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Abstract 

Dispersion relations for the physical amplitudes in the center of mass system have been 

derived following a method suggested by N.N.Bogolubov for investigating the processes of brems­

strahlung ·of electrons on a pucleon and pair production by O -quanta on a nucleon in the 

lowest approximation in 11 e 11 • 

·' 



At present one of the most effective methods of consideration of strong interactions is 

that of dispersion relations. 

In its application to the electromagnetic processes such as Compton effect on nucleons, 

bremsstrahlung or pair production on nucleons et al this method allows under definite assum­

ptions to obtain information about nucleon structure. It should be noted that during the last 

years one gives much attention to the investigation of the nucleon structurex/ since this pro­

biem is not·only important by itself but also connected closely with the limit of applicability 

of quantum electrodynamics at small distances. 

Dispersion relations (D.R.) for the processes of brems~trahlung of electr9ns on nucleons 

and electron-proton pair production by r - quanta on nucleons allow to consider theoretically 

strictly the problem of the influence of nucleon structure on the above processes. From this 

point of view the investigation of dispersion relation for the virtual Compton effect inolu-

ding ooth above mentioned processes is of quite definite interest. 
r 

In this paper one obtains dispersion relation for the virtual Compton effect in the lowest 

e - approximation by Bogolubov•s method l. 

The proof of dispersion relations for the processes of bremsstrahlung and pair production 

has been made in f2J • Hence, in the present paper the attention is fixed on obtaining dis_ 

persion relation, available for practical applications. 

Since the method of the deduction of dispersion relation has been expiunded in 1 - 3 , i~ 

the given paper many intermediate steps in deducing dispersion relation are omitted. In 

Sections 2,J dispersion relation are deduced in the most general form. One gives also a mi­

nimum number of calculations needed for understanding the deduction of dispersion relation. 

Starting from Section 4 our consi.deration is only referred to the bremsstrahlung process 

since there is no difference of principle in the .dispersion relation derivation for the processes 

The investigation of the unobservable region ( Sec. 4) allows to conclude that in brems -

strahlung process there is a finite interval of recoil momenta for which the •Unobservable region 

is not present. In Section 5 one calculates an one - nucleon term and shows that the cross 
'- . 

section of the procesees calculated in one-nucleon approximation coincides with that of the 

process calculated in the perturbation theory, however, with the difference that the D.R. me­

thod allows to introduce in a strict manner Hofstadter form factors into the nucleon vertices 

x/ One can find a detailed bibliographical information on nucleon structure in the review 
11 Nucleon structure II by D.I.Blokhintsev, V.S.Bara.shenkov and B.M.Barbashov. UFN (. in 
print). 
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of the Feynman graphs are connected with the virtual photon line. This is one of the grave 

advantages of the dispersion relation method in comparison with perturbation theory. In Sec­

tions 6 - 8 one gives the relativistically invariant structure of the virtual Compton effect 

and obtains dispersion relations for structure coefficients in the centre - of - mass system, 

This is an ultimate end of our paper. These relations may be used further, at least for esti­

mation of the contribution of the single -J'i- meson state to the processes under consideration 

analogously as it has been made for photoproduction of (n - mesons 4 , 5 • 

In the paper 6 one has been calculated the processes of bremsstrahlung and pair production 

in the lowest approximation of perturbation theory taking into account only the Bethe-Reitler 

graphs with the Hofstadter form factors, If is obviously that for the incident particle ener­

gies up to rv 150 Mev when the contribution from the meson shell of a nucleon and electromag-
6 netic corrections of the lowest order are not important yet, the results of the paper can 

be used for testing quantum electrodynamics at smo.11 distances. The test of quantum electro­

dynamics implies t_he test of the locality of interaction of the electromagnetic field with the 
. b 7 current of the charged particle. Analogous results have een given in the paper • However, 

with the energy increase up to 500-600 Mev the contribution from the meson shell of nucleon 

must become more appreciable and the single - ~ ~ meson approximation can change essential-

ly the cross section of the above mentioned processes.Therefore, if we take into account the 

single 'Jt" - meson state then we can extend considerably the energy limits of testing quantum 

electrodynamics at small distances to the photon and electron energies ~ 500-600 Mev. In 

this case for example, in the bremsstrahlung process for "'550 Mev incident electron and 

emitted photon energy ~ 250 l\lev the nucleon recoil reaches ~ 600. , this allows to test 

quantwn electrodynamics at the distances up to ~J • 10-14 cm. 

2. M~tri~~ement_gf..!,bLlremsstrahlung of an eleBtron on nucleon 

For the process of bremsstrahlung of electron on nucleon e+ .JV'--+-e+;V-,, r the matrix element 

of the S - lllt;3.trix has the following form: 

< f Is Ii > = <P, s; q ,tr; K. J/ / s /CJ,-.,0:; p., 0.: > = (u }\p,s /e-fcf,o)a"({Y) s t·rq., 6:)/P.So > 
(2.1) 

where 

nucleon 

electron, 

P, .s ( P. J .5. ) 

9,.o, Oo {<j,,, 6"} 

/( , v are 

is the 4-momentum and spin o_f the final ( inithl ) state of a 

is the 4-momentum and spin of the initial (final) state of an 

the 4-momentum and the ·photon polarization; * [(q,,<,) and r {if_0 , o,,) 

are the operators of creation and annihilation of an electron~in states < cf, , o) and 

( "c[:.o , 6',, ) respectively; a-(1f: JI) . is the operator of the production of pho-
. . 3/..,_,,. .. rf, . 

