$$
63
$$

Dub a a 1959
-1

 \title{

}

JOINT INSTITUTE FOR NUCLEAR RESEARCH
Laboratory of High Energies
P-289
-T.G. Grishin, M.I. Podgoretsky

JOINT INSTITUTE FOR NUCLEAR RESEARCH
Laboratory of High Energies
P-289
-G. Grishin, M.I. Podgoretsky

REMARKS ON THE OPTICAL MODEL OF A NUCLEUS
JOINT INSTITUTE FOR NUCLEAR RESEARCH
Laboratory of High Energies
-V.G.Grishin, M.I. Podgoretsky
JOINT INSTITUTE FOR NUCLEAR RESEARCH
Laboratory of High Energies
-V.G.Grishin, M.I. Podgoretsky

СИГНАЛЬНЫЙ ЭKЗЕМIIMP

\qquad
\square

\qquad
\square
\square
\square
\square
\square

$$
89
$$

8
-289

\square

-

(a tao

5
$8:$
\qquad

$$
\checkmark \text {.G. Grishin, M.I. Podgoretsky }
$$
and in

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square

\qquad

\qquad
\square
\square
\square 2 $+$
\square

maturate
\qquad
.
\qquad
\qquad

:
\qquad
\qquad
\square
\square
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$+1-\frac{2}{2}=$

V.G. Grishin, M.I. Podgoretsky

REMARKS ON THE OPTICAL MODEL OF A NUCLEUS

$A b s t r a c t$

Some specifications of the optical model are considered.
§ 1. The problem of particle scattering on a force centre is known to reduce to the solution of Shrbdinger equation:

$$
\begin{equation*}
\nabla^{2} \psi+\left[k_{0}^{2}-\square(\vec{r})\right] \psi=0 \tag{1}
\end{equation*}
$$

In the notations shown in Fig. i the solution has the form 11

$$
\begin{equation*}
\varphi(P)=\int_{V} L U\left(\overrightarrow{r^{\prime}}\right) \psi\left(\overrightarrow{r^{\prime}}\right) d \tau^{\prime}-\int_{S}\left(\varphi \frac{\partial L}{\partial n}-L \frac{\partial \varphi}{\partial n}\right) d s^{\prime} \tag{2}
\end{equation*}
$$

where

$$
\varphi(P)=\psi(P)-e^{i k_{0} z}{ }^{2} L=-\frac{1}{4 \pi} \frac{e^{i k_{0}|\vec{z}-\overrightarrow{2}|}}{\left|\vec{z}-\overrightarrow{z^{\prime}}\right|}
$$

and
$\frac{\partial}{\partial n}$ denotes the differentiation over the external normal to the surface element. The sur- . face S and the volume V confined in it may be ohosen arbitrary

scatterer

Fig. 1
At great distances $\varphi \sim 1 / 2$. Therefore, the integral over the surface infinitely removed from a scatterer is tending to zero. If the surface S includes the points 0 and P and is tending to infinity, then the solution may be written as follows

$$
\begin{equation*}
\varphi(P)=\int_{V} L \tau \psi d \tau^{\prime} \tag{3}
\end{equation*}
$$

By another choice of the surface (see Fig.2) the integral over the infinite parts of the surface is tending to zero, the volume integral falls out and the integral by the plane \sum remains. Thus, the same solution may be presented in the form

$$
\begin{equation*}
\varphi(P)=-\int_{\Sigma}\left(\varphi \frac{\partial L}{\partial n}-L \frac{\partial \varphi}{\partial n}\right) d s^{\prime} \tag{4}
\end{equation*}
$$

scatterer

Fig. 2
The expression (3) is usually used in the Bohr approximation supposing that the inoident wave does not distort, ie. $\Psi \approx e^{1 k_{0}}$. An analogous approach may be used in other cases if the form of ψ inside a scatterer is approximately known. In particular, in the anally: sis of fast particles interaction with nuclei and nucleons the function Ψ may be substitubed in the approximation of the geometry options and, thus, to obtain the expression for φ.

