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An interesting result was,obtained;in a‘recent»paper_byﬁBedmond;;(see,alsolgl),,_
which consists;in;the}following:,usingjthe«analitioitj‘requirement;it-is.possihle‘to
get the expressions for the propagators which do not,oontainxthe%1ogarithmic:poles.,“

In this(way,,we think, one may arrive to certain general oonclusions'conoerning..
the perturbation theory method;and,;perhaps,,concerning some general features. of .the .
modern quantum field theory. . . ' e . o ’

The method of dispersion relations presents the .most reasonable way, for studying. .
‘the analiticity properties of the propagators. Now;it is the‘only’approaoh,totthe,prob-r
lems of the quantum £1e1d theory, which s very likely free. from inner a12f1culties.
Therefore, 1t appears quite natural that further progress in the quantum field theory .
must be associated with the method of dispersion relations.

This method based on the most generaluprinoiples of .covariance, .causality, unita-
rity and spectrality*) allows to.Obtain thevexpressions for'the quantities of Green
functions type and the matrix‘elements[of the transitions in the form,ofothepspeotral
expansions. Thereby the problem is reduoed to the study of the properties ofvthe cor-
responding spectral functions. They may be: expressed through the Green functions for
more .complex processes by expansion in the oomplete set of physical states.‘

Here appears a possibility of obtaining the equation system for the determination
of the Green functions,_It should be noted that in contrast,,e.g.,‘to the;Sohwinger
equation system no ultraviolet divergences arise here. _ ’

There are, however, some diffioulties in the course of the realization of this

program since the spectral representations for higher Green functions are not obtained

e
IS
X

yeta.

e LRI e

Here arises,a palliative possibility‘of obtaining the.missing information about
'the spectral funotions by the data of the perturbation theory. It is this way which
Symanzik followed in the paperDl Considering the‘ n-th ‘term of the-perturbation theory
for a certain vertex he showed that this term may be presented in a- definite speotrsl »
form. Then, making use of the hypothesis about the possibility of summing the series:

for the speotral function Symanzik made a conclusion that the vertex under oonsidera-.

*) We mean by the spectrality principle the oondition ‘that the complete set of
vthe physical states with positive energy exists. . : .
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tion mey be presented as a whole in‘the given spectral form.

Syménzik‘uséd this method to obtain general theoretical conclusions leading to the-
proof'ofidisperSion relations;'Theiinvestigation of different possibilities for'tne
approximations ﬁouldibe‘in'our‘opinion‘of great interest; In this way we consider the
K&llen-Lehmann spectral formdla'aS'a‘simplest‘eiémples Instead of summing the whole ‘se~
ries of the perturbation theory we restrict ourselves to the summation of only that
olass of diagramms the study of which leads from the "standpoint of some authorsl4l ‘to

thé proof of the existence of a logarithmic pole. i =

‘The spectral representation ‘of the boson pronagator according ‘to Kdllen~Lehmann =
theorem is of the form e SR s ‘ S .

S )= m;fa‘ + (ZI—(;?')-diﬁeﬂ)v o R €Y

" The right hand side of this formula represents the function § analytical through-
out the whole oomplex plané of the variable H? except the-"poié’ in the point H*=m*
and the cut along the real axis from K!= M! to KE—s 0O , The function A.(HY)
for the real I{‘A m? ‘equals the’ 1imiting value- f' along the upper edge of the
cut, i.e., k ) T A w) = em j—(u*“wj (K%)

ktrm? €—ro0 . ) )
The spectral funotion I(z) is real and defined by the’ discontinuity of the function}v

- | 2;—;1(1)}(2)]&» SB)-A B @
where _{ (%) 1is the value of the function‘f on the lower edge of the cut.

In case of electrodynamios we consider the olass of those diagramms for the photon
Green function Do’ which are represented as a photon line with an-arbitrary number of
8simple insertions-electron—poeitron'1oops of the second order.