ton with momentum k and polarization JI ; IP., S0 >:: (;_g; J C + (Po, S0 ) --:1;, is the amplitude 

of the initial state of nucleon, C·,. ( Po, So) is the operator of the production of a riuoleon 
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in the state with momentum P and spin 50 , 

In the lowest approximation in eleotric charge e 

two classes of diagrams ~la) and (lb). 

is the amplitude of the vacuum state. 

the matrix element (2.1) contains 

In the given paper we shall only examine the class of diagrams (lb)x). Carrying the opera-.,. 
tors a-(K, 'I) to the right from S , and g1°(q_

0
,6';,) nd to the 

left from and using the generalized Wick theorem for the chronological products J 

we write the expression (2.1) in the form: 

where ko J:, and t are the fourth components of the momenta II C/,o and q, 
' 

accordingly, 9
mf is the metric tensor, u(ij.,<T) is spinor, describing an electron in the 

state (q,, 6") e" is the polarization vector of the free photon and 'j:Jr(:r-~ J is 

the photon propagator, is the 

tor, the spinors are normalized so that 

f component of the ~lectromagnetic field opera­

ij (q_, 6') U (i:j, a)= i . Performing the integra.til)n 

in (2.2) over the ~" function argument we get the final expression for the matrix element 

of'interest 

(2.J) 

where 

J. Dis~ersion relations for the virtual ComptQ.~illi-~!~ 

Before to proceed to the direct derivation of dispersion relations let us introduoe 

several notations and obtain some useful relations. 

Let us insert the electromagnetic current operators 

.e . J'S .. 
j (.2")"" l d°.lle <~J S 

·•n " •. <JS S+ 
j {ll!J - ' ,FJfrt (:i') 

(J.1) 

if = {j(')+ 

x;;;;-;;i;;;-~d~;rams (la) has been considered in the paper of I.S.Zlatev and P.S.Isaev, 
JETP, J5, 309 (1958)·Nuovo Cimento ( in print) 

I 
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and.the notations 

C , • I d.t. s . +/ 6: 
:T,,,P ($!, l} "' l < P,(j" F.AefzJ-1'.!nf:l') S Po o > 

ut , / .FJ'r~J / 
'f,,,p {~,l)=(P,o F.lln r:n P,,,G;) 

g--Qdv I I ajn r:n; 
n,f (:Z, ~)= (P, 0 <J .,f.f r~J R,, 0:,) 

( where 
r,--'llt 
'I r~;:1J=-ofor Je ·~ ~ , g-:-adv( ~>)= 0 for ,J!.!!., ;c' ) ' 

r,,,-, = i <P, 6" Ii 11 
(:l'j jet 7-J / P.,, <5; ) 

er" =i <Po/j·"r.iJ-jn(z')/P,, 6;, > n,e , ,J 

From (J.l) - (J.6) it follows 

r: r•d _ !F+. Saolv_ ✓-

:J'rrt_ :Tocfv• .,-+_ 'r-

Finally let us 'introduoe Four:Ler transform for the function 'T {x) : 

~r r k J = c1" . e "J" (,c} f ikx 

, .. -~ 

(J.2) 

(J.J) 

(J.4) 

(J.5) 

(J.6) 

(J.7) 

(J.a) 

(J.9) 

Using now the property of stability of one-nucleon state 5~/P.5
0
>=/P,,S.> and that translational 

invariance and integrating (2.J) ove:r JE t- .c' 

where E 

accordingly, 

we get 

mine~ (:!.'Ji}" ~ 
<fl S/i1=_-le V:!.kot!·"Fo. r . S'(il+p-~-P.JT,,e (/(;'; 

and £ 0 are the fourth components of' the 4-momenta 

ce~ i1 (cf,6") T 1U(if.o, <J;) is the virtual photon 

[i 
• £+-/( X I: 

Tc ( K+;;e) = e'-~ !Te (xJdx n,t .z.. · n 

Further we shall work with the amplitude 

Tc ( /(;,f') = e,, t/ r/, (-!;_K') 

(J.10) 

p and Po 
"polarization" 

(J.lOa) 

J'o:r tho purpol'!e of deduo1nsdi11p0Hion rel~t:1.on11 :l.t ;Ls important to note that 

i C ( l(t~J., T"t ( jJ_:K') 
(J.ll) 
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in the region where the law of conservation of energy holds true, and for the positive values_ 

of energy, i.e. when 

By analogous means for 110 .,..ea< o the relation 
' ,,!.. 

r c" { ti~~)~ T ~dv ( ";.l') 

.takes place. In order to pick out explicitly the independent .variables of energy and momentum 

it is convenient to pass on to the Breit system 'iJ +p ~o • Let us introduce into this 

system of. coordinates a unit vectora=Ji./;A/ orthogonal to P: We get such relations: 

where 
2. 

cl- m. 
- 1/p'- 1 

'if= ,f..l -,.{f-c!}F[ 

'Ji= ci). -{1+tJ)P,, (J.l:3) 

(J.14) 

One can see from (J.14) that ;' (A'o, a) 

real axis: 

is only determined on the two segments of the 

r1-c>J/P I <k., < ... 00 

The ambiguity in the exponential factor is eliminated by introduoing symmetrical and 

antisymmetrical combinations: 

S T (!<. a)= T(lla, ii)-1-T(l!a,- a) 
+- o, ~ 

s T(l! a)= T(ll.,a)-Tlk.,-a) 
- o, ;!.) 

