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A b S t r a C t 

A new form of the oonnection between matrix elements of the functional derivatives of the 

Feynman scattering matrix and those of the energy operator is established. This form contains 

no infinite d - factors or transitions to the limit. The kernel of the integral equation 

of compensation of "dangerous" electronic graphs in the theory of superconductivity is expres­

sed by this way in terms of usual Green functions. 

The summation of the Coulomb singularities in the kernel of the compensation equation is 

performed by means of the renormalization group method in the approximation of an electron gas 

at high density. The results of summat1on•in the lowest approximation coincide with the formu­

lae obtained before in a qualitative way. 
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Introduotor;y remarks 

In the paper[l] the effect of the Coulomb interaction betwee·n the electrons in the theory 

of superconductivity has been analysed. The _structure r:,f the kernel Q {It, 1(1) of the integral 

compensation equation for dangerous electron graphs has been investigated. The kernel Q is 

e:-:::pren:;,id in terms of matrix elements of the matrix 

o-
s_o _, = T<>.xp 

i,nd energy operator ,I 

r-'°[ He rf )cit) 

- 00 

R =H (o) 5° 
(' - 00 

(1.1) 

These matrix elements in the region of the infrared Coulomb singularity have been evaluated, 

however, in a qualitative way. 

It is well known that the energy charaoteristios of the many body system can be expressed 

in terms of Feynman S -matrixr2,JJ 

S = 5_: "'Texp (·if Hlnt (t )df). (1.2) 
-oo 

Using this idea we establish the ·connection between matrix elements of .the functional de­

rivatives of the operators R and S and express the kernel Q in terms of usual Green 

functions. Then one formulates the renormalization group method for the problem of the electron 

system with Coulomb interaction and with its aid one determines.the 4-vertex Green function 

in the infrared region in the approximation ~fan electron gas.at high density. Using these 

expression for determination of the kernel Q we obtain in the lowest approximation the 

expressions established in[l] in a qualitative way. 

2. ~tion between the operators S and ...Ji. and between_~ 

!!!!!2llim!~ill~ 

The relation between the energy levels of the second-quantized system and the complete 

scattering matrix S was recently investigated by Sucherf2J and RodbergfJ] The more convenient 

formula was derived by Rodberg. From his formulae it.follows, in particular, the connection 

between matrix elements of the co~plete matrix S (1.2) and energy operate~ R (11), which 

can be represented in the form: 

.,,. ,,. 
<. cp S <p ~ = -2rJr,d{En-£ n} < 'Prz R cP,, )c • (2.1) 

1;·11e subscript · 11 c_n indicates here that when calculating matrix elements one takes into account 

only thC:. connected graphs. 
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\ . 
The formulae of the type (2.1) ·can be derived also for commutators of the matrices s, R 

with'particle creation and annihilation operators, and, consequently, for the functional deri­

vatives S and R with respect to these operators. 

+ 
Let al{(J' and a ,tG- be accordingly the operators of creation and annihilation of an 

electron with momentum I( , energy Cc,o and spin <r • Then considering the correspon-

ding commutators by means of (2.1) we arrive to the formula ( calculation details are given 

in [5] ) 

dr = 
tn 

=/ < .i, 
(2.2) 

4? > )( 
J'"a.,,,. (l,) ... oa,, s ('<, ) 2. 

' /1\t"'I t:.m 111 111 

for 

(2.J) 

In derivation of this formula one made use of the property .of the translational invariance 

of matrix elements of functional derivatives of the S - matrix which allowed to carry out one 

integration over time in the left hand side and reduce ·() - functions. The formula (2.2) is 

. very con1enient for further applications. 

