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Abstract o

the oonnection between matrix elements of the functional derivatives of the
matrix and those of the energy operator 1s established. This form contzins
factors or transitions to the limit. The kernel of the integral equation
"danggrous" eleotronic graphs. in the theory of superconductivity is expres—

terms of usual Green functions .

of the Coulombd singularities 1in the kernel of the compensation equatioh is

of the renormalization group method in the approximation of an electron gas

at high density .. The results of summation-in the lowest approximation coincide with the formu-

lae obtained before in a qualitative way.



Introduotory _remarks

[1]

of superconductivity has been analysed. The structure ¢f the kernel Q(%;KQ of the integral

In the vaper the effect of the Coulomb interaction between the eleotrons in the theofy

compensation equation for dangerous electron graphs has been investigated . The kernel € is

exvrensed in terms of matrix eléments of the matrix

. e
S e = Texp (¢ [ H. (t)dt)
and enerpgy operator k * - oo
R =HC /O} S-"ao . (101)

These matrix elements in the region of the infrared Coulomb singularity have been evaluated,
however, in a qualitative way.

It is well known that the energy charaoteristios of the many body system can be expressed

in terms of Feynman S —matrix 2237

S= 8.7 2 Toup ([ Hyy (2)dt), S (1.2)
. A .

Using this idea we establish -the connection between matrix elements of the funotional de-
rivatives of the operators R and S and express the kernel Q in terms of usual Green o
functions. Then one formulates the renormalization group method for the problem of the electron
system with Coulomd interaction and with its aid one determines the 4-vertex Green function:
in- the infrared region in the approximation of an electron gas at high densityf.'Using these
expression for determination of the kernel Q we obtain in the.lowest approximation the

1

expressions established in in a qualitative way.

2. Conneotion between the operators S and A and between their
functional derivatives

The relation between the energy levels of the second-quantized system and the complete
séattering matrix S was recently investigated by Sucherlz] and Rodberg[jz The more oonvenient
formula was derived by Rbdberg. From his formulae 1t follows, in particular, the connection
between matrix elements of the coﬁplete matrix S (1.2) and energy operator R (1l1), which

can be represented in the form:

<P SPr--2allE L) RS, (2.1)

1me subscript "¢ indicates here that when calculating matrix elements one takes into aocount

only the connected graphs,
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The formulae of the type (2.1) ‘can be derived also for cominuta.tors of the matrices S, R
with pa.rticle creation and annihilation opera.tors, a.nd, oonsequently, for the fu.nctiona.l deri-

vatives S and R with respect to these operators.

-
Let <y and a6 be aooordingly the opera.tors cf crea.tion and annihilation of an

electron with momentum , , energy 5(,,) and spin - ',0‘ * o Then considering the correspon-

ding ocommutators by means of (2.1) we arrive to the formula ( calculation details are given

in’ [5] )

oz Fmrs |
/<95, — P, > «
- % f'a,(o-(o)ef*,(d-(f) d_afern

reapfis k)t - zZé/q,) } t..dtdt dc, =

2¢isn

0 . 'qumls o 7 , ‘ (2.2)

=/< + . >K
J 1 ,c{"a‘(le.l({,)...[ae"msm(fm) 2

xexP{Z &), tZé(f)l}d-t Ldt,dl ... dr

for ' ’ oo | ‘ e
' E (%,
1%. ) - Z.cf (f) E, E | - R (2.3)

In derivation of this formula one made' use of the-property .of the translational invariance
of matrix elements of functlional derivatives of the S - matrii: which allowed to carry out one
integration over time in the left hand side and reduce & - functions., The formula (2.2) 1s

_very convVenient for further applications,

3. Transformation of the kernel Q of the compensation e‘gu_g_tion

Using Eq. (22) we proceed now to the transformation‘ of the kernel Q of the integral
compensation equation for eiectron graphé in the theory of superconductivity., It is defined

by the formula

[+]