(J.15) 

As regards the questions of the analytical continuation of into the upper and lower 

half-planes of the complex variabl k., and determinatio_n of its analyticity region they have 

been considered in details in the paperf2J 
Following now the way given in the paper[71and supposing, that the virtual Compton 

effect amplitude behaves _at the infinity 1. [a] we obtain dispersion ~ Ito 
relation in the following form: 

JI (- t10 ')d11; 
/l.;+ll., 

' , (J.16) 
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where 
S T

,et adv ,,t c,o/v 
~(k )= (!lo)+ ST (J!o) • .11✓ ) ST ('1.)- ST (If.,) 

0 ') , ,k'. ~----''-------.C.. . 
~ ;!.. i ' 

ft}( ) &l'f.J".-Ltnf'')-J,f/1-r-...,. ] 1•• 1 J1 -). a -S:,p :(zr;. ,./.. ;._ce :>L. <P.•JJ(o) ,ta."Pf><-Aa-I'.f,Jfj fo) 7!,, 6:, > 

(3.17) 

,,(..I+ . ) JM~tp"- 1,,5, - ,J,-" Ji- f".+ .1- r-- /.'I ,-
JT ( .li!-S"ip"' -{;.'li}- -r-=iG f ,t.. <f', 6'/J (o) Aa+or><M+D P,/ J (o} Po o; /' 

M+P / J 

For the process of production of pairs by photon on proton dispersion relations are obtained 

from (2.4) by simple substitution k .- ,!JC 
.2. l. -+-2. x ...... q+qo and m,=Je0 - Jt> . 

4. Invest!!:ation of the unobservable region 

When deducing dispersion relations (3.16) we examined the difference 

ST= ST"1 
- STc,dv= ST+_ ST-

in the region of the real variables ko • Then, one ·made an assumption that one considered onl 

ly strong interactions. The weak interactions were neglected and the electromagnetic interacti-

e approximation. tions ,considered in the lowest 

Expanding now ST.,. and ST- in a complete sy~tem of functions and integrating 

over three-dimensional momenta of intermediate states, we get: 

ST ,e(t -) sradv - (. )"S"r- 1/1,1 r-- ,_ r----,,,.n 1- r-(Xo+f;-E.-E t) J/0 ,a - {1t0,ci.):il.1i 'J.l<P,Syr01-1ta-o,P,f>'<-J1.a-fl-p,J'1Jfo/P.,6;,>·u z .,. o -

~ (P, 6"/j''ro) /)ii +t:p,_1 ><la +a,fJ~/j~o;/P.o,) tJ( ,7(o+K0
; E. + E - l) (4.1) 

The first argument of the 

Jl 0 + (M~+p'- -/Hj, + )2.+ cf.l.p~ 

<l function has a form K.- ffl2
+p'-+ {M;+).~S-2;J'- and the second: 

where ~ is the mass of intermediate states. 

In one-nucleon state ( M_p=M 

condition 

) the right first term of Eq. (4.1) is not zero under the 

--.2. 
/(0 == [:: (1-l")p. 

P /M.2..-,.p.2.. (4.2) 

and the second - under the condition 

r- -.1. 
k'o "' - £ =- - (!- o ) P 

P VM"-.,.75..z. (4.J) 
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The continuous spectrum starts with tha values 

being the· mass of IJi. - meson 

i_.e. for /k'o/ > £, 'I' -

( the sign + are related to 
the first and second C' - func­
tions, respectively). 

In order that the one-nucleon poles ± £p might not lie in the region of the continuous 

spectrum /Ko/~ £, i.e. in order that /Epl < E, , p'- has satisfy the condi -

tion 

(4.4) 

which imposes some restrictions to the electron energy. 

It is important to note that in the considered dispersion relations the unobservable region 
--:i. 

is absent for the finite momentum transfer P • The interval of the momenta for which the 

unobservable region is absent is defined by the inequality 
,I. r. J"1-"-

/1- o) IP-/ ZM.,.,+./1' _,,z /-,. 1P 
I' > ,J.JM"-+p'-

Solving (4.5) with respect to /P/ we obtain 

(~M_,.,+ fiJ ~ ( llf +.l"):i._ m~+ m;. M~ /ifj,,., +_/'~V(,t,N_,,,+.J1t"im;f:~4if~r·· 

8 ( M+/'}~ 
:l 

For the real Compton effect md = O and we get 

- :lM -+.J"/1., IP/<---"'~--­
:l (1-1+.1") 

which coincides with the results given in the paper 9 • 

5. Calculation of an one-nucleon term 

(4.6) 

In order to calculate one-nucleon terms in (J.23) firstly let us- examine the expression 

(5.1) 

which we write in terms of variational derivative: 

(5.2) 
..... L·f -1_,,,., . -l{P-P'')x ➔ / c:).5 _,., ,, 

<(P,o'j(oJP,S>=te <P, 0 v.Jlf(~JIP,S> 

where 

Passing on from the variation over Jl,,rxJ to that over J/e (l{o)we get 

(5.J) 
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It is easy to verify that 
_,,J. /-,,.,, II 

p . ~ o • This allows to work with P, S > like with a real state. 

