D.V.Shirkov

P-310

ON THE COULOMB EFFECTS IN THE THEORY

OF SUPERCONDUCTIVITY
ne sig, 1959, т 37,61, с179-186.

D.V.Shirkov

ON THE COULOMB EFFECTS IN THE THEORY OF SUPERCONDUCTIVITY

```
*:4,
```

> 06 кеднинний пистит mеринах исследования

> GlíתHOTERA
x) This preprint is an exposition of the two paper 5,14. Its fundamental results were reported at 5-th All Union Conference on Low Temperature Physics. (Tbilisi, October, 1958).

Abstract
A new form of the oonnection between matrix elements of the functional derivatives of the Feynman scattering matrix and those of the energy operator is established. This form contains no infinite δ^{\sim} - factors or transitions to the limit. The kernel of the integral equation of compensation of "dangerous" eleotronic graphs in the theory of superconductivity is expressed by this way in terms of usual Green functions.

The summation of the Coulomb singularities in the kernel of the compensation equation is performed by means of the renormalization group method in the approximation of an electron gas at high density. . The results of summation in the lowest approximation coincide with the formulae obtained before in a qualitative way.

In the paper $[1]$ the effect of the Coulomb interaction between the eleotrons in the theory of supercondictivity has been analysed. The structure of the kernel $Q\left(k, K^{\prime}\right)$ of the integral compensation equation for dangerous electron graphs has been investigated. The kernel Q is expressed in terms of matrix elements of the matrix
and energy operetor

$$
S_{-\infty}^{0}=T_{\exp }\left(-i \int_{-\infty}^{\infty} H_{c}(t) d t\right)
$$

$$
\begin{equation*}
R=H_{c}(0) S_{-\infty}^{0} \tag{1.1}
\end{equation*}
$$

These matrix elements in the region of the infrared Coulomb singularity have been evaluated, however, in a qualitative way.

It is well known that the energy charaoteristios of the many body system can be expressed in terms of Feynman S-matrix $[2,3]$

$$
\begin{equation*}
S=S_{-\infty}^{\infty}=T_{\exp }\left(-i \int_{-\infty}^{\infty} H_{i n t}(t) d t\right) \tag{1.2}
\end{equation*}
$$

Using this idea we establish the connection between matrix elements of the funotional derivatives of the operators R and S and express the kernel Q in terms of usual Green functions. Then one formulates the renormalization group method for the problem of the electron system with Coulomb interaction and with its aid one determines the 4-vertex Green function in the infrared region in the approximation of an electron gas at high density . Using these expression for determination of the kernel Q we obtain in the lowest approximation the expressions established in ${ }^{[1]}$ in a qualitative way.

2. Conneotion between the operators S and R and between their functional derivatives

The relation between the energy levels of the second-quantized system and the complete scattering matrix S was recently investigated by Sucher ${ }^{[2]}$ and Rodberg ${ }^{[3]}$. The more oonvenient formula was derived by Rodberg. From his formulae it.follows, in particular, the connection between matrix elements of the complete matrix S (1.2) and energy operator R (11), which can be represented in the form:

$$
\begin{equation*}
\left\langle\phi^{*} S \phi\right\rangle_{c}=-2 \pi_{i} \tilde{\delta}\left(E_{n}-E_{n}\right)\left\langle\oint_{n}^{*} R \phi_{n}\right\rangle_{c} \tag{2.1}
\end{equation*}
$$

?he subscript "c." indicates here that when calculating matrix elements one takes into aocount onily the connected graphs.

The formulae of the type (2.1) can be derived also for commutators of the matrices S, R with particle oreation and annihilation operators, and, oonsequently, for the functional derivatives S and R with respect to these operators.

Let $\dot{a}_{\mu \sigma}$ and $a_{N \sigma}$ be acoordingly the operators of creation and annibilation of an eleotron with momentum K, energy $\delta(\alpha)$ and spin σ. Then considering the corresponding commutators by means of (2.1) we arrive to the formula (calculation details are given in $[5]$)

$$
\begin{align*}
& i \int_{-\infty}^{\infty}\left\langle\stackrel{\dot{\Phi}_{1}}{\delta a_{N_{1}, \sigma_{1}}(0) \delta a_{k_{2} \sigma_{2}}\left(t_{2}\right) \ldots \delta a_{\ell_{m} S m}} \delta^{n+m} S\right. \\
& \times \exp \left\{i \sum_{2 \leqslant i \leqslant n} \varepsilon\left(k_{i}\right) t_{i}-i \sum_{j} \varepsilon\left(\ell_{j}\right) \tau_{j}\right\} d t_{2} \ldots d t_{n} d \tau_{1} \quad d \tau_{m}= \\
& =\int_{-\infty}^{0}\left\langle\oint_{1}^{*} \frac{\delta^{n+m} S}{\delta_{a_{k, \sigma_{1}}^{+}(t,) \ldots \delta a_{e_{m}} S_{m}\left(\tau_{m}\right)}} \Phi_{2}\right\rangle x \tag{2.2}\\
& \times \exp \left\{i \sum_{1 \leqslant i \leqslant n} \varepsilon\left(\kappa_{i}\right) t_{i}-i \sum_{j} \varepsilon\left(\ell_{j}\right) \tau_{j}\right\} d t_{1} \ldots d t_{n} d \tau_{, \ldots d \tau_{m}}
\end{align*}
$$