For the sake of trevity we shall call these graphs as accepted the main logarithmlc

diagramms. The contribution of the n-th term of this class in Dc is of the form

L e rum)t ™
where F‘(K’?n-)corresponds to the second order loop. The explicit expression for F,
is given, e.g., in.§ 32.1 of paperlsl

In the region lR‘lgbr?l‘ the function F assumes the form

. 1_1 e s |
Fut, mty=she tn 222X S e | (4

We introduced'the term 4m under the logarithmic sign to give correctly the imaginary-




" component of the function F
‘ 4 x>0

Y F(ry,m ~---—-—9(K2 le) Q(X)={o x< 0
preserving at this its normalization \ o '
,’ Fo,m*=0
Note that the direot summation of the ‘terms (4), made first inl l, leads to the
. expression o | By B R

2 s V1 :
sk (1l A ) O

k‘}.
MLtha.t there exists a logarithmic pcle

on the basis of which the conclusicn,was made
~and, therefore, there is an internal contradiction in the theory. It can be easily
seen that the n-th term (3) may be represented in the Kallen—Lehmann»spectral form.

Restricting ourselves by the approximation (4) we get

D‘- (e‘p,lltm‘—u‘) f_l_nmeii
3T - hm? J -k

where the function I (2)1s defined by the discontinuity of the function D by for~
mula (2). Performing the 'summation f?f the gpectral function I
Ty =) I.(2)
Tl

- ns ’
we make sure that [{2)as a whole is a discontinuity of expression (5), Substituting

(5) into (2) we f£ind ' , o 1 ‘ ;
: [ - en——g-—;—j,’ff‘i)ﬂ”e"/g]",zaymt e
(2)= SN
6).
0 ()

Thus, for the photon Green function be obtain’

oo

‘ SRR L dz
'DC(K‘)-'- g + 35 f z(i_'{;_"e)[u_%&L'E_l‘{'_:i_nﬂllfjl_'_ev/g]
ym* - . .

, o (7
The formulas of such a type are just discussed in'paper'li.

As can be easily seen the expression (7) :epre&ents the function

D= e [~ a1

-3%fer [ )2 ssjpr 174
3Jl [(i_e e)(H, ~4Ym* +hmre )
which with account of the smallness ,for 1p | much more than mz, may be written:

in the form

Yoo KNP e
D)z- e [1 - el i) - T ®



The function (8) has the following remarkable properties: this function: 1) has no
iogarieemic pole; 2) in the neighbourhood of the point ez"= 0 as a function of e2 1t
has a eingularity of "supercondhcting“ type" exp’(~smye‘) 3) in the vicinity of the
point e'='0.it permits the asymptotic'expansioh coinciding with the expansioh of
the usual perturbation theory and representable in the form (5). It 1is also clear that
the second term in the right hand side of (8) cannot be principally obtained in the
perturbatlon theory due to the exponential order of smallness.Because of this it does
net correspond to any Feynmann diagramms. ' ' '. PR |
Note thaf the final expression (8) coordinates with the initial approximation((5).

In the region where we used formula (5) for the calculation of the spectral function

it differs from the final expression (8) by negligibly small terms of the order exP(’aveq

Thus, it 1s the formula (8) but not (5) represents the result of consistent summa-

tion of the main logarithmic terms which contain no paradoxes like a "zero—cha.rgel4l

difficulty"

Expression (6) for the spectral function was obtained from formula (5), which re-
presents the result of the ‘summation of the main 1ogarithmie terms of the perturbation
theory. We oould start, however, not from formula (5) but frem the expression (§43.1
lfrom‘5] :-b K'[i -€ F(K‘rnz]-gorresponding to the summation of the main logarithmic
diagramms and passing into (5) in the limit Ki>m*

The corresponding speotral function 1s more cumbersome than formula (6), keeping

at this all its essential properties.
3.