Performing commutation of the operators of creation and annihilation of nucleons from the 
- I_,,, ,, o s 

amplitudes < P, of and P_, ..S > with ---) we obtain that o ./IL (It 

. - 1 · c) s ,-., " - _,_· r;;;:' iJ C a-1 < I c).! s />Iv'/,-" ') 
l < f', 6" 0 .,f ("} p S ) - (,;J.'-f)' /ff:'? P, I tf'if(p},<J./lp(K)•<J'/l(p") . Ip S 

( . 
(5.4) 

where 

lows 

£ .~ "v.-·::z. ... · = 1/f' +1'1 and f.. = ? +1'1 • Aooording to the relativistic invariance reasons it fol -

</. _ i'~S l>=f(r,(!<1r!1;../<[k,r7J.,rrp-p"-kJ, f~;r-K, 
· l•'f'rPJ·!'.,r_,M·olflfP;_J' 'IM · 

(5.5) 

~(k~)· - are the scalar functions (form factors of a nucleon). Now from (5.5), (5.4), (5.J) 

and (J.21) we get: 
~( 

I r1a)=-L. N"+tf.i!_-'-. ~ Sl. w(p,6"14:r/(;f'~'F;_(!rJ"''~r"lli,,[-p_"s1xwf-es1(7.rJrJr!i_rx';I./< ,::?1wm 6;)(S.6b) 
Ulnf Ill (an)' N.,._-,. p-,. VE·E.·E" s" )lTi · .,,., /' ' .,,., /' ' 

-JI (-la)=- f:I. • ~i",p.L s· l N.:,. •w{,~ )1,:()/',lr!r, x .. ,;,{x.,r?Jw(fJ."•l,wffts·llrr,•)r~"r {K'')<[;,rn})1,11?_ J(5.6a} 
- fn r.z~nl M.L+p'- S",)£,E.·E".L P,6'.{.f /{I' ... ,, I lfM7' ,.r/. (/, l(J, u·.,. I 'tM / tt.,6; 

. . 

Taking the sum over s~· and performing the symmetrization operation ( see J.15) we obtain: 

/4 A ') ~ II =-f:lM{M"-+J".'fS·') w{p6") 'F.(M1cl'Jt"~T,l~2.\.,J,[X,o 7 '(fo'~MJ.f'l(K .. ')'l"'~'J.(1<.J.).Jlt[K,f'"]w/'n 6") 
<fl(n .;J.(:Z~J3-{,lt'+JVE"/£-e

0 

1 /Jq .t~j 1/M /:, () ~ / J.{H l,o, o 

(5.7) 

JI. = -f :z. /'1( M~ o,p-') w(p,<r/'J. c,lJ r~ T (K") .I< [K,r"l lttr: E~ -;.p"+ M}• IT, (x')/' ~ <J, (Jf"),J,[x,r1)w rE IS') 
rzf dl.(J~).1{1,r1-,p';)E"·/i·£. 1 

(' O .,_ 4M 11 0 o' (' -' 4M ~, • 

In the relations (5.7) tF',(o)=i ·, ~_(0 )~1, f is the eleotrio ohar~e of a nucleon, and ,,)-1 

is the anomalous magnetic moment of a nucleon measured in nuclear ~gnetons. 

It is important to note, that in one-nucleon approximation, i.e. when 

. ~en t [c2:n)" l . ../1 .II J 
~ f/ sf i > =- ie J m·t-~ · ~2. • <J(K;.P-Jfo-P•) ---f!!1-+ n~ 

:l,K0 0 £,. K. Ep K0 

(5.8) 

the expr~ssion (5.8) ooinoides with the· BUil of matrix elements corresponding to the graphs 2a) 

· and 2b), 1n whioh at the vertices related to the virtual photon instead of the form factor 
m .Z ,,.zl ~( :i ,,"-J er ~I. a-{ ") functions :r, (Jf, p I and ~ Jf,, p there are r, ( £ / and {.. ae .and the vertices related 

to the real photon""'.instead of if: (o_., p•-'-J and ( cJl (o,p*'j there are g;lo} and q; (o}. 
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Thus, the use of the dispersion relation allows to introduce in a strict a manner into the 

process of bremsstrahlung and pair production in the lowest e approximation the form factors de­

pending on one variable which have been investigated for the negative argument values by Hofstad~ 

ter 10• 

We expand the virtual Compton effect amplitude Tc 

structure obeying gauge.invariance requirements. Let us write 

in relativistically invariant 

7'' in the following form 

< ,. e rr,c - n n e T = e C I ttf = w[pJe /\net w(p.J 
(6.1) 

where 

C /, 'TT C C-
T ni must satisfy the conditions K" Inf= O and ~ r:.e = O 

Let us introduce, as it has been suggested in [ii] '-Y 
'3/,_ -£ _ (P+P.),,R,,,. 

""- - tr.J ( P+P. 
1
11) 

~ -£ _ (P+ P.Je¾-
. e_,- ~ (P+P.,,Jt} 

where ( P + ?0 , I<) denotes scalar product of the two vectors 

l,,e = ~ot I.ff,~ T;, 

(6.2). 

factors: 

(6.J). 

P+ P,, and K • Let us write: 

(6.4) 

In the.expression (6.4) IR.J - factors automatically take into account the gauge invariance 

condition. The choice of <£J factors yields: 

{P+J:~ \., =o 

~ cq/1.,( = I{,. 