for

$$
\begin{equation*}
\sum_{1 \leqslant i \leqslant n} \varepsilon\left(k_{i}\right)-\sum_{j} \varepsilon\left(l_{j}\right)=E_{1}-E_{2} \tag{2.3}
\end{equation*}
$$

In derivation of this formula one made use of the property of the translational invariance of matrix elements of functional derivatives of the S - matrix which allowed to carry out one Integration over time in the left hand side and reduce δ-functions. The formula (2.2) is very convenient for further applications.

3. Transformation of the kernel Q of the oompensation equation

Using Eq. (22) we proceed now to the transformation of the kernel Q of the integral compensation equation for electron graphs in the theory of superoonductivity. It is defined by the formula

$$
\begin{equation*}
\int_{-\infty}^{0}\left\langle\frac{\delta^{2} R}{\delta \dot{\alpha}_{k_{1}}(t) \delta \alpha_{k_{0}}\left(t^{\prime}\right)}\right\rangle_{c} e^{i \tilde{\varepsilon}(k)\left(t+t^{\prime}\right)} d t d t^{\prime}=0 \tag{3.1}
\end{equation*}
$$

(see Eq. 1.5.20), 1.e.Eq. (5.20) in the paper ${ }^{1}$.
Aooording to (2.2) for small $\tilde{\varepsilon}(K)$ (1.e. In the small vicinlty of the Fermi Surface) Eq. (3.1) may be replaced by

$$
\begin{equation*}
i \int_{-\infty}^{\infty}\left\langle\frac{\delta^{2} S}{\delta \alpha_{k_{1}}(0) \delta \alpha_{k_{0}}(t)}\right\rangle_{c} e^{-i \hat{\varepsilon}(k) / t \mid} d t=0 \tag{3.2}
\end{equation*}
$$

Just as it has been made in $[1]$ we reduce (3.2) 'to the form:

$$
\begin{equation*}
2 \xi(k) u_{k} v_{\kappa}=\left(u_{\alpha}^{2}-v_{k}^{2}\right) \sum_{K^{\prime}} u_{k^{\prime}} v_{k^{\prime}} Q\left(K_{,} \mu^{\prime}\right) \tag{3.3}
\end{equation*}
$$

where u_{k}, v_{k} are the parameters of the canonical transformation from a to α, $\xi(N)=E-\lambda+$

$$
+i \int_{-\infty}^{\infty} e^{-i \tilde{\delta}(\alpha) / t)}\left\{\left\langle\frac{\delta^{2} S}{\delta a_{k_{1},}(0) \delta \hat{a}_{N_{1},+}(t)}\right\rangle_{c}-\left\langle\frac{\delta^{2} S}{\delta \delta_{-K_{1}-}(0) \delta a_{-K_{1}-}(t)}\right\rangle_{c}\right\} d t
$$

and the kernel Q can be represented as a sum of the terms

$$
\begin{equation*}
Q\left(k, k^{\prime}\right)=Q_{c}\left(k, k^{\prime}\right)+Q_{p h}\left(k, k^{\prime}\right) \tag{3.4}
\end{equation*}
$$

The first term Q_{C} corresponds to pure. Coulomb interaotion. It equals

$$
Q_{c}\left(k, k^{\prime}\right)= \begin{cases}q\left(k, k^{\prime}\right) & \text { for } \tag{3.5}\\ q>k_{F} \\ q\left(k^{\prime}, k\right) & \text { for } k<k_{F}\end{cases}
$$

In order to obtain an explicit expression for the "phonon" term Qph using (1.5.3) we represent the right hand side of Eq. (3.5) for $K<K_{F}$ in the form

$$
\begin{equation*}
\sum_{k^{\prime}} u_{k^{\prime}} v_{k^{\prime}} Q\left(k^{\prime} \kappa^{\prime}\right)=i \int_{-\infty}^{\infty}\left\langle\frac{\delta^{2} S}{\delta a_{k_{,},+}(0) \delta a_{-k,-}^{t}(t)}\right\rangle_{0} e^{-i \tilde{\varepsilon}(k)|t|} d t \tag{3.6}
\end{equation*}
$$