J. Trans~ormation of the kernel Q of the 2.Q_~pensation e~~!m: 

Using Eq. (22) we proceed now to the transformation· of the kernel Q of the integral 

compensation equation for electron graphs in the theory of superconductivity. It is defined 

by the formula 
0 

J 
- oO 

<f,I.R. (2°{!l)(f+t') I < ---- 1,. e dtdt 0 {) 1 (f}cJ (fJ C = 
l(f Ko 

(J.l) 

( see Eq. 1. 5.20), i.e. Eq. (5.20) in the paper 1• 

Aooording to (2~2) for small ~(K} 

Eq. (J.l) may be replaced by 

( i.e. in the small vicinity of the Fermi Surface) 

(J.2) 

.. 
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Just as it has been made in fl] 
. I 

we reduce (J.2) to the form: 
' . . ............. "' 

2.? ( K) lll( if.t = (u;- V-~) L, ul(, v;, Q (~ II') 
K 

(J.J) 

where U 11, , 1/it · are the parameters of the canonical transformation from a· to ~; 
JulJ = F -.ii.+ 

j _,£<11)/r/{<: r.l ,S cf'.2 S } 
~~ e _ oa11,,10Joal(,.,. ro -f -< cr-if..11,- to) oa-1(,- ttJ >c, dt 

and the kernel Q can be r_epresented as a sum of the terms 

Q(l/,P'J=Qc (l(,K~ + 0,f" (K,1t'J. 
• (J.4) 

The first term Qc corresponds to pure.Coulomb interaction. It equals 

q,r;,11~• { 
q,_ (It, fl') 

CJ, (!(~II) 

for K >KF 

for K<l<F 

(J.5) 

"" •fotJ/'f"-T'/- ;lr11')/f/ ( · d 4 S . -._ 
I - t +. ,,,,_ /. D(ll,'KJ=ifdrdr-d1: e . X ·oQll•.,.{O)()O_l(,_{-t)oal(,.,.{'l)oo_l(,- (1'"') C: ""'t,. -ca , , 

In order to obtain an explicit expression for the "phonon" term q,t>lr · using (1.5.J) 

we represent the right hand side of Eq. (J.5) for K < KF in the form 

_ . 
000 01.. S . _ 1Z<11) 1t1 

Lull,~,Q{Jl,JtJ==iJ< + t'.+ · )),.f dt 
ll' _ 00 ooJI, .. ( o) a-11, _ ("t tJ , · (J.6) .. 

The r.h.s. matrix element with due account of the causality property of the s - matrix.(oompare, 

for ex. Eq. (48.15)[4] can be represented in the form of a chronological product of the two 

< J'"".2..5 >- ( t1..s . .,.) -----,-_ --- - -------- .5 -
oall + {O} cf"a_k'_ tt) oa (o) 66 {t} d.o 

I I K,+- -It, -

"currents" 

=(T(tYs f)(s-s +) 
<fa,.,,f-roJ oa_Jl,- ttJ S 1

0 

(J.7) 

The subscript n cl
0 

n denotes here the expectation value- over- the d.. - vacuum • 

The obtained oilronologioal product of the currents for each of the two oases ( t > o . or 

t ~o ) is a usual product of these currents. This product can be expanded.in the com-

plete set of physical states. Restricting ourselves-in this expansion to the states_with one 

d.. - electron and one J - phonon we single out "main terms" containing the_ small deno -

minator: 

'°i:) (q,}-+- [fll} + t {I(') J (~=k-N') 

Using the property of translational 1nvar1anoe we obtain, for example, for f < O 
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(J.a) 

.,. + 

Then :performing the commutation of the operators cL,J-, .J,.J with t) s I tJ a we make the 

transition to the limit rJ.--+ a • Adding the results for t > o and t<. 0 taking into 
+-

account the symmetry of Hp1i with respect to _/ 

obtain from (J.6) 

and ./ and using (J.7), (J.a) we 

Q ( d 11 2 rr11,ll',q.)r{-K,-K,
1
-q_) I 

p,, K, II/ = - --:----.:...;:..__--..:. _ __:___:_:: ; q_. = K - II 
iJ (C/J +£ (I(} +6 (It') 

(J.9) 

where 

(J.10) 

The expression (J.10) is written for small ~ , r.iJ · • Performing the functional differenti-

atio~ with respect to/ and making the transition to the limit fJ = 0 we get 

(.'.3.11) 

where 

(J.12) 

Sc . being a :pure Coulomb matrix, and 

(J.lJ) 

