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An interesting result was obtained in a recent paper b~; Redmondf (:ie,e alsol 21),,. 

which consists. in _the following:. using. the anal1tic,1t,: requirement. it is possible to 

get the expre~sions for the propagators which do not contain .:the loga:r:it~ic, Po.las, 

In this way, .we think, one may arr~ve. to certa.in genera; conclusions concerning 

the perturbation theory method ~nd, perhaps, concerning some general features of the 

modern quantum field theory, 

The method of dispersion relations presents the most reasonable way,for studying 

the analiticity properties of the propa~ators, Now it is the only approach to .the p:r,ob-. 

lems of _the quantum field theory, which .t,e very lik:ely free.from inner difficulties. 

Therefore, it appears quite natural that further progress in the quantum field theory 

must be associated with the method of dis'persion relations. 

This method based on the most general principles of.covariance, causality, unita­

rity and spectrality*) allows to obtain the expressions for the quantities of Green 

functions type and the matrix elements of the transitions in the form .of th!3. spec_~ral 

expansions, Thereby the problem is reduced to the study of the _properties of the cor-. 

responding spectral ~unct~ons. They may be expressed through the Green .functions for 

more complex processes by expansion in the complete set of ph3:sical states. 

Here appears a possibility of obtaining.the equation system for the determination 
" . , . 

of the Green functions. It should be noted _that in contrast, e.g., .to the Schwinger 

equation system no ultraviolet divergences arise here. 

There are, however, some difficulties in the course of the realization of this 

program since the spectral representations for higher Green functions are not obtained 

yet. 

Here arises a palliative possibility of obtaining the missing information about 

the spectral functions by the data of the pe,rturbation theory. It is this way which 

Symanzik followed in the. paperlJI. ·considering the n-th term of the perturbation theory 

for a certain vertex he showed that this term may be presented in a·defin1te'spe.ctral· 

form. Then, making use of the hypothesis about the possibility of summ1ng·the series 

for the spectral function Symanzik made a conclusion that the vertex under considera-

*) We mean by the spectrality principle the condition that the complete set of 
the physical states with positive energy ·exists • 

.. 
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tion may be presented 'a.s, a. whole in the given spectral form. 

Symanzik used this method to obtain general theoretical conclusions lea.ding to the· 
. ' \ . " ' 

proof of dispersion relations. The\ investigation of different p9ssib1lit1es for the 

approximations would be in our opinion of great interest. In this way we consider the 

Kl!.llen-Lehma.nn spectral formula as a simplest example. Instead of summing the whole se­

ries of the perturbation theory we restrict ourselves to the summation· of on_ly that 

class·of diagramms the study of which leads from the standpoint of some authors1 41 to 

, the proof'of the existence of a logarithmic pole. 

The spectral representation of the boson propagator according to Kiillen-Lehmamn . 

theorem is of the for~· 
.., 

· 1 j I tll>d'l 
Ll,(K)= mi-K.t + c'.l-K"-iEJ 

t m • 

(1) 

The right hand side' of this formula represents the function f analytical through­

out the whole complex' plane of. the ·variable l<.1 except the pole in the point J{.t= m 2 

and the cut along the real axis from J-t1 = rn~ to J-t1 
- 00 • The function A• ( R1

) 

for the real J{.t ~ m: ·equals the limiting value J along the upper edge of the 

CUt, i.e., 6, (lt1)= eim} (~1 +iE.)::j+ rn•) 
K' ~ trt!' f _,. o · 

The spectral function I CO is real and defined by the' discontinuity' of the function} 

2 J;i I ( 'i.) = 11" ( 'l) -f Cl) :: A' ( 2) - Jt ( ZJ (2) 

where J_ (Z) is the value of the function f on· the lower ed~e of the out. 
I 

In case of electrodynamics we consider the class of those diagramms for the photon 

Green function D
0

, which are represe~t~d a~ a photon line with an.arbitrary number of 

simple insertions-electron-positron loops of the second order. 

For the sake of brevity we shall call these graphs as accepted the main logarithmic 

diagramms. The contribution of then-th term of this class iri De is of the form 

-:- --ftr.ce1 P(llt,m 2 J)n (J) 

where F(ll1,m1
) corresponds to the second order loop. The explicit expression for P 

· l51 is given, e.g., .in§ J2.l of paper • 

In the region / H.1 
/ ~ yytll the function F assumes the form 

F(K' m')=-1.-l 4m'-i<• 
' 31i rt - 4m 1 (4) 

2 ' 
We introduced the term 4m under the logarithmic sign to give correctly the imaginary 
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' preserving at this its normalization 

F' (0 7 irt 1 J = 0 
Note that the direct summation of the terms (4), made first·in\ 6 1, leads to the 

expression 

(5) 

on the basis of which the conclusi~n. was mad·e1 41-that there exists a logarithmic pole 

, - . and, therefore, there is an internal contradiction in the_ theory. It can be easily 

seen that then-th term (J) may be represented in the Kdllen-Lehmann spectral form. 