The r.his. matrix element with due account of the causality property of the S - matrix (compare, for ex. Eq. (48.15) ${ }^{[4]}$ can be represented in the form of a chronologioal product of the two "ourrents"

$$
\begin{gather*}
\left\langle\frac{\delta^{2} S}{\delta a_{k_{,},+}(0) \delta a_{-k_{1}-}(t)}\right\rangle=\left\langle\frac{\delta^{2} S}{\delta a_{k,+}(0) \delta a_{-k_{1}-}(t)} S^{+}\right\rangle_{\alpha_{0}}= \\
=\left\langle T\left(\frac{\delta S}{\delta a_{\alpha_{1},+}(0)} \stackrel{+}{S}\right)\left(\frac{\delta S}{\delta a_{-k,-}(t)} \stackrel{+}{S}\right)\right\rangle_{\alpha_{0}} . \tag{3.7}
\end{gather*}
$$

The subsoript $" \alpha_{0} n$ denotes here the expeotation value over the α - vacuum .
The obtained chronologioal product of the ourrents for each of the two oases ($t>0$, or $t<0 \quad$) 1s a usual product of these ourrents. This produot oan be expanded in the complete set of physical states. Restrioting ourselves in this expansion to the states with one α - eleotron and one β - phonon we single out "main terms" oontaining the small deno minator :

$$
\tilde{\omega}(q)+\widehat{\varepsilon}(k)+\widehat{\varepsilon}\left(k^{\prime}\right), \quad\left(q=k-k^{\prime}\right)
$$

Using the property of translational invarianoe we obtain, for example, for $t<0$:

Then performing the commutation of the operators $\dot{\alpha}, \alpha, \vec{\beta}, \beta \quad$ with $\delta S / \delta \dot{a}$ we make the transition to the limit $\alpha \rightarrow a$. Adding the results for $t>0$ and $t<0$ taking into acoount the symmetry of $H_{p h}$ with respeot to β and $\hat{\beta}$ and using (3.7), (3.8) we obtain from (3.6)

$$
\begin{equation*}
Q_{p n}\left(k^{\prime}, \mu^{\prime}\right)=-2 \frac{\Gamma\left(k, k^{\prime}, q\right) \Gamma\left(-k,-k^{\prime},-q\right)}{\tilde{\omega}(q)+\tilde{\varepsilon}(k)+\tilde{\varepsilon}\left(k^{\prime}\right)} ; q=k-k^{\prime} \tag{3.9}
\end{equation*}
$$

where

$$
\begin{align*}
& \Gamma\left(\kappa^{\prime}, k^{\prime}, q\right)= \\
& =\int_{-\infty}^{\infty} d \tau d \theta\left\langle\frac{\delta^{3} S}{\delta a_{k^{\prime}+}(\tau) \delta^{\prime} a_{k,+}(o) \delta_{\beta_{q}}(\theta)}\right\rangle_{c} \tag{3.10}
\end{align*}
$$

The expression (3.10) is written for small \mathcal{E}, ω. Performing the funotional differentiation with respect to β and making the transition to the limit $g=0$ we get

$$
\begin{equation*}
Q_{p h}\left(k, \mu^{\prime}\right)=\frac{2 \tilde{g}^{2}(q) \tilde{\omega}(q)}{\tilde{\omega}(q)+\tilde{\varepsilon}\left(k^{\prime}\right)+\tilde{\varepsilon}(k)} \Lambda\left(k_{,}, k^{\prime}, q\right) \Lambda\left(-k_{,}-k^{\prime},-q\right) \tag{3.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda\left(k, k^{\prime}, q\right)=\int_{-\infty}^{\infty} d \tau d t\left\langle\frac{\delta^{2}\left[T\left(H_{q}(t) S_{c}\right)\right]}{\delta a_{k^{\prime}, t}(\tau) \delta a_{k^{\prime},+}+(0)}\right\rangle_{c} \tag{3.12}
\end{equation*}
$$

S_{c}. being a pure Coulomb matrix, and

$$
H_{q}(t)=\frac{1}{\sqrt{2 v}} \sum_{l, s} \dot{a}_{l+q, s}(t) a_{p, s}(t)
$$

Performing explioitly in (3.12) the functional differentiation and using "generalized Wiok theorm" (see Eq. (34.11) ${ }^{[4]}$) we obtain for Λ the representation in terms of one eleotron'Green functions and 4-vertex Green function of the pure Coulomb problem. This representation is given as Eq. (3.15) in the paper ${ }^{[5]}$. It will not be written down here. It is essential for us that in the infrared region for $q^{2} \sim 0$ it has the form:

$$
\begin{equation*}
\Lambda\left(k, k^{\prime}, q\right)=\Lambda(q)=\frac{1}{\sqrt{2 V}}\left\{1-\frac{\nu(q) F(q)}{2} \sum_{s} \int_{-\infty}^{\infty} d t \Psi_{s q}(t)\right\} \tag{3.14}
\end{equation*}
$$

where $\quad \ell(q)$ is a kernel of the Coulomb interaction,

$$
F(q)=\frac{4}{v} \sum_{\substack{e+q>k_{F} \\ \ell<k_{F}}} \frac{1}{\widetilde{\varepsilon}(l+q)+\widetilde{\varepsilon}(e)}
$$

and $\Psi_{S, q}(t)$ is a coefficient for the main part of the 4-th order funotional derivatives

$$
\begin{equation*}
\left\langle\frac{\delta^{4} S_{c}}{\delta \dot{a}_{l, s}(\tau) \delta a_{k,+}}(\theta) \delta a_{e+q, s}(0) \delta a_{R_{j}^{\prime}+}(t) \quad\right\rangle=\frac{i \nu(q)}{v} \delta(\tau) \delta(t-\theta) \psi_{s, q}(t) \tag{3.15}
\end{equation*}
$$