Using the general theorem of expansion of the matrix element ( see 11) let us represent Tc 

in the form: 

(6 • .5) 
I 

where 11
5

-,. are some scalar functions, depending only on scalar products of 4 - momenta· 
I 

of initial and final states. 
(I) 

/l = 1, 
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Thus, :from (6.4), (6.5) and (6.6) we obtain 

r '\, f nf,e l T. S, t fl, 
. S•l,.Z e,n S,-t-

t: = 1, ... l . 
However, the :fourteen structures 7;,5;/" en ce . under consideration are not linear - indepen-

-1 /, l 1 1,.2.; _L (T .,,,, T ... , .. ') '·--: 
dent ones: the combinations ~ 17'' - r and .! - are expressed in terms of other 

structures. The :final :form of our twelve linear - independent structures is 

fl) '( ~, ,,2-1_ -., JI.f_/t,P+P.JR 116 _ rr,P+P.JJf}w(p.) 
f? "'2 T .,- T -W,P {f fP+P,1tJf(< {P+R,,,;r} • , 

r-'-!_ -r,) /2_(f,P+P.)ii)lro<.)J1<XJ(f,p+q,))W(P.) 
!? - w p ,e (P+Po,10 l' (P+Po,aeJ/ 0 

RrJ! w<.,; fe_ re,P+PoJK_lfi£J- (c,P ... P.)X.,,)wrp.J 
p. r, ( P+Po,,t) /(I• . ( P-+P.,J<:) . 

0 r1'J_ :. freJe}- (f, P-tP,,}{KCK~ }/ t _ ff;p,- P.)x)w (P..} 
I( - W(p) (' { P+A II) /( I . (P+P.. X) • o, 0, . 

11. {SJ_ - C ,I {r«e£)- re, P+P.,)( /t.il(JV.(E.kl- ( f, _P+P.,}(J(x) lw (R) 
. - WP; { P+P.,11) J(( I ( P+R Jf)/ o 

/lr6t w f PJ{rexJ,:. re,P~P.Jf1txJ){rE aeJ- {c,P+

0

P.;Jxjw(f!) 
(p+Po,.1<1-J {P+P.,){) 

1/1
)= J_ {TJ.,t+T~')-J:=w(P)K te_re,P+P,,}K_lfc- (c,P+P,,))( )w( 

.l . l' (P-t-f'.,J<.)/{' (P+P.,,x.) P.,) 

R rtf~ W(P)K f- r.e, P+P..JR} {(a)- It, P+P.,)(KxJ_) wr P. J 
{P+P.;_id · (P+P.,,x)/ 

1/g~ W (p)K f;_ (e,P;P.) i< _ lfrlJt)- (E,P-+P.,)x;..)w ( ) 
\' (P+P.,,K)/( 1 (P+P.,,x)/ P., 

(6.8) 

/loJ r.z,sJ fl,6} _ r.,lf_ fl,P•P.)k)-'i-· f£,_P+Po)k)»11rr;;r}- fe,P+P.}{1<Jl'9 rn) 
/? :: .2.T -:i.T = w(pJLk'11 (P+P. "J<) · l' (P+I!. :><) JI' (P+p K') W1r0 o> o I ol 

Thus 

ln~ (;i{PJR(rtx}- (f,P+P.}f.11..xJJ. {(ell)- {c,P+Po)(1<K)Jw(P,,} 
{ P+P,,1_/1._') . ( P+t::,,x) I 

R{f~~ w (P} (rexJ- {.e,/)+ P.}(}(Xl)(ccx)- {t,P+PoJ;>c.Z. )w ( P,,) 
· (P-+P.,,J<) fP+P.,,~) 

c: 12 i 
T "L R [2; (6.9) 

i=I 

The etructures (6~8) comply with the requirements of relativistic invariance, gauge invariance 

and conditions· of the type of the "crossing symmetry" theorem: 

; __ + ;)+ ( P- P., 6"- 6;.) 
R-- (R /.!--K, x--x 

The last oondition leads to the :following relations· :for the cioe:f:fic:1.entsfli 
(") . + 

JL·== +fl• I L 

n, -=-11~ 
For· the real Compton ef:feot the struot'11'es 

i = ,,s, 6. 

i == 2.,3,l/, 7, 8, 9,ID, II, 11., 

R3 R' J . I 
. Rg 

and 
R,1.. 

(6.10) 

vanish. Thus, 
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for the real Compton effect there remains eight independent structures. This result 

coinsides · with that of the .paper[12[ 

But dispersion relations can not be written directly for the coefficients Jl.l since 

the structures of R i are not symmetrical in ---X • Therefore, at first it is necessary 

to expand Tc in the system Po+ P = O in twelve independent three-dimensiO'llal structures, 

We choose the following independent structures 

7,: 11 
?.i= (e75Hil.J 

'23=(e foJ r!p) 

<'5 = U/1J(i[B.e]) 

;,6 .. i(tpJ(eFJr~r1xI1J 

t7=~(ep)(l1)(ci-lpS] 

?.r= i fepJ ri-fp,,lJ) 

Z9 ,. i (e-[) {6' t/:>xJJJ 

?.,0 =i(lpJ (ef[,,txe./) 

,,, ").i rt1)·1ff'fl,eJ) 
_"Z,.i= i(ep}{§[J;xt}) 

(6.11) 

~'t= i{!p)(if-[pxf}} 

Thus, in the system P. _,_ p = O the amplitude T' can be written in the form: 

(6.12) 

where :f. K ( f.., p·') are the scalar functions of the variable ¥0 and recoil P.t. • The symmet---. 

rization oper~tion S over 1 is no\7 fulfiled trivially in consequence of explicit dependence 

of the structures ?_" on the vector J 

7. ~!~~rsion relati2!!.:i_for the Lorentz - invarian~f~nts 

It is obviously that due to the independence of _the structures 7~ dispersion relations 

(J.16) can be written for each coefficient .i ,< taken separately. Each coefficient must-con -
~c: 

duct itself in the complex Ko variable plane not worse than the amplitude , and decrease 

at the infinity not slower than -J;, The symmetrization operationSleads in addition to· the 

fact that the coefficients for the antisymmetrical in J structures will' decrease not slower 
1 
P. than 

(7.l) 

In order to proceed from dispersion relations (7.1) to relations for the coefficients fl. , at 

first it is necessary to establish the connection between fl,. . and iK and then .analyse 

the behaviour of .fl, ( tt o) in the complex plane. 