Hq.ftJ = ~ L,. aP (tJ ap 5 rtJ ,2.v 1! .. q.,s , . ,s 
Performing explicitly in (J.12) the functional differentiation and using "generalized 

\Vick theorm" ( see Eq. (.'.34.11)[4] ) we obtain for A the representation in terms of· onf,l -

electron.Green functions and 4-vertex Green function of the :pure Coulomb :problem. This repre­

sentation is given as Eq. (J.15) in the :pa:per[5J. It will not be written down here. It is 

essential for us that in the infrared region for q,1.. ~ 0 it has the for~: 
oO 

y(qJFtq,J L.fdt I/!. (t Jj 
2. s s,q, . 

(J.14). 

-"" 



-8-

where J) (CJ,} is a kernel of the Coulomb interaction, 

It ' { 
Frq,.J = v L. 'l re+ q)+'lreJ 

f+{j. '> i{F 

fo(F 

and 7f;.,q. {t} is a coefficient for the main pa.rt of the 4-th order functional derivativei.\ 

( c)4~c:_ 

oa.e.scrrJo/i11 + re)CS-ae~q_ (oJtf'aK'+ (i} 
I .J , JS J 

~ 

> = t'Y:/l-\rrr)d(-i-0) l/{q, {t). 
(J.15) 

4 •. Pl:'Q°Ql.~11!_.Qi.!!ummation of the Coulomb singul.al'1'1::1es 

The obtained expressions (J.5), (J.14) and (J.15) .for the kernels Q and r;J plr ,of 

the integral compensation equation contain the fourth order functional derivatives of the 

Coulomb matrix Sc • Their expressions can be analysed completely in the approximation of 

an electron gas at high density when the effective parameter of the Coulomb interaction 

;V y (IIF) -v 
,2.. 

is small in comparison with electron energy on the Fermi .surface KF /.1,n-t 

%. 

4:1,t,'\l· . .N / I<,=- = J'~ r; cl. <~ f 
j./.2.. V · J.m ff 

f:' 

, i.e. for 

(4.1) 

1., 

Here cJ... = ( 4/9!h ) , and r; is a dimensionless interelectron spacing measured in 

Bohr radius units. 

In this case the Coulomb energy is small in comparison with the kinetic energy everywhere 

excepf the region of small momentum transfers 

q,_2.. < ~ K: 
(4.2) 

this is so called "infrared region". Therefore, one can emplay the usual perturbation theory 

everywhere exoept the infrared region. In this region where the effective expansion parameter 

l's· 1<! /q,_ .2.. is not small it is necessary to summarize the infinite set of the "main" 
. rr 

Coulomb terms proportional to the powers { 's ,t; / q;2..) • 

Here we meet With the situation well known in th'e relativistic quantum eleotrodynamios 

where in sp:1.te of the smallness of the dimensionless coupling constant ( fine structure para-

met.er .€2. I 41i' = 1 1/137 ) in the so called "ultraviolet" and the "infrared" regions of 

momentum variables the product of e2 I 4 ~ and "large" logarithm is an effective· 

expansion parameter. ·In the quantum eleotrodynamios there is a number of well known methods, 
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allowing to summarize infinite sets of main terms. We mean here the method of summation of the 

ma.in graphs by Landau, Abrikosov and Halatnikov[5J and renormalization group met~odf4J. 

In the quantum statistics there is a number of methods yielding analogous results. So,. 

the procedure of summing the main Coulomb graphs suggested by Gell-Mann; Brueckner, and Sawad£7J 
is essentially equivalent to the method given in the paperf67. The well known method of appro­

ximate second quantizatio~fa] in the problem of an electron gas at high density leads also to· 

the ana"iogous results fi, 9] • Finally, for summation of the Coulomb singularities of the Green 

functions one may use the renormalization group technique. For the first time this possibility 

was indicated in the paper[io] ~) 

An important advantage of the renormalization group method is its regularity. As it will 

be.shown the first approximation of the renormalization group method leads to the formulae 

which coincide with the results of summation of the main graphs (.Just as in the quantum field 

theory )1 and. with the·formulae of the approximate second quantization method • 

The results of the higher approximations of the renormalization group method may be of 

interest for investigating the problem of extension of the limit of applicability of the elec­

tron gas at_ high density approximation. 