4. Problem of summation of the Coulomb singularities

The obtained expressions (3.5), (3.14) and (3.15) for the kernels Q and Q phof the integral oompensation equation oontain the fourth order functional derivatives of the Coulomb matrix S_{c}. Their expressions oan be analysed completely in the approximation of an eleotron gas at high density when the effeotive parameter of the Coulomb interaction

$$
\nu\left(x_{F}\right) \frac{N}{V}
$$

is small in comparison with eleotron energy on the Fermi surface $K_{f}^{2} / 2 m$, i.e. for

$$
\begin{equation*}
\frac{4 \pi \hbar^{2} e^{2}}{K_{F}^{2}} \cdot \frac{N}{V} \cdot \int \frac{K_{R}^{2}}{2 m}=\frac{8}{\pi^{3}} \Gamma_{s} \alpha \ll 1 \tag{4.1}
\end{equation*}
$$

Here $\alpha=(4 / 9 \pi)^{1 / g}$, and r_{s} is a dimensionless intereleotron spaoing measured in Bohr radius units.

In this case the Coulomb energy is small in comparison with the kinetic energy everywhere except the region of small momentum transfers

$$
\begin{equation*}
q^{2} \ll k_{F}^{2} \tag{4.2}
\end{equation*}
$$

this is so called "infrared region". Therefore, one can emplay the usual perturbation theory everywhere exoept the infrared region. In this region where the effective expansion parameter $r_{s} K_{F}^{2} / q^{2}$ is not small it is necessary to summarize the infinite set of the "main" Coulomb terms proportional to the powers $\quad\left(r_{s} k_{f}^{2} / q^{2}\right)^{n}$

Here we meet with the situation well known in the relativistic quantum eleotrodynamios Where in spite of the smallness of the dimensionless coupling constant (fine struoture parameter $e^{2} / 4 \pi=1 / 137$) in the so called "ultraviolet" and the "infrared" regions of momentum variables the product of $e^{2} / 4 \pi$ and nlarge" logarithm is an effeotive expansion parameter. In the quantum eleotrodynamios there is a number of well known methods,
allowing to summarize infinite sets of main terms. We mean here the method of summation of the main graphs by Landau, Abrikosov and Halatnikov $[6]$ and renormalization group method [4].

In the quantum statistics there is a number of methods yielding analogous results. So, the procedure of summing the main Coulomb graphs suggested by Gell-Mann; Brueckner, and Sawadal 7] is essentially equivalent to the method given in the paper [6]. The well known method of approximate second quantization $[8]$ in the problem of an eleotron gas at high density leads also to the analogous results $[1,9]$. Finally, for summation of the coulomb singularities of the Green functions one may use the renormalization group teohnique. For the first time this possibility was indicated in the paper $[10]$ *)

An important advantage of the renormalization group method is its regularity. As it will be. shown the first approximation of the renormalization group method leads to the formulae which ooincide with the results of sumation of the main graphs (.just as in the quantum field theory (and. with the formulae of the approximate second quantization method.

The results of the higher approximations of the renormalization group method may be of Interest for investigating the problem of extension of the limit of applicability of the electron gas at high density approximation.

5. Renormalization group in the problem of the Coulombinteraotion between eleotrons

The possibility of use of the renormalization group method in the problem of the Coulomb interaotion between electrons is based (the more detailed oonsideration see in [10], on the group character of the finite multiplioative transformation of the basio quantities : one electron Green function G, twomeleotron Green funotion (4-vertex) Γ and dimensionless parameter of the Coulomb interaotion r (see (4.1)

$$
\begin{equation*}
G \rightarrow G^{\prime}=z_{2} G, \quad \Gamma \rightarrow \Gamma^{\prime}=z_{1}^{-1} \Gamma, \Gamma \rightarrow \Gamma^{\prime}=z_{1} z_{2}^{-2} r \tag{5.1}
\end{equation*}
$$

The meaning of the transformation (5.1) resides in tne faot that the sets. ($G,{ }^{\prime} \Gamma^{\prime}, r^{\prime}$) and (G, Γ, r) desoribe the same physical pioture.

The tool of the renormalization group method is Lie differentional equations. In order to obtain them it should write down at first functional group equations, oorresponding to the transformation (5.1). As a first step it is necessary to choose the representation of the Green funotions G and Γ.