Restricting ourselves by the approximation (4) we get 

"" 
]) - _ ...L (--1.2.fn 4 m 1

- K
1 )n :::J I ,._(Z)d'.1 

,. - K" ?,'Jr · 4m:r. i -1<.1 

' ~~ 

where the function In<i)is defined by the discontinuity of the function Dn by for-

mula (2). Performing the 'summation for the spectral function I -I ('.t> =-[ In(%) 
'"1 

we make sure that I-c 2) as a whole is a disconti_nuity of expression (~), Substituting 

(5) into (2) we find 

0 
(6) 

Thus, for the photon Green ~unction be obtain 

(7) 

The formulas of such a type are just discussed in paper I l I. 

As can be easily seen the expression (7) represents the function 

~ (1<.:r.)-- _l_ [-f _ ....e!:.. .f.n. lJm:r.- f{:r. ]-! 
.lie :-- It~ 31i 4rn:. 

JJ/et ]-i 
- 3 $ [( i - e -31tfe1. ) ( 1-tii - '-I rna. ~ 4 ms. e ) 

which with account of the smallness e2, fo; !p2 \ much more than m2 , may be written 

in the form 

(8) 
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The function (8) has the following remarkable properties: this function: 1) has no 

logarithmic pole; 2) in the neighbourhood of the point e2 = 0 as a function of e2 it 

has a singularity of "supercondi.tct1ng11 type" exp (- S'li/et) J) in the vicinity of the 

point ~~= 0 it permits the asymptotic expansion coinciding with the expansion of 

the usual perturbation theory and representable in the form (5). It is also clear that 

the second term in the right hand side of (8) cannot be principally obtained in the 

perturbation theory due to the exponential order of smallness.Because of this it does 

not correspond to any Feynmann diagramms. 

Note that the final expression (8) coordinates with the initial approximation((5). 

In the region wher~ we used formula (5) for the calculation of the spectral function 

it differs from the final expression (8) by negligibly small terms of the orderexp(- 3~e•) 

Thus, it is the formula (8) but not (5) represents the result of consistent summa­

tion of the main logarithmic terms which contain no paradoxes like a "zero-charge1 41 

difficu~tyn. 

Expression (6) for.the spectral function was obtained from formula (5),which re-

presents the result of the summation of the main logarithmic terms 
' ' 

theory. We could start, however, not from formula (5) but from the 
. I 51 . ]-1 

from ):""".. ~. [i-e 2 F'u1.t1 m') · corresponding to the summation of the 

diagramms and passing into (5) in the limit K z ~ tn2 

of the perturbation 

expression (§4J.I 

main logarithmic 

The corresponding spectral function is more cumbersome than formula (6), keeping 

at this all its essential properties. 

J. 

Similar correction of the formulas o! the logarithmic summation may be fulfilled 

also for other propagators. Consider, e.g., a meson propagator in the symmetrical.pseu­

doscalar theory of.meson-nucleon interaction. The expression for this propagator obtained 

by improving the perturbation theory has the form1 5 ,7 1 

i -
!Jc(P

1

J= (m•-p')[i- tr en c-;:nt 

where ol.=4/5. The corresponding spectral function !~,obtained by summing under' the 

sign of the spec~ral representation is 

,,, 
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(9) 

where -1:...r.. :i! t =- 4 Ji ln. m1' 

A general feature of the·spectral functions (6) and (9) is their resonance charac- , 

ter. As it was pointed out these formulas are obtained on 'the basis of the summation of 

the main logarithmic terms. It is interesting, therefore, to clear up whether the reso­

nance character is conserved for the spectral functions which are obtained by summing the 

logarithmic terms of higher order of al:lallness. With this purpose we take as an initial 

express.i~n for the.photon propagator the formula (§4J,2 froml 5 I) obtained by summing the 

terms of the form .(e'ln'1)11. and et(eten., :Z)m 

where 

From this expression we get instead of (6) (at ~:) ~rn..1) 

(10) 

It can be seen from formula (10) that the resonance character of the spectral function 

is conserved with account of higher logarithmic terms. The effect of these higher terms, 

however, upon the behaviour of the spectral function in the region or' the resonance at 

l-t ... 0 is not small. It is seen from the comparison of the expressions (6) and (10) 

that they differ by a factor ( 1 + 9/a ) independent of the degree of the smallness of the 

parameter e.i. 

It shouil.d be emphazed that the improvement of the perturbation theory by summing 

the logarithmic terms of different order of smallnes's is not a consiatent operation. As 
' •; 

., 
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is wellknown (see§ 42.4 froml 5I) the formulas obtained in such a way may be correct only 

in the region where the quantity. 

e2 d ( K/t) = "- ez J<Z De (Kl.) 
\ , 

is small in comparison with a unit. 

It follows from here that the obtai_ned expressions for the speot;ral functions may be 

believed to be correct only in the region up to a "resonance". In the resonance region 

and higher one cannot consider these formulas correct since we use the initial approxima-

tion outside the range of its application departing ~rom the weak coupling formulation. 

Therefore only a hypothesis about the resonance character of the spectral functions may 
be suggested. 

The nonapplicability of the obtained expressions for the spectral functions in the 

region of great Z may be also seen from the comparison with the general expression for 

the spectral functions 18 1. It is not at all s~prising since the determination- of the 

correct asymptotics even for only one photon propagator requires a simultaneous conside­

ration of the asymptotics of other higher verteces. 