5. Renormalizat~oup in-the problem of the Coulom~~ion be~~ 

ili2.E:.2B! 

The possibility of use of the renormalization ·group method in the problem of the Coulomb 

interaction between electrons is based ( the more detailed consideration see in [lo]) on the 

group character of the finite multiplioa~ive transformation of the basic quantities: one -

electron Green function G , two-electron Green function (4-vertex) F' and dimensionless 

parameter of the Coulomb interaction , (see (4.l) 

I 

G-G=l. 6-"L ~ (5.l) 

The meaning of the transformation (5.l) resides in tne faot that the sets ( G,
1 
r,'r' ) 

and ( G,) r) r ) describe the same physical picture. 

The tool of the renormalization group method· is Lie differentiona.l equations. In order to 

obtain them it should write down at first functional group equations, corresponding _to the 

transformation (5.l). As a first step it is necessary to choose the representation of the 
L 

Green functions (J. and r 

x) For application of· the_ renormalization group method in quantum statistic problems 
see also {15 J • 
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For this purpose we proceed to the symmetrical momentum - energy representation of the 

electron operators (. see, for ex. [ll] ) 

where 

oO 

aJp) = a.s ( P., p} = V;,r, f e ip.r a;;,s ('t) d-r 
- 00 

oO 

+ .l f -iPoT+ . 
a,(p)=w· e Op-s(T}d'T 

, Jll • • 
-00 

In this representation the chronological pairing has the form: 

I. ) r-
as cpl a0 ol)= i o (p-11) tfs(j'"G.(p) 

<Jrp-11J = Ori< o(p
0 

..,1t.) 

~ff)= ;~ - I .: · ~ CJ Po- c(p) +t it_C)n c p , 

r-

In the case under consideration due to the determination of the renormalized energy 

the total Green function 

L. TOs.(P)d6' (ilJS>. "'id{p-llJ°s/J" C (p) 

So 

(5.2) 

(5.J) 

r--
G 

C 

we have also G rp) a P.o-_-'--/-Z-rp-)-: J:--+-:-ir/...-;- tdgn "{ • S (p) (5.4) 

We determine the two-electron ( 4 -vertex ) 'Green function r as follows: 

c1"S 
~ (}+ + . ) 

J"a5,(p,) <las~ (p~J aa-.,(U.,Joa~ (11..:z. 
\=l°rp,•f¼-K,-K..z.}r;, (j"'.~ (P,,~JN,,KJ.) le , ,, 1 , 

where 

t;, S,,t 6i6:z (f1.,p,., K,, K;,_}= -!- J00
d rdt cit n -/f': 't +iK,·t, + ill: tL ,,_r, 1 .!!. C' 

-= X 
(5.5) 

[""~ 
( . 8"T (}_,_ \. 

<)0,. n (0) 00,. '1 ('t) Q6:, K, (t1J , Q6"._ d ( t.2,_} 
-'tr, -'.l •l. 1 1 ;z. ".Z. 

for 

P/+ f'.t•=· K,
0

+K~ , P.,+Pz_ = R -+KL 1 . • 

The function r has a simple matrix structure. 
t;sL 0,0,L (P_,,A, K,,lt4} • Os,2.6"1 J';,<Ti. r (K,, Jt.z.,P,, P.a,.J- o;:6, J;..,6L_ rrKIJ ll..1., P2., P.,} 
In the case ( we are interested in) of the infrared Coulomb asymptotic behaviour the 

one-electron Green function G- has no singularity and, hence, one may put S(p) = 1. 