Let us consider such an approach taking as an example a homogeneous disk |Fig. $3 \mid$:

Fig. 3

- Here n and n_{0} are the unit vectors in the direction of scattering and 2-axis respeotively. Inside the disk we have $k=k_{0}+k_{1}\left(k_{1}\right.$ may be complex), ie.

$$
\begin{equation*}
\Psi=A e^{i\left(k_{0}+k_{1}\right) z} \tag{5}
\end{equation*}
$$

The quantities k_{0}, k and $U=U+i V$ are connected by a simple relation. Indeed the equation (1) for our ouse has the form

$$
\frac{d^{2} \psi}{d z^{2}}+\left(k_{0}^{2}-u+i V\right) \psi=0
$$

that after the substitution (5) fields

$$
\begin{equation*}
U=U+i V=K_{0}^{2}-K^{2} \tag{5!}
\end{equation*}
$$

Substituting (5) and (51) into (3) we find

$$
\varphi(P)=-\frac{A\left(k_{0}^{2}-k^{2}\right)}{4 \pi} \int_{V} \frac{e^{i k_{0}|\vec{z}-\vec{z}|}}{\left|\vec{z}-\vec{z}^{\prime}\right|} e^{i\left(k_{0}+k_{1}\right) z^{\prime}} d \tau^{\prime}
$$

at great distances

$$
\left|\vec{z}-\vec{r}^{\prime}\right| \approx 2-\overrightarrow{z^{\prime}} \vec{n} \quad \text { and } \quad \frac{1}{|\vec{z}-\vec{z}|} \approx \frac{1}{2} .
$$

Then

$$
\varphi(P)=-\frac{A\left(k_{o}^{2}-k^{2}\right) e^{i x_{0} z}}{4 \pi r} \int_{V} e^{i x_{0}\left(\vec{n}_{0}-\vec{n}\right) \overrightarrow{\vec{r}^{\prime}}} e^{i \kappa_{t} z^{\prime}} d \tau^{\prime}
$$

From here the scattering amplitude

$$
\begin{equation*}
f(v)=-\frac{A\left(k_{0}^{2}-k^{2}\right)}{4 \pi} \int_{V} e^{i k_{0}\left(\vec{n}_{0}-\vec{n}\right) \overrightarrow{z^{\prime}}} \cdot e^{i k_{1} z^{\prime}} d \tau^{\prime} \tag{6}
\end{equation*}
$$

Having introduced the cylindrical coordinate system after the integration we obtain

$$
\begin{equation*}
f(v)^{\prime}=\frac{\left(1-e^{-i k_{1} d}\right) \cdot A\left(k_{0}^{2}-k^{2}\right)}{2 i k_{1}} \cdot \frac{R J_{1}\left(k_{0} R \sin Q\right)}{k_{0} \sin v} \tag{7}
\end{equation*}
$$

Here $I_{1}\left(k_{0}\right.$ Rein θ) is the Bessel function of the first order. For simplicity we shall conduct further consideration only for two limiting cases.
a) $\left|k_{1}\right| \ll k_{0}$. Then the reflection does not praotioally take place on the boundaries of the division, i.e. $A=1$.

Moreover, $\quad U=\left(k_{0}-k\right)\left(k_{0}+k\right) \approx-2 k_{0} k_{1}$
Therefore,

$$
f(\gamma)=i\left(1-e^{i k_{1} d}\right) \frac{R J_{1}\left(k_{0} R \sin \gamma\right)}{\sin S}
$$

b) A very great absorption on the dist thickness.

In this case it. is possible to negleot the wave reflection from the back wall of the disk while the reflection from the front one may be essential |if $k \geqslant k_{0} \mid$. Taking into account the boundary conditions we obtain: $A=\frac{* 2 k^{0}}{k_{0}+k}$, $1 . e$ for $f(\theta)$ formula (8) is again valid.