[^0]For this purpose we proceed to the symmetrical momentum - energy representation of the electron operators (. see, for ex. [11])

$$
\begin{align*}
& a_{s}(p)=a_{s}\left(p_{0}, \bar{p}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i p_{0} \tau} a_{\bar{p}, s}(\tau) d \tau \tag{5.2}\\
& \dot{a}_{s}(p)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i p_{0} \tau} \dot{a}_{\bar{p}, s}(\tau) d \tau
\end{align*}
$$

In this representation the chronological pairing has the form:

$$
\vec{a}_{s}(p) \vec{a}_{\sigma}(k)=i \delta(p-\mu) \delta_{s \sigma} G_{0}(p)
$$

where

$$
\begin{align*}
& \therefore \delta(p-k) \equiv \delta_{\bar{p} \bar{K}} \delta\left(p_{0}-k_{0}\right) \\
& G_{0}(p)=\frac{1}{p_{0}-|\bar{\varepsilon}(\bar{p})|+i \alpha \operatorname{sign} \bar{\varepsilon}(\bar{p})} \tag{5.3}
\end{align*}
$$

In the case under consideration due to the determination of the renormalized energy $\hat{\mathcal{E}}$ for the total Green function

$$
\frac{\left\langle T a_{S}(p) a_{\sigma}(k) S\right\rangle_{0}}{S_{0}}=i \delta(p-k) \delta_{S \sigma} G(p)
$$

we have also

$$
\begin{equation*}
G(p)=\frac{S(p)}{p_{0}-|\tilde{\varepsilon}(\tilde{p})|+i \alpha \operatorname{sign} \tilde{\varepsilon}} . \tag{5.4}
\end{equation*}
$$

We determine the two-electron (4 -vertex) Green function Γ as follows:

$$
i\left\langle\frac{\delta^{4} S}{\delta a_{1},\left(P_{1}\right) \delta a_{s_{2}}\left(p_{2}\right) \delta \dot{a}_{\sigma_{1}}\left(\kappa_{1}\right) \delta \dot{a}_{\sigma_{2}}\left(k_{2}\right)}\right\rangle_{c}=\delta\left(p_{1}+p_{2}-k_{1}-k_{2}\right) \Gamma_{s_{1}, s_{2}} \sigma_{1} \sigma_{2}\left(p_{1}, p_{2}, k_{1}, k_{2}\right)
$$

where

$$
\begin{gathered}
\Gamma_{s, s_{2} \sigma_{1} \sigma_{2}}\left(p_{1}, p_{2}, k_{1}, k_{2}\right)=\frac{i}{2 \pi} \int_{-\infty}^{\infty} d \tau d t_{1} d t_{2} e^{-i p_{2}^{0} \tau+i k_{1}^{0} t_{1}+i k_{2}^{0} t_{2}} \times \\
\left\langle\frac{\delta{ }^{4} S}{\left.\delta a_{S_{1} p_{1}}(0) \delta a_{s_{2} p_{2}}(\tau) \delta a_{\sigma_{1} k_{1}}\left(t_{1}\right) \delta{a_{\sigma_{2} k_{2}}\left(t_{2}\right)}\right\rangle_{c}}\right.
\end{gathered}
$$

for

$$
P_{1}^{0}+P_{2}^{0}=K_{1}^{0}+K_{2}^{0}, \quad \bar{P}_{1}+\bar{P}_{2}=\bar{K}_{1}+\bar{K}_{2}
$$

The function Γ has a simple matrix structure.
$\Gamma_{s_{1} s_{2}} \sigma_{1} \sigma_{2}\left(P_{1}, P_{2}, \kappa_{1}, R_{2}\right)=\delta_{s_{2}} \sigma_{1} \delta_{s_{1}} \sigma_{2} \Gamma\left(k_{1}, \kappa_{2}, p_{1}, P_{2}\right)-\delta_{s, \sigma_{1}} \delta_{s_{2}} \sigma_{2} \Gamma\left(\kappa_{1}, k_{2}, P_{2}, P_{1}\right)$
In the case (we are interested in) of the infrared coulomb asymptotic behaviour the one-electron Green funotion G has no singularity and, hence, one may put $S(P)=1$. Taking into aooount the faot that for the compensation equation the vioinity of the Fermi
surfaoe is only essential we can restrict ourselves to the examination of the function Γ for $k_{1}^{0}=k_{2}^{0}=P_{1}^{0}=P_{2}^{0}=0$

$$
\Gamma\left(\bar{N}_{1}, \bar{K}_{2}, \bar{P}_{1}, \bar{P}_{2}\right)=
$$

$$
\begin{equation*}
=\frac{i}{2 \pi} \int_{-\infty}^{\infty} d \tau d t_{1} d t_{2}\left\langle\frac{\delta^{4} S_{c}}{\delta \alpha_{p_{1},+}(0) \delta a_{p_{2,-}}(\tau) \delta a_{\Lambda_{1}^{+}}^{+}\left(t_{1}\right) \delta a_{k_{2},+}^{+}\left(t_{2}\right)}\right\rangle_{c} \tag{5.6}
\end{equation*}
$$