Taking into account the fact that for the compensation equation the vicinity oi'the Fermi 

for 
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surface is only essential we can restrict ourselves to the examination of the function r 
for 

for 

Indeed, from (3.5) we get 

On the other hand from (3.14) and (3.15) it follows· 

where 

small 

I\Cq.J=fiir (1- .Z'1fV-Frq.JrrqJJ 

is a "main" pa.rt of the func_tion rre+q,, R-i,, ii, f) 
-

which does not depend on K and e. • 

In the lowest perturbation order 

(5.6) 

(5.B) 

in the limit of 

Therefore -it is convenient to introduce a new function <J , defined by the relation 

(5.9) 

Thia function has the following important properties: 

a) Under transformation (5.1) undergoes the transformation 

(5.10) 

b) in the limit of switching off the Coulomb interaction it tends to the constant value 

c) ·being represented by the perturbation series it contains the.terms proportional­

to powers. of the_ ratio ( ~ Kt/ q;1-} 

In such a situation it is not difficult to write down ~he functional group equation for 

· the vertex function <J in the infrared region. 

) 

Introducing the "normalization" momentum .it let us consider the dimensionless variables: 

, , , ' 

The dots denote here unessential momentum variables ( as well , 

as energy variables /( o, q, O I e., I ) • We do not write down explicitly all these variablcd 

considering them as fixed parameters. 
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With due account of (5.1) and (5.iO) we obtain 

C/, L ,<'- c/ 2. 

f ( A~ , f, r;} = :t,-, f ( ;lL , . -ff I r J. (5.11) 
r:, =~, r 

Choosing the normalization momentum .A. so as 

f" (i,/j1 r)=i (5.12) 

we are led to the functional group equation 

Ir XI'/, r) = I ('f J /f, r) f ( / , : I r I /f I y, r)}. (5.lJ) 

Differentiating (5.12) with respect, to Jl and setting f = .f we get the Lie 

equation 
afo,:1,rJ = f-(x,tJ,rJ ¢ (: ,rf fr,y,rJ) 

;u .i 
(5.14) 

where the function ¢ f/j, r) = af(.t, ';/, r) / 
;}~ .X.-=f 

(5.15) 

is to be computed by means of the perturbation theory. 

6. :tn.frared_a_~..l!,totio behay:!,our of_i:h.e_yertex fungj:ion 

The calculation of the function f entering the right hand side of (5.15) must be. 

performed with account of the multiplicative ambiquity (5.11) providing the fulfilment of the 

normalization condition (5.12). 

In this way with the accuracy of the terms of the third order we get 

~ f> rx,:;,r-J = f- ar ( +-1)+ lr'(; -1)': Cr"(: - 1)+ .. · 
I 

(6.1) 

·Q, 8, C being certain constants ( which can depend on above-mentioned parameters). Sub-

stituting (6.1) into 5.15 and 5.14 and carrying out the integration-we obtain consequently: 

¢(!f,'l}= a2!/ +cr'j/ 

df · dx 
c = Qru -

J'-(t.:r-0 /} d tl. 

(6.2) 

·c { a-tr-cf / { I i--&i -- i-f--=ar-u 11-..f..) a (a+ri:.Jf f 7 ~ 
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We got here a transcendental equation for f which can be solved by method of successive 

approximations taking into account the smallness of r • This yields 

. . C ( 

( 
1 ) c &/ 1+ar-11{f-f}+ Per If -

!r,.,y,r)= 1+ar-yfx-l 1-rq f-t-/'"71 IJ. 
Let us note that the constant g of Eq. ( 6.1) did not enter the formulae (6.2),(6.J). -

The fact is that 8 really is not idependent • Expanding (6,J) in a power series in 

and comparing with (6.1) we find 

( 6,4) 

Now we have only to pass on to the usual non-normalized function f 0 , depending on 

the observable value of the coupling constant i =· f'"s 

zation momentum fl. 
and not containing the normali -

The perturbation theory yields for /'0 

. f T. e, . Kl. 112. .2. z. /<z. 
70 (q_~r;) = /- ar:s/ 9,, ~ .,. ct)+a2r-/{ ~ + d) -Cr; 1,~ + ... 