SR iEwts ) |
j < + + [ e S dfdt = 3
-0 Sy, (£)EL, ()€ : - G
( see Eqs 1. 5.20 ) , 1.e. Eq. (5.20) in the paper L.
Aooording to (2.2) for small &) ( 1.e. in the small vicinity of the Fermi Surface )

“Eq. (3. 1) may be repla.ced by

- Z'S ' ' Co (3.2)
J & t .
if (e M g,

&y, (o) Id, ()¢ i .
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A
Just as it has been made in [1] _we reduce (3.2) to the form:

28 (0w, v - (- mz. UV 8 (KK (.2
where U,(I , UZ, are the parameters of the canonica.l tra.nsformation from a to L )
- S F()=E -A : S '

-

= L Ewlftl S ' F5?S L
. < —
+I/€ / é”alu(o}d"d:é,,({‘}z <J‘JA, /o) §a _{'l‘) Z‘] di—

" and the kernel Q can be represented as a sum of the terms

Qe,¥)=0, (K,K) + Qpn (¥,¢7) .4
The first term Qc corresponds to pure.Coulomb interaotion. It equals ’
q. (% «') L for KK,
ONCAVE _‘ /
q (#,%) | for K<K,
' (3.5)
,-E(~//%-77- tEwy ¢l IS

. o
(K7)=é[drdedt’ ¢~
qK4) _w/ ; x <J"a“ (0)6q_ 1 (t}d’a,(,_(z-},)‘a” ") >c

In order to obtain an explicit expression for the "phonon“ term Q,,/,' using (1.5.3)

~we represent the right hand side of Eq. (3.5) for K« </(F - in the form
Z Q) . ‘ IS ikl
U Y, (,(/A"—lf , - L
TGy ()bd, ()7 . (3.6)

The r.h.s. matrix element with due a.ccount of the causality property of the S = matrix (compa.re,
for ex. Eq. (48. 15)[4] can be represented :Ln the form of a chronologioa.l product cf the two

S
d..+ . =( N : — 5) =
Gy 4 IOJJJ.,,H)' 854G, () §a., _t) 4o

é‘s + | }(3.7;)
<T - (0) ) é - 5a, _ (t) S)Z(o' . o

The subscript " olo " denotes here the expeotation value-'over“- thé Jd = vacuum , -

“ourrents" - - ' ZS

The obtained chron»ologioal‘ product of the ourrents for‘;aa.ohz of the two cases (¢ >0 T or
f-’<O . ) is a usual produ}éfc of these ourrénts. This produot can be expanded.in the com-
plete set of physical states, Restrioting ourselves -in this expansion to the states with one
& -~ eleotron and one / - phonon we single out "main t_'.‘erms" oontaining the small deno -

minator :

Bigreimii) , (g kk)

Using the property of t:fanslatibnal invariance we obtain, for example, for t<o H



R sl s
_ TS (IS
d"aA,l+(o) Jva_A,l_ (t) K's d"

"'+’ J’ *
Sa(;(’s/g/(/()<0('5/8(’f{é" ot~ [f)5>

- _Z h[[‘:;(,(_ «') +c‘(/()]( 5 - s é\"s s ‘ (3.8)
me | 5,00 “ﬂ“’)< ”"“’ Jgd, (@ 5> A
. V - - : .
Then performing the commutation of the operators df,ol; /, /4 with 48 /f a we make the

transition to the limit o — Q « Adding the results for £>0 and <o taking into

, - .
acoount the symmetry of H/:/: with respeot to 4 and 4 and using (3.7), (3.8) we
obtain from (3.6)

’ /"(/1 ¥’ I (- X, /.l _
G (4,40 =-2 2) ‘U,. Q- H-i" (3.9)
w(cp +& u() «& ) -
where TURKLG) =,
| 5's
dede ( ~ T s ) : (3.10)
‘ a, (T (o (6) "¢ .
et , Ki+ o+ jéq_ . .
The expression (3.10) is written for small & , @ -, Performing the funotional differenti-
ation with resi)ect to/ and making the transition to the limit j = 0 we get
2§%)5@) : ‘
R = = - — KR! -k~ K - 3.11
@Ph( ! Beg)+EHI)+Ew) A¢ ’?'/A( ’ "Q} ( . ) :
where ‘ : - - i
SHTH, ()5 )]
(KR fd dt ) (.
| Ar;q)= , ( $ag, (1) 5&, , (o) (3.12)
S‘_ . being a pure Coulomb matrix, and .
1 (3.13)