From (6.9) and (6.12) we have 
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?o-+f-:o 

71( 

the four-dimensional structures 

as follows: 

R; · are connected with three-

R{t)c.1..(-£·~ + 2£_'2 -+ ;i.E{f+,f"J.'i?) 
M ' K; ..z 1-l! 3 

R<21_.:!,_{r-, {f.,..,)(tl,e})., (!/H}2 i 
- M ,::. + l c,, + 2. s 

,f., Ito 

Rm_ ..1. ( ?lr.,-1-oJ,, ..!!_
2
.,} 

- 2. C4- + 1{''· Cs . M N0 o 

,! 

Relf) .£. {- .!!:f, 'l _ 2 + 1 } 
= u I{_'- ' u. 2. 2;,. ,f 

rt O o 

Rw_2E{(l{x)_..., +(-, {1+1"){11x;1'l l 
- ,,2. '2.. e:. + .,2. I ~ M n 0 ~o 

R
{6)=).£f-x2.2 ~-;;l·ft-,.G") l 

/1 Ji;'- K! ~-'j 

R(l:L{-1<.u~ 2H_(. ~M(t+J'"} ~ ;2.(1-,-1") 2.A.2. } 
- M . orr , "" I( .t + , I ' • ., - I( e. ?, - --;;T 2 1 + "l 9 

. o ~. o no 

(7.2) 

R (3}_ ...!.., {- ( K ,c)., -t-K (2. _ ((+o}{K K})?, + /11(,- I"}(..!!.- {t4- rfJa x})., _ H(I-EJ{KX) _ 
- . H ,, c.,;,, o 1111. J :J IC' c,, a,_ • 15' 

f".o o o r..o 

· 2.K0:1..-{1+/"}(10r). 2 + (ltXJ)."-
2 

f', _/f+o)(tOe}) + E(Kx}).<!. j 
- ( £ -t-l'l}lt~ 6 K0J1. (£+MJ l - £ t2 x! P,o 11.2. · <11 

· R <!J .!.. ·{- ~:.. _· x1.tf4·J _ r,- o..z)M~1.,, _ M r-t-oJ:k~ .,. 
-M Jl.:.,:1.. tt. z., Jl"- '¥ ~: ?s 

(ul") ,e2.. X 2 ,,rt 
O 

E {1+ cf} X 2.. f :J!:i.;."- ] 
+- ll!(E'-+H)p'-+-Jt.'-{E+M;°~?+ I!: ·2,o+~•2,, 

R ':
1 ~ (~~-?L -x-;:2.·t.,+~!H· .. 2Hi;"'1~ ♦ 2.;(\~M{,-J"J2.,+f,'t'12.} 

R("}= l{H(hc),, _ILi/( (z_r1--tf}(Kx))2 .,,/,,_ (fd}{K,;e})2 ·_ {be)).2. j 
M Jl O C.z. ,., 0 \ ,J ..z. .s (,:;:. J.l 2. <, J/. .1. 2,. 

• ~o O o 

fl r,.z.J__ 2 {M:;/1: . M{fi-rf"JX2.. (1-,.,r)x.2. ~.2. l.z. } , -u T ;:_,2. .,. -,< · ?_, - llz.. ~6 - ~ 'l 1 · 
0 . 0 0 11 

Let us write (7.2) briefly- R, =Lau i!ll 

Let us write down connections between fl, 
• Thus, ?-I( fli a/it 'l,t, ={- 4 1ll or ~ fl,. Ctu = ill 

~ ( 

and :/,JI. 1n the explicit form: 

t} f2,o · O,o, ,..z. = L,z.. 

a).fl. 'l" a,,,g = .t 9 

3} n,. a,,, -1- 12,, a,,, =-:t, 

..ii 
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4 1 fl .a + n a - './ 
'/ 4 ~,8 JL,o 10,1 - .._, 

5) .fl. Cl +J2 a - -1 
&' R, fO 9 9, 10 - ci- JO 

b) JL,a,, +fl.9 a,, = -1 
o o_,IJ ,,II ""-ff 

Now we have only to answer the _questions: whether fli acquires additional poles in comparison 

with LK and how fl, behaves at the infinity. One can obtain the answer from the solution 

of the system (7.J). 

We first make the following remark:for 

vector must vanish and, consequently 

A =Oin T 
L = l - o 

7 -It -

C' 

all the structures, containing the 

for this value of ) 

The coefficients L? and L,, are analytical functions of K. and can be expanded 

in Taylor series ~t the points A. = O: 

f..,Jl{o} = l,I( ((t-.s-} / P/} +l; {(1-0)/P/) { /(<> -(1-rf'} /Pf)+ ( ,fs: l,11) 

J,..11.- Lil :i 
Thus, the expression .ii"' i:K.-(,-oJ/ill}[,t.+f,-•J/p/] contains no additional poles for .11 = o_. 