4. 

·• 
It is. not dif;ficult to make sure that. the expressions for the Green function obtained.· 

above are not renormaliz~tion invariant. In this section we intend to show how they may 

be 'transformed into an· invariant form, the photon propagator :1.s being- taken as an example. 

As an.initial consider formula (8) and write it as follows 

e:td . 
3T=-

= ,,,,. ·+ 
;,]I _ in 'U,Z 
el"- ml 

e 2g2 De ( K&) -
31i -

(11) 

1 
, [ ?J1i M_1] i - exp - -lrt-::;i , ez m 

. The function e"d which is _called an invariant_ charge must be an invariant of the renor­

malization group·transformation (see§ 42 inl 5I). However it is quite_clear that expression 

(11) does not sat_isfy ·this requirement. 

A usual technique of reducing the expressions to the renormalization invariant form 

employes the apparatus of the Lie differential equations, the correspondence with the 

usual perturbation theory is being t_aken into account. Since the. expressions of type (ll:) 
' 2 

cannot .be expanded· 1n powers of .. e it will be more convenient from the techni_cal point 

of view to start not from the Lie differential equations but from the functional equations 
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of the renormalization group. 

With th:\tl aim we shall look for an alalogue of the usual function cl normalized 

to a unit at K'=A.1 
as in the form 

f. 
(12) 

having in view that, (as it was first shown by Gell-Mann and Lowl 9 I on the basis of 

the group considerati·ons), the invariant function may depend upon ef and ,lz. only 

through the argument 

The invariance requirement on the function e2 d is of the form: 

(1)) 

where mo is the quantity of the order of an electron mass, whereas e0 - the corres-
I 

ponding value of the charge. This requirement establishes the r.elation between the 

transformation lawR of the charge and normalizat·ion momentum in terms of the function cf> 

from where, in particular, it follows 

(14) 

Formula (I4) yields qualitative limitation upon the func.ticn. cp . For A:2- oo 

the f~nction ¢( tf) m~st monotono~sly tend to - oo. • The. e:xpli?it form of .this func­

tion may now be _defined from the normalization_condition on d. Putting.in (12) l<'=A.'t 

we obtain 

i.e. 



- 12 -

-;, 

NOTE ADDED IN PROOF OF THE ENGLISH VARIANT 

The above considerations with some modific~tions may be applied to the nonrenorma­

lizable theories. We take ·as ari example .,the nonlinear fermion theory with 4-fermion inte-

raction Lagrangian and investigate the four-fermion vertex function rep', q', p, q > • 

One may assert if the-renormalization group considerations are taken into account that 

the main contributions to· the• symmetrical momentum asymptotic behavio\ll' of rep, p, p, p > 

are due to the graphs with an arbitrary number of.the simplest insertions-fermion loops 

of the second order. -The c'ontributicn of the n-th term will be of the type 

rn (p1)=r(_ t: -ln ~: ·r 

Each term (Al) may be presented in-the following spectral form 

00 

f'n ~ p2> =f Pn ~Z_> di 
'.t-p-1f. 

rn! 

_(Al) 

Taking into account the branching of the logarithm we made the summation over n 

for the spectral function p in accordance. with_ the_ above_mentioned pr_ogramme. 

It yields 
00 

rep')= i+ ~ J 
m! 

%. di . i _ ~ 
i-p,.-if, [f-9 ~ en !,.],.,.r,,.92. ~., 

(A2) 

Eq. (A2} reminds·Eq. (J) from paper1 2 I. The main difference is that formula (A2) 

contains the logarithm in the dominator of the spectral function. 

The righthand side of (A2) represents the function of the type 

__ ....,,:c..i ___ . m' • 
i -:- J ::i: tn-t;,;i + qc p'- pJ H i+ln-{f.) 

where pD2 is the root, of the equation 

Within the limit of small 9 p; "'mz./9 
Therefore, the second term in (AJ) takes the form 

m' 
<9p2-m:1.JC i - ln 9 J 

i. - a __E;__' -ln _ _e;_ = o __ IJ mi __ . mz. _._ 

(A J) 

(A 4) 

....... , . .".t..,,;;.-, 

• •~ ,•: •~ *' • •,•!~' A .. -:.,~:,;: f'! J 

: 1.._ •. ·•:.C:~: ~:··i.•i~~~.~,-~·----
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For p2 <-< p: this expression reduces to the function 

possessing rather. interesting properties 

j<oJ=o, j'(O):oo, j'1 tin=oo, ... 

Thus, term (A4) being small in the vicinity.of the point has no .asympt.otic 

expansion in powers of. 9 • Therefore,. the function (A2) as a whole cannot be expanded 

in such a series. (This is in agreement with the remark of paper1 2 1). 

It is worth str~ssing.once .more that no final·meaning should be assigned to the 

expression of the type (AJ) since the consistent solution of the problem requires a 

simultaneous analysis of all Green functions. 

8ht,llHCliHWH HH• 1 •• \ 

uepaia:z: ICClClOH""'~ \ 
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