Hy(t) = ,,___ Z Dprg,s (t) (U
Performing explioitly in (3.12) the functional differentiation and using "generalized
Wiok theorm" ( see Eq. (34.11)[4] ) we obtain for /A the representation in terms of one -
eleotron Green functions and 4—vertex Green function of the pure Coulomb problem. This Trepre—
sentation :Ls given as Eq. (3.15) in the paper[s]. It will not 'be written down here . It is
essential for us that in the 1nfrared region for q, ~ 0 11: ha.s the form. :

N e, YQF(Q - S Ga

-
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where Y (Q) 1is a kernel of the Coulomb interaction,

4 1
Feg)= < 5. Frerermo
v cegsn. & (e+q)+réce)
bk,

and llf’

2 () 1s'a coefficient for the main part of the 4—th order funotional derivatives

*

. 4 ) ~
( : d\‘ SQ ‘ > ={)’(Q)_f(7_)d’~(_‘_e} U{,Q, (t) o ‘ (3.15) .
SGpst) I8, , (e),;'ae,qs(o)afa,;+ (¢) v , | |

4._Problem of summation of the Coulomb singularities

The obtained expressions (3.5), (3.14) and (3,15) .for the kernels Q ‘a.nﬂd Ql’" .of
the integral oompensation‘ equation oontain the fourth order functioné.:l. derifé.tives of bthe
Coulomb matrix »Sc « Thelr expressions oan be analysed cbmpletels; in the apﬁroximé.t:pon of
an eleotron gas at high dénsity when the effeotive ra.ra.meter of the COﬁlbmb 1nte’raotio.n

ym,,}{ri’

s .
1s small in comparison with eleotron energy on the Fermi surface k’F />2m 9y 1.e. for K

yaket v g K 8

KV 2 T : e
¥s , ‘ ‘ ' i
Here & =( 4/9% ) y and /g - 18 a dimensionless intereleotron spaoing measured in

Bohr radius units.

In this case the Coulomb energylis small in comparison with ‘the kinetlec energy everywhere

except “the region of small momentum transfers
2 2 :
- £ K '

q < £ ' . (4.2)
this is so called "infrared reglon". Therefore, one can emplay the usual perturbation'theory
everywhere ei:ove'pt“the' infrared region. Iﬁ this region where the effective expansion paré.meter
/;' lzﬁ'/q," 1s not small it is necessary to summarize the infinite set of the "main®

: . YERVENPIRY. N ot
Co_ulqnb terms proportional to the powers (/‘; A’F /q%) .
Here we meet with the situation well kmown in the relativistic quantum eleotrodynamics
where in spite of the smallness of the dimensionless coupling ébnst’ant"( fine struoture Vpérﬁa’-' v
metex e 7 4F = 1/137 ) in the so called "nltraviolet® and the "infrared™ regions of

momentum variables the product of e /4 % and "large" logarithm is an effeotive

expansion parameter. In the qixantum eleotrodynamios there 15 a number of well known methods,
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alloWing}to summarize infinite sets of main terms. We mean here the method of summation of the

[67

main graphs by Landdu, Abrikosov and Halatnikov and renormalization group metpodfl].

In the quantum statistics there is a number of methods yielding analogous results. So,.

the procedure of summing the main Coulomb graphs suggested by Gell-Mann, Brueckner, and Sawadév]
[6]

in tne problem of an éleotron gas at high density leads also to

is essentlally equivalent to the method given in the paper
' 181

ximate second quantization

+« The well known method of appro-

the analogons :esults[i’gj o Finally, for summation of the Conlomb singularities of the Green
functions one may use the renormalization group teohnique. For the first time this possibility

»*
was indicated in the paper[iQ] .)