Similar correction of the formulas of the logarithmic summation may be fulfilled
also for other propagators. Consider, e.g:, a meson propagator in the symmetrical pseu—
doscalar theory of meson-nucleon interaction. The expression for this propagator obtained

by improving the perturbation theory has the form!5’7‘

1 .
A ‘)= ; [ 2
T F TN

where of=4/5. The corresponding spectral functioh'Id,obtained by summing under the

sign of the spectral representation is ‘ -
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I,L(Z)'-' mz_z 'T[(i-f)z 7%9_14.’2

(9
where o : b= 5 2‘ én =

A general featuro'of the spectral functions (6) and (9) is their resonance charac— .
ter. As it was pointed out these formulas are obtained on thq basis of the summation of .
the main logarithmic terms.‘It is interesting, thereforé; to clear np'whether thé reso—
nance character is conserved for the spectral functions which are obtained by summing the
logarithmic terms of higher order of smallness. With this purpose we take as an initial
expression for the photon propagator the formula (§43 2 froml5l) obtained by summing the

terms of the form (€*¢nz)" and e*(e*én )™

. : ’i
D" (z)=--12—{1 -t L 9(2 hmt ). "‘;’en[i-£+lgil9(z—um*)]}

where v - 2* , z-lm? | o | o S

From this expression we get instead of (6) (at 2 al{ni*)'bv

_ 1+-l?-azc%g———e EES
(TS CIACRIZE S R R e

I~ (20)

it can’be seen from formula (10) that the resOnanoe charactqr of the speotral function
13 conserved with acoount of higher logarithmic tenms; The éffect of these higher terms}
:howeter,'upon the behaviour of the spectral function in the région‘of'the resonance at
i-t‘-o 1s not small. It is seen from the comparisontof the'éxpressions'(6) and (10)‘
that thoy differ by'a factor (1 +5ﬁg ) independent of4the'degree-oi the smallness of’the
parameter @2. k . ‘ k o .
It shoudd be emphazed that-the improvement of the parturbation theory by summing

the logarithmic terms of different order of smallness is not a consistent operation. As
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is wellknown \see § 42.4 froml5‘) the formulas obtained in such a way may be correct only
in the region where the quantity

e? d(nz) =" e*x* Dc (K?)
i1s small in comparison with a unit.
It follows from here that the obtained expressions for the spec&ral functions may be
believed to be correct only in the region up to a "resonance". In the resonance region

and higher one cannot consider these'formulas correct since we use the initial approxima-

. tion outside,the range of its application departing from the weak coupling formulation.

‘Therefore only a hypothesis about the resonance character: of the spectral functions may
~be suggested. '

The nonapplicability of the obtained expressions for the spectral functions in the
.region of great z may be also seen from the comparison with the general expression for
the speotral funotions‘ l.‘It is pot at all surprising since the determination- of. the.
correct asymptotics even for only one photon propagator requires a simultaneous conside-

ration of the asymptotics of other higher verteces.

4.

It 1s not difficult to make sure that the expressions for the Green function obtained '
above are.not'renornalization'invariant. In this section we intend'to show how they may
be transformed‘into aniinvariant form, the photon propagator is being-taken as an example.

As an initial consider formula (8) and write it as follows

ed —_ _e*R*De (K*) _ Qv
3% - 35 :

4. i

' _ié’%.-{n'ﬁ“’, 1 exp -en_ﬂ-,] »

1The function e‘c! which is called an invariant charge must be an invariant of the _renor-
malization group transformation (see § 42 in|5l) However it is quite clear that expression
(11) does not satisfy this requirement.