for

$$
\bar{K}_{1}+\bar{K}_{2}=\bar{P}_{1}+\bar{P}_{2}
$$

Indeed, from (3.5) we get

$$
\begin{equation*}
q\left(k, \kappa^{\prime}\right)=-2 \pi \Gamma(-\bar{k}, \bar{x}, \bar{\kappa}-\bar{q}, \bar{q}-\bar{k}) \tag{5.7}
\end{equation*}
$$

On the other hand from (3.14) and (3.15) it follows

$$
\begin{equation*}
\Lambda(q)=\frac{1}{\sqrt{2 v}}\{1-2 \pi V F(\bar{q}) \Gamma(\bar{q})\} \tag{5.8}
\end{equation*}
$$

whare $\dot{\Gamma}(\bar{q})$ is a "main" part of the function $\Gamma(\bar{e}+\bar{q}, \bar{k}-\bar{q}, \bar{x}, \bar{l}) \quad$ in the Iimit of small \bar{q} which does not depend on $\bar{\mu}$ and \dot{e}.

In the lowest perturbation order

$$
\Gamma_{0}(k, e, e+q, k-q)=\frac{\gamma(q)}{2 \pi v}
$$

Therefore it is convenient to introduce a new function g, defined by the relation

$$
\begin{equation*}
\Gamma(k, l, l+q, k-q)=\frac{v(q)}{2 \pi v} g(k, l, l+q, k-q) \tag{5.9}
\end{equation*}
$$

This function has the following important properties:
a) Under transformation (5.1) undergoes the transformation

$$
\begin{equation*}
g \longrightarrow g^{\prime}=z_{1}^{-1} g \tag{5.10}
\end{equation*}
$$

b) in the limit of switching off the coulomb interaction it tends to the oonstant value
c) being represented by the perturbation series it contains the terms proportional to powers of the ratio $\left(\Gamma_{s} \kappa_{f}^{2} / q^{2}\right)$

In such a situation it is not difficult to write down the functional group equation for the vertex function g in the infrared region.

Introduoing the "normalization" momentum λ. Let us consider the dimensionless variables:

$$
g\left(q^{2}, R_{F}^{2}, \ldots, r\right)=f\left(\frac{q^{2}}{\lambda^{2}}, \frac{R_{F}^{2}}{\lambda^{2}}, r\right)
$$

The dots denote here unessential momentum variables $\kappa^{2}, e^{2}(k+\ell)^{2}$
(as well as energy variables k_{0}, q_{0}, l_{0}, . We do not write down explioitly all these variable considering them as fixed parameters:

With due account of (5.1) and (5.10) we obtain

$$
\begin{equation*}
f\left(\frac{q^{2}}{\lambda_{1}^{2}}, \frac{\kappa_{F}^{2}}{\lambda_{1}^{2}}, r_{1}\right)=z_{1}^{-1} f\left(\frac{q^{2}}{\lambda^{2}}, \frac{\kappa_{F}^{2}}{\lambda^{2}}, r\right) . \tag{5.11}
\end{equation*}
$$

Choosing the normalization momentum $\lambda^{\mathcal{A}}$ so as

$$
\begin{equation*}
f(1, y, r)=1 \tag{5.12}
\end{equation*}
$$

we are led to the functional group equation

$$
\begin{equation*}
f(x, y, r)=f(t, y, r) f\left(\frac{x}{t}, \frac{y}{t}, r f(t, y, r)\right) \tag{5.13}
\end{equation*}
$$

Differentiating (5.12) with respect to x and setting $t=x$ we get the Ife equation

$$
\begin{equation*}
\frac{\partial f(x, y, r)}{\partial x}=\frac{f(x, y, r)}{x} \mathscr{P}\left(\frac{y}{x}, r f(x, y, r)\right) \tag{5.14}
\end{equation*}
$$

Where the funotion

$$
\begin{equation*}
\phi(y, r)=\left.\frac{\partial f(x, y, r)}{\partial x}\right|_{x=1} \tag{5.15}
\end{equation*}
$$

is to be computed by means of the perturbation theory.

6. Infrared asymptotic behaviour of the vertex function

The calculation of the function f entering the right hand side of (5.15) must be. performed with account of the multiplicative ambiquity (5.11) providing the fulfilment of the normalization condition (5.12).