The obtained result coincides with the expression for the scattering amplitude calcurated on the basis of the optical model. This coincidence is not accidental since the optical model starts from the surface integral (4) which is equal to an initial volume integral (3) is instead of φ and Ψ their exact values would be substituted. Therefore, both approaches are equal. Under those or other conditions one is more convenient than the other from a methodical point of view.
§2. Suppose that the scatterer consists of independent elementary centres presented in Fig. 4 as hatched circles.

Fig. 4

Dat to additivity

$$
V\left(\vec{z}^{\prime}\right)=\sum V_{k}\left(\vec{z}^{\prime}\right), \quad \text { where } V_{k}\left(\vec{z}^{\prime}\right)=V_{0}\left(\rho_{k}\right)
$$

It he function V_{0} is equal for all the centres l. Then from (3) we obtain

$$
\varphi(P)=\sum_{K} \int L V_{k} \psi d \tau^{\prime}=\sum \varphi_{k}
$$

Sine $\left|\vec{z}-\vec{z}^{\prime}\right|=\left|\vec{z}_{K}-\vec{p}_{K}\right|$, then

$$
\varphi_{k}=\int L\left(\vec{i}_{k}, \vec{\rho}_{k}\right) \cdot U_{0}\left(\vec{\rho}_{k}\right) \Psi\left(\vec{\rho}_{k}\right) \alpha \tau .
$$

Here the integration 1 s made over the variable vector $\boldsymbol{\rho}_{k}$ At sufficiently small absorbtion in the approximation of a geometry optics in the vicinity of each elementary scatterer one may write:

$$
\begin{align*}
\Psi\left(\vec{z}^{\prime}\right)= & B \cdot e^{i \kappa\left(\vec{n}_{0} \vec{z}^{\prime}\right)}=B e^{i k\left(\vec{H}_{0} \vec{\Delta}_{k}\right)} e^{i k\left(\vec{n}_{0} \vec{\beta}_{k}\right)}=\Psi\left(\overrightarrow{\Delta_{k}}\right) \cdot e^{i k\left(\vec{n}_{0} \vec{\rho}_{k}\right)} \\
& \varphi_{k}(P)=\psi\left(\vec{\Delta}_{k}\right) \cdot \int L\left(\vec{\xi}_{k}, \vec{\rho}_{k}\right) U_{0}\left(\vec{\rho}_{k}\right) e^{i k\left(\overrightarrow{n_{0}} \vec{\rho}_{k}\right)} d t
\end{align*}
$$

Further

$$
\begin{equation*}
L\left(\vec{\xi}_{k}, \vec{\rho}_{k}\right)=L\left(\overrightarrow{z_{1}, \vec{z}}\right)=-\frac{e^{i k_{0}}}{4 \pi z} e^{-i k_{0}\left(\overrightarrow{\Delta_{k}}+\overrightarrow{+} \overrightarrow{p_{k}}\right)} \tag{9}
\end{equation*}
$$

$$
\varphi=\frac{\tilde{f}(\Omega)}{r} e^{i k_{0} \tau}\left(\sum \psi\left(\vec{\Delta}_{k}\right) e^{-i k_{0} \vec{n} \vec{\Delta}_{k}}\right),
$$

$$
\tilde{f}(v)=-\frac{1}{4 \pi} \int e^{i\left(k \vec{n}_{0} \vec{\rho}_{k}-k_{0} \vec{h} \vec{\rho}_{k}\right)} V_{0}\left(\rho_{k}\right) d \tau
$$

The scattering amplitude is of the form
where

$$
\begin{equation*}
A(V)=f(Q) \cdot\left(\sum_{K} \psi\left(\vec{\Delta}_{K}\right) e^{-i K_{0} \vec{H} \vec{\Delta}_{K}}\right) \tag{10}
\end{equation*}
$$

If $\left|k_{1}\right| \Delta C \ll 1$, where ΔC are the dimensions of an elementary center, then coincides practically with the scattering amplitude $f(\mathscr{O})$ on a free elementary centre. It is this case which occurs in quick π-meson and nucleon interaction with nuclei ($\left|k_{l}\right| \sim$ $M 0^{12} \mathrm{~cm}^{-1}$ and $\Delta \ell \sim 10^{-13} \mathrm{om}$) to say nothing of γ-quanta and electrons. Therefore, one may consider that

$$
\begin{align*}
& \tilde{f}(v) \approx f(v) \\
& f(Q)=f(\Omega) \cdot \sum \psi\left(\Delta_{k}\right) e^{-i k_{0} \vec{h} \vec{\Delta}_{k}}
\end{align*}
$$