An important advantege of the renormalization group method 1s its regularity. As it will
be. shown the first approximation of the renormalization group method leads to the formulae
which ooincide with the results of summation of the main graphs ( just as in the quantum field

“theory )  and .withvthérformulae of the approximate second quantization method .

The results of the higher approximations of the renormalization group method may be of
interest for investigating‘the'problem of éxtension of the limit of applicability of the elec-
tron gas at high density approximation.

N

5. Renormalization group in. the problem of the Coulomdb 1nteraotion between

- eleotrons

The possibility of use of the renormalization ‘group method in the problem of the Coulomb
interaotion between electrons is based ( the more detailed oonsideration see in [107 ) on the
group charagter of the finite multiplioative transformation of the baslio quantities : one -
electron Green function G -, two-eleotron Green funotion (4-vertex) /°  and dimensionless

parameter 6f the Coulomb interaotion [/ (see (4.1)
, ;
—_— = —_— ' -1 ’ -2
G—=G=%6¢, I—I'=z]" r—r'azz, r (5.1)

The meaning of the transformation (5 1) resides in tne faot that the sets. ( C; f'/' )
and ( G, /,r ) desoribe the same physical pioture.

The .tool of the renormalization group method is Lie differentiomal equations. In order to
obtain them 1t should write down at first functional group equations, oorresponding to the
transformation (5.1). As a first step it is necessary to choose the representation of ‘the

<

Green funotions,,C; " and [, .

x) For application of the renormalization group method in quantum statistio problems
see-alsofi5] .
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For this purpose we proceed to the symmetrical momentum — energy representation of the

electron operators ( see, for ex, [11] )

: i S)e [Pt
a( =d 0, e s 4
L(P) = Q (P, B) V‘z?f" Ap,s (T) AT (5.2)

G s [, o

In this representation the chronological pa.iring has the form:

- +] .
a . ()= 8pw) b6 G, (P)
where - f{P-K)E FR J\'fpo,ﬁlo)
' , / ' (5.3
G.tp "R JECPI+id iGN ECP) '

. ~
In the case under consideration due to the determination of the renormalized energy < for

the total Green function

ATOSIP)? ("‘)95 = id(p-¥)di e G(P)

we have also » ' . o

S (p) L
G(P) Po - /6 (P)/+loihgn£ : “(5.4)

We dgtermine the two-electron ( 4 ~vertex ) Green function [’ as follows:

{
J'as,fp,) e (P2) 84y, (R, )a‘aé- (/z_l)

2= StppHKk) ] (P,,B, k)

. i .
l : -¢ °T+i/(,’z‘,+1'//02‘
/J_,rs;o‘,@é[/%,ol, K, ’Q)=27,~ fd'rdf,a’tg e i : (5:5)
- o0 :
¥
&S
-+ -
fq_,g(o} J‘OSZPL (T)(S”a@.’,é (t,)(faé; A/Z..(.'t,']
for ) :
P:""Ez': /(r"‘l(;: v é"‘/gz_’—"- lz,f"KL
The function . F has a simple matrix structure., -

s 6560 (P, Py, K Ke) = 5,6, S5 az (K, Ka, Pr, P)= 6, 5 50 60 MR, Ma, P, P)
In the case ( we are interested in )' of. the infrared Coulomb asymptotic behaviour the

one-electron Green funotion C has no singularity and , hence, one may put SCp) =1.

