjstem we have the oonnection :
| 7= 20, E = 24, VHESPE ‘
: : (7.8)
t--4p*, =4, VanE
In o.m.s. as 1ndepehdent varlables we choose the fuli eneigy-u/ 6f the system and the
‘angle Cos 6 between the directions-of incident virtual photon and emitfed_reél'photon. In

this case the connection is too cumbersome




- I8 =

. 2 2 —7
w ’2M [5 whe p e m? /(w'-—M“)+;zmr[u*+/41)+m &46/
%4

= —-’mr W-M [w M= +mr {W""/""'f'/-fa?mm(tt/vk”‘z/* m" Cos 6 ]
_ (7.9)
a . .
Z-“—W'z" /‘7'2_4. mJ.-l-t-
2
Dispersion relations (7.4) in terms of variables 7, t have now the following form
IQF—Ql/?;{) //2' +2’+2/ ]m_ﬁ /7 {)a/?+,.(2 i:/lf
R(_(Z, (2 z‘)-(\ //? - Esz‘)Z"ﬂf /2,’1‘)0/z’+_[2‘." ~ [=2,5,476910,1.
A+ pi% ,z‘;'_"::
il ' (7.10)
22" Jm,(l (z't)dz' :

2 t+m
‘,Z/”L.f/, .4.__.._£

Re (2 (0)- - ;""’ Q, ()4

_O/a)

Re 02, (2 1)- ﬁf(Q,, - M)yn, (2 z‘) de’

In the relations (7.10) _(26 and ..(2 equal zero. One;nucleon terms in the invariant vari -
ables have the form:

—(OZ _ Mez 71
(gl (it

[

M A 2022) (o) & UMt ) 2 '
_(2 ?_ / £ z’ " z])Z]

2 (27)% (4p*-t (R (pR) [ot% )t e mis)
f} Me* Yare (60 mt )?
2 @7V Vgmat l‘ i[l/z‘z /fm, )2y m A z‘}]/ A
N -'mp ittt g
v (@R Vot | 3T 2 z‘[l/tz +(¢L+m1} (40%7)] (7.11)

o /1,/ . &M
Q : A VAN
a (J,,—p,/,,-,r J(P,,K} ‘/t7+(z‘+m}}(‘//‘/‘—0 2M
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.MZ-.
2 - (027)’/—»7‘7 [//}

o

L
0N - Me yteM(t-my.) : ‘
$ IV L Ll gd, (pemE ) (4mt) - (17 g |

[

0 - M Lta Mt mi) >
9 (RAT)*/yp=t ‘/t2‘+(t‘+m;)"/l/ﬁ'z—z‘) 2

_Q /’ ymtr (brmy) A /
[,?cr)’;/ yu* -t 4t ?24({+m;)1(9ﬂl—i) gM 7%
/6 Mo '

_Q= Me _7..11'_. )/
" fﬂﬁ)sm 4"5?&-'- {f*m;);{%‘/z-:tj ‘oz— ’?H 'l/

Now dispersion relation for ooeffioients _Q‘. in the c.m.s. are obtained simply from (7.9),
(7.10) and (7.11) when prooeeding from the variables 2 and 7 tow and Cos. 6 .The final

form of these dispersion relations 1s extremely cumbersome and not given here.

8. Dispersion relations for_physioal amplitudes in the_center—of-mass_system

In order to obtaln dispersion relation for physica.;. amplitudes in the o.m.s. let us expand

the amplitude T 1n independent three—dimensional structureg/’in the sa.me system° '

Z My« | (8.1) -

where Mx - are physical amplitudes depending on W. and Cos 6'49
P=EE /;_.z[é‘i)(é"[a?x?]} P (RE)E[RE])
Som (67UER) P i (FRINER) (F[RE]) . f,= i (ER)(E[RE]) (D)
- (8X)(ER) Py« i CRIER)(F[RZ])p, i (TF)(E[7 E]) o

’. ,z'({;/(;[aa 2 4 (ERIE[RE]) foe b §3) (6 [7.F])
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‘Let us find the connection between the ocoefficients —Q,:(“é"” €)  ana Melw Cf”ej, substi-
tuting the expansion of the relativistically invariant structures (6;8) in‘/ﬁ :

. . (8.3)
f,= %fik/;{
into the relation
‘77:2.-(2[(1': %N’(ﬁ
we cbtain
M,;fz.zm'_ © (8a)

The coefficients gb( are the known functions of the variadles W ‘ and (56 , The matrix
//a”// // gm // -1 h 1s ob‘tained from the solution of the system (8.3). The system (8.3)
inoluding twelve equations has a cumbersome form. Choosing sultable structures, namely, (8.2)
one succeeds in unlinking the system (8 3), and reducing it, thus, to the solution of two sys -
tem of the second order and two system of the fourth order. Hence, 1t is easy to find the con~-

nectlon: . ‘
Vi %fl,ﬁ,- = 1;2 My G R,

, , B , (8.5)
or : ' -(25 z f; G -Me
Coefficients Civ -~ in the relation (8.5) have d highly oumbersome form and, henoo, the con-

_neotion (8.5) is not given in the explioit form, From (7.10), (7.9) and (8.5) we obtain disper;‘
sion relations for the physical amplitudos /0- in the o.m.s.

. 2 : -+ '. !
ﬁt’ﬁfj {h’,f;'ﬂr) 2‘- i( ot ?iwll*wz_2,ﬁ+n7;1 rt) g
”’7‘

. (8.6)

é thLm )ZC,,((wf )7me(Wz‘mr/de+Z - (w, z‘/ﬂ’z)fz*

+ w{'m )Z_M (VM”“ i‘*"l 't' mr)["_’-cl" Vw _:T_z:‘fmr) Zm“ _’_l(/—":—'_’_"_rrm z‘)]

gf%‘ ‘5‘1f’ov i#6; 2w Lt e
T obs e, (=15, D= _{(=2,54,62.. 12
In conclusion we express our deep gratitude to A A.Logunov for valuable disoussions and

unceasing interest to the work and D.V.Shirkov and A.N.Tavkhelidze for useful disoussions.
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