Solving now the system (7.J) with respect to Jli and analysing the behaviour of n, with 

'regard t_o 1<0 (taking into account the above remark) we find that S:ll coefficients fl,. .are 
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analytical functions of the variable Ko in the same region where the function ST 
C 

is ana-

lytical too. The coefficient .fl
6 

at the infinity conducts itself like a constant and,there-

fore, dispersion relations should be written with one substruction. 

Taking into account the condition (6.10) we-get the following dispersion relations for the 

coefficients 12; ( in ·the system p _,_ p - o ) 

. ~ ru m 
R, 12.[R. }.: _:E_J f_f + _-1 ) J, /) [ '}d. I 12. .fL e , • '7i (l('-1! J{'-111 m-1L. ~ JI-,. __ 1..,. - . 

0 0 • • l • 0 E -K. E u I E, I' • r+•o 
i,, 1,s 

- nru. ~ 
012· /)_9':f( I f) fl''), .1L, fl, 
ffe icfo -7"" !('-Ito - l('+K 1m i(/(o d.l<o+ E -N +-;:;; i = 2,3, Lt, 7, .... /J. 

E • • • p o Ep • 
I 

£ 11 (K )== J..1<; m/00 

Jrn.fl,rt<:)c1.I(; 
e , o ff T 

RI ( K'.t._ uLJ 
,fi (t} f.Z} 

+ efl, (o}+ .fl. _[)_6 . 
El-t-t--­

P- o E +K i I' 0 £ 0 o "o 
I 

/c}fl . 1 fl J2 (o}=- --- (o) + ---=:-· (o) 
6 ,2 ,f 5' lf/'-p;). I 

(7.4) 

. . /,) 

In t~e:relation_s (7.4) the coefficients.f2.i 
aJ 

and fl,. are corresponding parts of the.one-

nucleon t~rms fie11 (- A a) and .llne ().a) 

by the following expressions: 

,,-,r,J il C2.} M l 
JL, , r,e J 

1) Ef-1" + £1'+1(. = - (.2.'JT)3:!E . , 

• The explicit form of these coefficients is given 

(t} 

.fl;. .... 
;_) Er-llo 

n:' = l!L.[~.,,,.:- 20+/"JfpllJ ~-f;.,. 1(0 £ _ JI.H
2
(1-rf'")')J.j 

E/'+1(0 f2!11/2E M IP.11)+(p1(} (I :q.P· :lE.J~ .:i. 

fl (I) 11(:>.} 

3)-.-.3 + _J = 
Ep-11. /:l'+t<o 

.,_ . 
Ne . (EKo .M,-'-Jto{I- cf]) 

(2.1,)32£ --;y:.,_ ~ .. 2E.ii.:i.. Z, 

r,J 
-n n·r.t.) .:I. ( .t .t.v t,}--1_L,, _,_ ~- _ He _ _ EK • ..,. Mt( 0 {f-tf'} 

Er:!(• E p+I(. - (.J.r,J-'.J..£ ~ 7.,_[',zp.z. ,:i_ £]"- j_ 
(1) . (2.) 

S) fl5" fls- M/ ( 7, 
E,,-K. + £,,+ll. a {;!,;.)3,.2£ - J!.(P,,I() 

/ill(;- ..,A ) +-- +~ + 2.p-'-J.:,_ J.2., .Z.M i -4 
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where 

/' 1. 

/2. = M~ s_ + (t:;.J (CJ;+_,,;,~) ( f-11( - p~J() 
(7.6) 

~ = (-J; +_;, r;;) ( p: fl _,_ p: ) 
J~ = ~- ~ ( ;I( ~ p~ ) 

In order to proceed to dispersion relations in o_.m. s. it is convenient to write down firstly 

the. relations (7.4) in terms of invariant variables c! i t 
means 

For the Breit system we have the oonnection: 
7= Z/t

0 
/: = U 0 {M.Z.+pL 

which we choose by the following 

(7.7) 

In o.m.s. as independent variables we choose thiJ full energy- w ot the system and the 

angle Cos 0 between the directions-of incident yirtual photon and emitted real photon. In 

this case the connection is too cumbersome 
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1 = w:1.-t,('-[3 WJ,+fl:1,-+ m:,_ + !cw·L-MJ.)-r-.!l..m:,. {lJL+t,12.I+ In,, . U>S e, / 
lfw2. I d . I 'J"" j 

2. 2.. 'J . P- W -N i .t .z. 
-t = - m, + ,2 w-'- f w + M + m I" + /1v.1.-M2:/.:1..+.1m;{,iv'-+t-12:}+ mJ-. Co,! e 

(7.9) 
.z. .:1.. 't.=W - M:I. mr+t 

+-
2... 

Dispersion relations (7.4) in terms of variables 'Z~ t have now the following form 

= 0 

Re fli (z,I }= ;; j f'-.e,!-z -+- t': ,,_) J,,.,_f( ('"t,
1 

t) dt'+J2'°; i=-1,5 

1 .,, L f+rn~ 
/4':)< 'l + -,/!.- ' 

= 0 

R.eflJz, tJ= J:. f (/-z - ~,+\ )J* fl.- (z;-1 J clt'+£2,; i ",2, 3, '-I, 1, t, 9/0,t/. 
:,_ 

c)~+_,1,~ t:mr 

.2. cD /1 / 
,() ,;l.2 t:TJJJrn..lL,('l,f}o/z' 
ice.fl,, (7,f),,, ff r 'Z' {i'.1._-z"-J + 1(~.fl,foJ; 

:,_ 
• .v .i t1-m,,-o<1-:,,,, +_;, + ~ 

(7.10) 