In this way with the acouracy of the terms of the third order we get

$$
\begin{equation*}
f_{T, B}(x, y, r)=1-a r\left(\frac{y}{x}-1\right)+b r^{2}\left(\frac{y}{x}-1\right)^{2}-c r^{2}\left(\frac{y}{x}-1\right)+\cdots \tag{6.1}
\end{equation*}
$$

a, b, c being certain oonstants (whioh can depend on above-mentioned parameters). Substituting (6.1) into 5.15 and 5.14 and carrying out the integration we obtain consequently:

$$
\begin{gather*}
\Phi(y, z)=a 2 y+c r^{2} y \\
\frac{d f}{f^{2}\left(1+r \frac{c}{a} f\right)}=\operatorname{ary} \frac{d x}{x^{2}} \tag{6.2}\\
\Gamma \frac{c}{a} \ln \left|\frac{a+r c f}{(a+r c) f}\right|+1-\frac{1}{f}=\operatorname{ary}\left(1-\frac{1}{x}\right)
\end{gather*}
$$

We got here a transcendental equation for f which can be solved by method of successive approximations teking into account the smallness of r. This yields

$$
\begin{equation*}
f(x, y, r)=\left\{1+\operatorname{ary}\left(\frac{1}{x}-1\right)+r \frac{c}{a} \ln \left|\frac{1+\operatorname{ary}\left(\frac{1}{x}-1\right)+p \frac{c}{a}}{1+r \frac{c}{a}}\right|\right\}^{-1} \tag{6.3}
\end{equation*}
$$

Iet us note that the constant \boldsymbol{b} of Eq. (6.1) did not enter the formulae (6.2), (6.3). The fact is that b really is not idependent. Expanding (6.3) in a power serics in and comparing with (6.1) we find

$$
\begin{equation*}
b=a^{2} \tag{6.4}
\end{equation*}
$$

Now we have only to pass on to the usual non-normalized function f_{0}, depending on the observable value of the coupling constant $\Gamma=r_{s}$ and not containing the normall zation momentum λ 。

The perturbation theory fields for f_{0} :

$$
\begin{equation*}
f_{0}^{r B}\left(q^{2}, r_{s}\right)=1-a r_{s}\left(\frac{K_{F}^{2}}{q^{2}}+d\right)+a^{2} r_{s}^{2}\left(\frac{K_{F}^{2}}{q_{2}}+d\right)^{2}-C r_{s}^{2} \frac{K_{F}^{2}}{q^{2}}+\cdots \tag{6.5}
\end{equation*}
$$

Here d is a constant like a, c.
To proceed to r_{s} we profit by the usual method (see 42.34) based on the Invariant charge rf property :

$$
\begin{equation*}
r f\left(\frac{q^{2}}{\lambda^{2}}, \frac{k_{F}^{2}}{\lambda^{2}}, r\right)=r_{s} f_{0}\left(q^{2}, k_{F}^{2}, r_{s}\right) \tag{6.6}
\end{equation*}
$$

Putting in (6.6) $q^{2}=\lambda^{2}$ we obtain for r an explicit expression

$$
r=r_{s} f_{0}^{T B}\left(S^{2}, K_{F}^{2}, r_{s}\right)
$$

Substituting this value into the left hand side of (6.6) with account of (6.3) and after a simple calculation we are led to the formula :

$$
\begin{align*}
& f_{0}\left(q^{2}, r_{s}\right)= \\
= & {\left[1+a r_{s}\left(\frac{k_{F}^{2}}{q^{2}}+q\right)+r_{s} \frac{c}{a} \ln _{n}\left(1+a r_{s} \frac{k_{F}^{2}}{q^{2}}\right)\right]^{-1} } \tag{6.7}
\end{align*}
$$

It is not difficult to make sure that (6.5) is an expansion of (6.7) in powers of small parameter r_{s}.

7. Discussion of the results.

Let us discuss the obtained formula (6.7) desoribing the behaviour of the coulomb 4-vertex in the infrared region.

Recalling that according to (5.9)

$$
\begin{equation*}
\Gamma(q)=\frac{v(q)}{2 \pi v} f_{0}\left(q^{2}, r_{s}\right)=\frac{2 e^{2}}{V(q)^{2}} f_{0}\left(q^{2}, r_{s}\right) \tag{7.1}
\end{equation*}
$$

we consider the expression

$$
\begin{equation*}
Q^{-2}=\frac{1}{q^{2}} f_{0}\left(q^{2}, r_{s}\right)=\frac{1}{q^{2}+a r_{s} k_{p}^{2}+q^{2} a_{s} d+r_{s} \frac{c}{a} q^{2} e_{n}\left(1+a r_{s} \frac{k_{s}^{2}}{q^{2}}\right)} \tag{7.2}
\end{equation*}
$$

In the limit of the small r_{s} and q^{2} we get

$$
\begin{equation*}
Q^{-2}=\frac{1}{q^{2}+a r_{5} k_{F}^{2}}=\frac{1}{q^{2}+q_{s}^{2}} \tag{7.3}
\end{equation*}
$$

$q_{S}=0,814 r_{S}^{1 / 2} K_{F}$ being the inverse length of the Tomas-Fermi screening.
Thus, in the first approximation (in powers r_{s}) the formula (7.2) leads to the well known Coulomb screening formula.