(6.5) 

Here d is a constant like a, c • 

To proceed to rs we profit by the usual method ( see 

riant charge r f property : 

42.J 4 ) based on the inva-

L /(2. 

r-f( ;;., /: .. Jr):::r;fo (n 2 ;<Lr) 
A Y~ F J S • 

(6. 6) 

Putting 1n ( 6, 6) q_2. = .t'- we obtain for r an explicit expression 

Substituting this value into the left hand side of (6.6) with account of (6.J) and after 

a simple calculation we are led to the formula: 
fo ((}.. ', (j-)= -

. K-t. . c . - I<.%. 1- f 
. = ft+ a r; ( q': + d) + r; a fn · (I+ a r; f ) . 

(6.7) 

It is not·d:tff:icult to make sure that (6,5) is an expansion of (6,7) in powers of.small 

parameter rs . 

7, Discussion o!_ihe results. 

Let us discuss the obtained formula (6,7) describing the behaviour of the Coulomb 4-vertex 

in the infrared region. 

Recalling that according to (5,9) 
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'I{ q,) l. 2 e.z. .z. 
rrq,>= air fo rq,r;J= V-(q,J"- l r~,"'rJ (7.1) 

w~ consider the expression . 

_,_ I h .l ) 
-- ( f'j = ~-... a - q!- O q, J q;L+ Q ~ K'!, f-q_:,,_at;d + f'i ~ ~Lfn {1+ ar;. i) 

1 
(7.2) 

In the limit of the small r; and 9-- :z... we get 

cis :: 0,814 is~ KF 

_.,_ 1 -I 
Q = n.t ... ar-: /l.2. = a.t+ 02. 

.- i; F /.,- .·J-.,; 

being the inverse length of the Tomas-Fermi screening. 

(7.J) 

Thus, in the first approxiination ( in powers 's 
known Coulomb screening formula. 

) the formula (7.2) leads to the well 

This shows that the results of summation of the main Coulomb graphs by Gell-Mann, 

Brueckner and Sawada 7 can be obtained in a much simpler way, i.e. by the renormalization· 

group method. 

Let us note also that after substitution of (7.J) into (7.1) and (5.8) with due account 

of the fact that 

tr:m q_~ Frq.J J/{q,J= q~ 

we obtain x) 
q_.1...;...,.o 

in 

.2. .I. 
I { q_j 1 I q, 

I\ rq) = av [ I- qf+ q,: f = /:l Y- q.t__,_q~ • 
(7.4) 

The formulae (7.J) and (7.4) coincide with the results obtained in the qualitative way 

6.2 [l]. 

However, the signification of the formulae (7.2) and (6.7) and the possibilities of the 

renormalization group method in the problem of interacting electrons is not exhausted by this. 

The renormalization group technique gives a regular method of improvement of the approxi­

mation properties of the usual perturbation expansions. This fact is well known in the quan -

tum field theory. The present investigation illustrates this fact for the quantum statistics. 

The formulae (6.7) and (7.2) ·generalized to the case of the non-zero energy arguments 

present the second approximation to the results of the paperf7J. 

The further generaliZation of these formulae to higher orders can be. performed simply 

x} This formula agrees with the result given in the paperli2J. 
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taking into.account in (6.1) the terms of the next orders with respect to the powers fJ. • 

Such a·generalization may be of interest, for instance, in order to specify the supercon­

ductivity criterion ( see § 6.J [ l]) and expansions for the correlation energy in the region 

of not very small ,~ 

In this connection note that recently it became known a'thesis of Dubois (lJ),which attemp­

ted to improve the-formulae of the paper 7 by sUlllllling the.main graphs of the second order. 

A brief comparison of Eq. (6.7) with the results of the paper[lJ]' shows that the structure 

of the expressions obtained there ( see Eqs. (2.7), (2.5) and (A.J) lJ) corresponds to the 

resulto of the substitution in Eq. (6.7) 

consistent· only for small • · 's 

.t. 
C /} { KF ) .z. ·i. - 1:11 1 _,. ar- ,,..__ -r; C 

s Q • s ~ 

n ,_ • and not small -i,-

In conclusion author expresses his gratitude to N.N.Bogolubov and V.V.Tolmachov for useful 

discussion of a number of questions. 
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