Taking into acoount the faot that for the coxzipensatidn equat‘idn the 'irio’inityy of the Fermi
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surfaoe 1s only essential we can restrict ourselves to the examination of the function F
for A’f:l(‘.to:Pa—-lD::O
F(K ” /P’ P)-)ﬁ

I o O (5.6)
=-‘,;/drdfdf< PR R 5 |
§a,,,.l0) Sa, (t)d‘ci;',_(f',jfékéﬁ e, ’°
for "1,+/~’3.=P,+/§.,L
Indeed, from (3.5) we get |
- - G.7
Q(/(/()~—2r/’[— /(Q,qj ;() :
On the other hand from (3.14) and (3.15) it follows'_
' LA s - ‘ 5.8
A(Q’)'fz’v_—' {/— ZTVFKQ),/”(C;)} (>.8) v
where /"/q",) "is a "main® part of the function /1{5—*57 R- 9:1 X, €) . in the limit of

small Cz which does not depend on £ and € .

In the lowest perturbation order

Y(g)

[J(K ee +q K- 91"27‘1/._

Therefore 1t is convenient to introduce a new function g ’ defined by the relation

Vg
/"(/1 ¢, Z+C;/(c;)- rrqmehg N 9) : : (5.9)

This function ha.s the following important properties-

a) Under transformation (5.1) undergoes the transformation

9 — g z" g (5.10)
) in the limit of switching off the Coulomb interaction 1t tends to the oonstant value

. ¢) being represented by the perturbatlon serles it contains the terms proportional.
to powers of the ratio (7} Kr /q*}

In such a situation it is not difficult to write down the functional group equation for

“the vertex function &  1n the infrared region. :

j N
Introducing the "normalization" momentum ﬁ. let us consider the dimensionless variables:

2
g(‘qf’ HF?‘” P) ff ﬁ:.)r')
The dots denote here uneseential momentum variables /t./, ff (ere)* ( as well

as enei-gy variables‘ Ko, Qo, é,, ) . We do not write down expliocitly all these variable:

considering them as fixed parameters .
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‘With due account of (5.1) and (5,10) we obtain

l. ! : .
K :
=z ~f F
“7"")2 f[ I 2. /?a./ ) : (5.11)
=Z
Choosing the normalization momentum ,{ so as ) ;
7 (1, 4,r)=1 o (5.12)
we are led to the functidnalbgroﬁp equation
z oy S
Fruy, f)=f(_f,;,f‘)f/r’ =i r ity (5.13)
Differentiating (5.12) with respect to X  and setting ¢ = X  we get the Lie
equation ( ) : )
dft Xy, r)  F(NY5T Y ~
= = ~ 96 (’J ;fjfﬁr,y; })
(5.14)
where the funotion f of (2 y,r) '
; Dy, r)=
9 X x={f

(5.15)

is to be computed by means of the perturbation theory.

6. Infrared asymptotic behaviour of the vertex function

" The calculation of the function ][' .entering the right hand side of (5.15) must be .
performed with account of the multiplicative ambiquity (5.11) providing the fulfilment of the
normalization condition (5.12).

In this way with the acouracy of the terms of the third order we get
£ g (0ogm)= 1 ar (S-1)ebr (L) cri(F 1)t (6.1)

a, b, c "being certain oonstants ( which can depend on above-mentioned parameters ). Sub-

stituting (6.1) into 5.15 and 5.14 and carrying out the integration -we obtain consequently:”
Plyz)- ary +crty

- df gy . . (6:2)
Flergs) 9T ‘

< o, bayf‘f-'f y \_
Pt oims | +1- 5= aryl-£) |
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We got here a transcendental equation for f which can be solved by method of successive

approximations taking into account the smallness of rr . This yilelds

. | T e . . 4
, g cptrard(z-1)+Pall ‘ - (6.3)
, f/x,ylr)={{+apy(x ’)-*PE&/ 1+ r< /. ‘
‘Let us note that the constant 3 of Eq. (6 1) did not enter the formulae (6.2),(6.3).
The fact is that 8 reélly 1s not 1dependent o xpanding (6.3) 1n a power series \in

and comparing with (6.1) we find

6= a* (6.4)
Now we have only to pass on to the usual non-normalized function fo ’ depeﬁding on
the observable valué of the coupling constant /~ =/; " and not containing the normali -

zation momentum- R e

The perturbation theory ylelds for i, :