This shows that the results of summation of the main Coulomb graphs by Gell-Mann, Brueckner and Sawada 7 can be obtained in a much simpler way, i.e. by the renormalization group method.

Let us note also that after substitution of (7.3) into (7.1) and (5.8) with due account of the fact that
we obtain x)

$$
\lim _{q^{2} \rightarrow 0} q^{2} F(q) \quad v(q)=q_{s}^{2}
$$

$$
\begin{equation*}
\Lambda(q)=\frac{1}{\sqrt{2 v}}\left\{1-\frac{q_{s}^{2}}{q^{2}+q_{s}^{2}}\right\}=\frac{1}{\sqrt{2 v}} \frac{q^{2}}{q^{2}+q_{s}^{2}} \tag{7.4}
\end{equation*}
$$

The formulae (7.3) and (7.4) coincide with the results obtained in the qualitative way in $6.2[1]$.

However, the signification of the formulae (7.2) and (6.7) and the possibilities of the renormalization group method in the problem of interacting electrons is not exhausted by this.

The renormalization group technique gives a regular method of improvement of the approximation properties of the usual perturbation expansions. This fact is well known in the quan tum field theory. The present investigation illustrates this fact for the quantum statistics.

The formulae (6.7) and (7.2) generalized to the oase of the non-zero energy arguments present the second approximation to the results of the paper ${ }^{[7]}$.

The further generalization of these formulae to higher orders can be performed simply
x) This formula agrees with the result given in the paper [12].
taking into acoount in (6.1) the terms of the next orders with respect to the powers P_{S}.
Such a generalization may be of interest, for instance, in order to specify the superconductivity oriterion (see $\oint 6.3[1]$) and expansions for the correlation energy in the region of not very small Γ_{s}

In this connection note that recently it became known a thesis of Dubois (13), which attempted to improve the formulae of the paper 7 by summing the main graphs of the seoond order.

A brief oomparison of Eq. (6.7) with the results of the paper [13] shows that the structure of the expressions obtained there (see Eqs. (2.7), (2.5) and (A.3) 13) corresponds to the resulto of the substitution in Eq. (6.7)

$$
r_{s} \frac{c}{a} \ln \left(1+a r_{s} \frac{k_{F}^{2}}{q^{2}}\right)-r_{s}^{2} c \frac{K_{F}^{c}}{q^{2}}
$$

consistent only for small r_{s} and not small q^{2}.

In conclusion author expresses his gratitude to N. N. Bogolubov and V.V.Tolmachov for useful discussion of a number of questions.

Received by Publishing Department on February 23, 1959.

Referenoes

I) N.N.Bogclubov, V.V.Tolmaohov, D. V.Shirkov "A new method in the theory of superconductivity" Mosoow Izdat. AN SSSR 1958 (In russian). The English translation will be published in Fortsohritt der Physik x).
2) J.Sucher, Phys.Rev. 107, 1448 (1957).
3) L.Rodberg; Phys.Rev. , 110,277 (1958).
4) N.N. Bogolubov, D.V.Shirkov, "Introduction to the theory, of Quantized Fields" Mosoow, Gosteohizdat, 1957 in Russian; "Intersoienoe Publishers", N.Y., 1959 - in English.
5) D.V.Shirkov, JETP, 36, n.2, 1959.
6) I.D.Iandau, A.A.Abrikosov, I.M.Halatnikov, Dokl.Akad.Nauk SSSR, 95, 773,1177; 96,261 (1954).
7) M. Gell-Mann, K.A.Brueckner, Phys.Rev. 106, 364 (1957); K.Sawada, Phys.Rev., 106, 372(1957).
8) N.N.Bogolubov "Lectures on quantum statistics ", Kiev, 1947.
9) Chen Chun-San, Chou S1 Shin, JETP, 34, 1566 (1958).
10)V.Z.Blank, V.I.Bonch-Bruevich , D.V.Shirkov, JETP 33, 265 (1957).
11) N.M.Galitsky, A.B.M1gdal, JETP, 34, 139 (1958); V.M.Galitsky, JETP, 34, 151 (1958).
12)Chen Chun-San, Chou Si-Shin, JETP, 36, n.5 (in print).
13)Donald F., Dubois, Eleotron Interactions, Doctoral Thesis, California Institute of Technology, 1958.
14)D.V.Shirkov, JETP, 36, n. 6 (in print).
15)V.I.Bonoh-Bruevion, "Fizika Metallov 1 Metallovedenie" 6, 769 (1958).

[^1]
[^0]: x) For application of the renormalization group method in quantum statistio problems see aiso[15].

[^1]: x) In the English translation the numbers of sections and equations are changed so, for example, Russian edition §6.3. §6.2. (5.20) , (5.34.)

 English translation $5.4 \oint 5.2$ (4.6) , (4.19).