.z. 
f+mr [2 1 fl f<(! fl, [o) = - ,;;_ .,_ s (o) + m.,_ ,fo) 

rno a" 

<>" 

R(!fl,,. (1,t)=: j (/) - 1~ 7
)JmJl,2. (2't),h' 

?/'{ .Z. f·rt-11}-
o<- 'Y' "'/< + .:i 

In the relations (7.10) 

ables have the form: 

fl· 
6 and fl,z equal zero. One-nucleon terms in the invariant vari -

o Me.. 1, 

J2, = - (;l.Tj> , r/ l/H,.-t 

0 :,_ :,_ 

fl /.le fr, .fi,.. 2(1+_,1,J(ptl} J. I. 2 4H (/.t_ m" )1 )'..z} 
2. = ( 271) 3 fl/t•r'--t l -.z. H'- - (f'oK}+{f>ll) J 7 t- t -t[4h'l.+ (I/ H"-...f){t ~,,,:;_y] ;.2. 

ne 'l --,N 2 tfrnr 0 •J :I, I ,.- .t ( ,t)J.. I 
14== (,;.:F) 3fij;:iZT - f+t[lrh:'-+(t-1m;f:.YII/H~t}j ·J 

12° fl/ [ · {- 'l l.tN:,.z ft--u,/;..):i. )) 7 
i, =(.;I'Ji)3 /11/H.t.-t' -:/4 - 2_ - {+ t[l/t 'l;._,_ {t--r-rnj_)"-(,01:t.4}) I_/ 

o N/1. f 1, 
_[}s= (.Jw}3 yi[jjq - .:Z. (Po/I.} 

8M2.2. 

'ft~'-.,. ( t~rnj-.){ l/ H.2__ f} 7~+ ::-i+.zj 

(7.1~) 
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0 L c 

j]_ = Ne [ tdtN(t-rn-;) . ] 
&" (.nF'Y'IH'--t-, [Ltt2.2.+(t-+111;.Y·rLJH~-t) :/4_ - (t'l)J'I 

0 M/- 4t'lN(f+m;..J 
_{}_9 ::: (,;l7i)3~ ·,It 'l'"+{f+m;.Yt'IM:,._t) · h 

Now dispersion relation for ooeffioients .Q, in the o.m.s. are obtained simply from _(7.9), 

(7.10) and (7.11) when prooeeding from the variables ? and t" to w and Cos. 0 .The final 

form of these dispersion·relations is extremely oumbersome and not given here. 

8. Dispersion relations for p~zsioal amplitudes in the oenter-of-mass system 

In order to obtain.dispersion relation for ~hysical amplitudes in the o.m.s. l~t us expand 

the amplitude Tcin independent three-dimensional struoture~in the same system: 

,~ 
Tr= L Hl(_/ll 

/(: ( 

where Mx - are nhysioal amplitudes depending on IN'. and Cos ~-e. 

D -­.F•= e c 

./4 = (exHl K) 

_;:_ = i le ~J ( c r,t. "i'J} 
1,;,. . 

(8.1) · 

(8.2) 
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Let us find the connection between the coefficients flJ~ ~ 0J and NI( (111 c.mf7}, substi­

tuting the expansion of the relativistically invariant structures (6.8) in .fl 

R., = f Iii(; _/11. 
(8.J) 

into the relation 

T"= l.fli Ri = f "\fl 
we obtain 

Ml( = ~ 12, i,I( 
' 

(8.4) 

The coefficients Cu are the known functions of the variables 11/ and ~ 0 • The matrix 

ff C.· 11 JI ,::; fl lu If - I is -olftained from the solution of the system (8.J). The system (8.J) 

including twelv:e equations has a cumbersome form. Choosing suitable structures, namely, (8.2) 

one ~~cceeds in unlinking the system (8.J), and reducing it, thus, to the solution of two sys -

tem of the second order and two system of the fourth order. Hence, it is easy to find the con­

nection: 

or 

Tt:=L..fl.R,·= 
t' I 

L H" 41( I<,. 
I(, i 

fl. " Z. c,i( HI( 
' .K 

(8.5) 

Coefficients Cii in the relation (8.5) have a highly cumbersome form and, hence, the con-

nection (8.5) is not given in the explicit form. From (7.10), (7.9) and (8.5) we obtain diaper-

sion relations for the physical amplitudes Mi in the c.m.s. 

-0 .t 2'Pr ~ -'f r-1 
II e NJ ( W, t, '"r} = 7fF" 'T Ft' w ,,.__ w.t. 

MV, 

1 ) ~ . . • ,.,_ .t ?i w +w -2t>r+ m;. *t 

. 0 (8.6) 

/( ~; (w,_t-,rn;.J { c,i< (w,'t, m';-) Jm H" (w/t, m~} W 1dw
1 

+ f ~-; (w, t/m~)fl, -t-

~ ~-, (w, f, m~} L ~ { /M~- t:rn~ ; f, mZ.,. )[~ C,,i {P- t :m~: f
1 
m;}- m;.:t c.,.//1-1~ t~m':r;m~t)J 7 

t< . i z. - :Z.mr , U :J- , , J 
(p '2 If' ' IL I. fn +f 
~6=Tii :;,-=fjo, l=F6j i'=w -1'1-+~; 

·- ~.=-+!, i:t,S; ?,·=-~ i:::.2,3,i./1 6,? .... 12.. 

In conclusion we express our deep gratitude to A.A.Logunov for valuable discussions and 

unceasing interest to the work and D.V.Shirkov and A.N.Tavkhelidze for useful discussions. 
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