Mim ~

"1.'5 TR . . ) z e . ]
' . s Re YV 2 27K 2 2R (6.5)
Ty Ke Ke
f, (q56)= 1- OG/QL*C’)**Gfs(qi*d)—cr;——wg :
Here d ' 1is a constant like a,cC .,

H

" Do proceed to r. we profit by the usual method ( see 42.3 % ) based on the inva-
riant charge /‘f property :

2 o
i" Kz 2 2 : : (6.6)
r'f[ﬁ"’ f?“rjcho [qo Ke, 52 ).
Putting in (6.6) C; =" wé obtain for /° an explicit expression
= ('/j )

Substituting this value into the left hand side of (6.6) with account of (6.3) and after

a simple calculation we are led to the formula. :

f. (85 )= _ |
‘ , (6.7)
= [reac (& Sed)es Sl (15 an K2 )] |

It is not difficult to make sure that (6. 5) is an expanoion of (6 7) 1n powers of’ small

parameter r .

7. Discussion of the results.

Let us discuss the obtained formula  (6.7) deSoribiné the behaviour of the Couiomb 4-vertex

in the infrared region.

Recalling that according to (5.9)
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(q) 2 2

e Q)‘ATV-f (Q5) = s £(257;) (7.1)
we consider the expression . .-
Q" =x £ (45 n)= ! . (7.2)
R f g‘agﬂ‘+qaﬁd+r-—g.&(7+OG-%§) .
In the limit of the small /s and @% we get
-2 1 /
’ @ et FL gt o (1.3)

. P »
CLS = 0,814 < KF being the inverse length of the Tomas-Fermi screening.

Thus, in the first approximation ( in powers 7 ) the formula (7.2) leads to the well

known Coulombd screening formula.

This shows that the results of summation of the main Coulomb graphs by Gell-Mann,

7

Brueckner and Sawada can be obtained in a much simpler way, i.e. by the renormalization

group méthod.

Let us note also that ai‘ter substitution of (7.3 into (7. 1) and (5 8) with due account
‘of the fact that
l;dm q* Feq) V(g)=q%
we obtain x) ve '

/g
A( = — (7-4)
q [/ g‘l'fq } V’ZV— QL_‘_Q:ZC . ‘

_ The formulae (7.3) and (7 4) coincide with the resulta obtained in the qualitative way
in e, [,

However, the signification of the formulae (7.2) and (6.7) and the possibilities of the
renormélization'group method in the problem of 1nteract1ng electrons is not exhausted by this.

The rgnormalization group‘technique gives a regular method of improvement of the approxi-
mation properties of the usual perturbation expansions, This fact is well known in the guan -

tum field theory. The present investigation illustrates this fact for the quantum statistics.

The formulae (6.7) and (7.2) generalized to the oase of the non-zero energy arguments

present the second approximation to the résults of the paperlv].

t

The further generalization of these formulae to higher orders can be performed siﬁply

x) This formula agrees with the result given in the pa.pe:c[:_l'?"7 .
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‘takiﬁg into acoount in (6,1) the terms of the next orders‘with respect to the powers _(; .l

Such a~genera11zation may be of interest, for instance, in order to speqify‘the supercon—
"ductivity criterion ( see § 6.3 [1]) and expansions for the correlation energy in the region

of not very small [¢ .

-~

In this connection note that recently it became known a thesis of Dubois (13)’which attemp=-
. ted to improve the.formulae: of the paper 7 by ‘summing the main gréphs of the second order.

\A brief oomparisbn of Eq. (6;7) with’the'rééﬁlfs of the paper[ié] shows that the structure
‘of the expressions cbtained there ( see Eqs. (2.7), (2.5) and (A.B)‘13 ) corresponds to the

resulto of the substitution in Eq. (6.7)

: c o Ke o Ke
Tigln (100 )= C

consistent only for small “ry and not small GLL .

In conclusion author expresses his gratitude to N,N.Bogolubov and V;V.Tolmachov for useful

7discgssion of a number :of questioms .
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