A usual teohnique of reducing the expressions to the renormalization invariant form
employes the apparatus of the Lie differential equations, the correspondence with the
usual perturbation theory is being taken into account Since the expressions ‘of type (11)
cannot be expanded in powers of ©* ‘ it will be more convenient from the technical point

of view to start not from the Lie differential equations but from the functional equations R



of the renormalization group. )
With thig aim we shall look for an alalogue of the usual funotion cﬂ normalized
to a unit at K*=A’ as in the form

QAd(j}’ ) 1 : o (12)
35 qb(_g’.e:)[n.&, i exp[d) )t’n ] Gy :

‘having in view that, (as it was first shown by Gell—Mann and I.,ow]9| on the basis of
the group considerations), the invariant funotion may depend upon e{ and - )* only
through the argument . Y

\f’(eA)+€n)~

The invariance requirement on the function e*d.is of the form:

2

ve;.dr(%;’ef)?éo’d(‘m&g, ,'e:):e‘:;‘d(‘—};-:i-’ ser) o an

where m, is the quantity of the order of an eleotron masa, whereas €, — the corres—
ponding value of the charge. This requirement establishes the relation between the

transformation laws - of the charge and normalization momentum in terms of the function‘ﬁ
@i\ _p o - AR eg A _d) en
¢( £33 tn 2z ‘Cb( 3% .517“"7:,‘ 6’

from where, in. particular, it follows

el ) Cb( eo")_ at '
Cb( 5T 3% /57 g"_ m: (4
Formula (14) yields qualitative limitation upon the funotion‘Cb‘- For Az-—*'°° Lo
the function q5(5r ) must monotonously ‘tend to - oo . The explioit form of this func—
'tion may now be. defined from-the. normalization condition on d Putting 4in (12) K‘—A‘

- we obtain
S 1
T p(§E) exp[d( )]
l.e. \

. - _ . L
X2B ™~ @1
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NOTE ADDED IN PROOF OF THE’ENGLISH VARIANT

3
"'The above considerations with gohe'modifications may be applied to the nonrenormé—
lizable‘theoriés.'We take‘aS'aﬁ example .the nonlinear fermion theory with 4-fermion inte~
raotion Lagrangian.and'inveStigéte the‘foﬁr—fermion‘vertex function l“(pgq',p,q) N
One may assert 1f theArenormalizatioh group considerations are taken intb account that
the main oontributions to“thelsjmmetrical momentum‘asymptétic behaviour of ‘Itp,p,p,p}

are due-to the graphs with an arbitrary number of the simplest insertions~fermion loops

of the second order.:The contribution of the n-th term will be of the type

B 2 2 \n ' .
rn (Pz)=3n( n%‘ dn TE[T) ,(Al)
Eaoh term (Al) may be presented in the following spectral form

2 ﬁn(Z) dz
F (p) 2-pLit
mg
Taking into account the branching of the logarithm we made the summation over n
for the spectral function _p in accordance.with the above mentioned programme.

‘It yields o
2y = —21 %d'z . L -
Toh=1+ o FPEIE -9 tnl e ate Ry

- (A2)

Eq. (A2). reminds Eq. (3) from paperlzl

» The main difference is that formula (A2)
contains the logarithm in the dominator of the spectral function. ’

The righthand side of (A2) represents the function of the type

m*°

i L, ;
Bty | Qe ) * 2

g‘—E—{n —JL =0

where p? is‘the’root of the equation_t
Within the limit of small ¢ -p; =m*/g

Therefore, the second term in (43) takes the form

ot \ »
(gpi-m3i(i- tng) o (& 4)
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For p?.<p?* this expression reduces to tﬁ¢“f9ﬁ§t1°n
L,
9= ey

possessing rather, interesting properties . ...

J(w)—o, f’(O)- ,j”(o)—

Thus, term (A4) being: small in the vicinity of the point ',,9==0 r:has,noiasymptetic

expansion in.powers of g= . Therefore, the function:(A2) as a whole cannot be expanded

e © in such a seriles. (This is in. agreement with the remark’ of paper‘zl)
‘ It is worth stressing.once .more that no final: meaning should be assigned to the

expression of .the type- (AJ) since the consistent solution of the Problem requires a
simultaneous analysis of all Green functions.~

‘Received by Publishing Department on January 31,v1959.
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