The physical meaning of (10) and (10') consists in the interference of secondary scattered waves from elementary soatterers. When deriving (10) it was supposed that inside
each elementary centre the wave does not change
$/ \mathrm{e}^{1 \mathrm{kz}}$ ' both outside and inside the emitter/, i.e. for each emitter the Bohr approximation is used. It is clear from the phys:sical meaning of (10) that it is not obligatory and that the same result will also hold for strong distortion of the field inside elementary scatterers.

As is known the differential cross section for elastic scattering $\sigma(\theta)=|A(\beta)|^{2}$ Since the elementary centres are moTing we have for experimentally measured $\quad \sigma \exp (\theta)=\overrightarrow{\sigma(\vartheta)}=\overrightarrow{\left.A(\vartheta)\right|^{2}}=$

$$
=|f(S)|^{2} \cdot \mid \sum_{k} \Psi\left(\vec{\Delta}_{k}\right) e^{-\left.i k_{0} \vec{n} \vec{\Delta}_{k}\right|^{2}}
$$

As a result of averaging the term dependent only upon the mean number of elementary centres in different parts of the scatterer and the term dependent upon the fluctuation in the number of centres are obtained. Further we shall consider only the first term. Therefore, from the very beginning one may average $A(\theta)$, then calculate $|\bar{A}|^{2} *$. Let us introduce the mean density of elementary scatterers $\rho(\vec{\Delta})$ **, then instead of (10) we obtain:

$$
\begin{gather*}
A(\hat{\nu})=f(\hat{\theta}) \cdot F(\hat{Q}), \\
F(\hat{\theta})=\int_{\tau} \rho(\vec{\Delta}) \psi(\vec{\Delta}) e^{-i \varepsilon_{0} \vec{\Delta} \vec{\cdot}} \cdot d \tau . \tag{II}
\end{gather*}
$$

where
has the meaning of a generalized form-factor. If $\Psi(\mathbb{\Delta}) \operatorname{mik}_{\mathrm{E}}^{\mathrm{n}} \mathrm{n}_{\mathrm{o}}$, then the generalized formfactor passes into a usual one, used in Bohr approximation $\mid 2,31$.

From (11) and (11') follows that

$$
\sigma(\vartheta)=|f(\vartheta)|^{2} \cdot|F(\theta)|^{2}
$$

Q 3. By a usual consideration in the optical model it is supposed that the approximacion of geometry optics is valid inside a scatterer. Then in view of (3) and (4) being equal to each other one may write

$$
A_{o o l}(\vartheta)=-\frac{1}{4 \pi} \int_{V} e^{-i K_{0} \vec{H} \vec{\Delta}} \cdot U(\vec{\Delta}) \psi(\vec{\Delta}) d \tau
$$

Further one may believe that

* The investigation of the second term makes it possible to come to the problem about the character of intranuclear fluctuations.
** $\rho(\vec{\Delta})_{\text {is }}$ the mean number of elementary scatterers the centres of which are situlated in the volume under consideration. Further by $\rho(\vec{A})$ we shall understand the density of nucleon number.

$$
\begin{align*}
& U(\vec{\Delta})=-4 \pi f(0) \rho(\vec{\Delta}) \tag{12}\\
& A_{o \delta}(\theta)=f(0) \int_{V} e^{-i k_{0} \vec{n} \vec{\Delta}} \rho(\vec{\Delta}) \psi(\vec{\Delta}) d \tau .
\end{align*}
$$

1.e.

$$
A(v)=f(v) \cdot \int_{V} e^{-i k_{0} \vec{n} \vec{D}} \rho(\vec{\Delta}) \psi(\vec{\Delta}) d \tau
$$

comparing $A_{o s}(v)$ and $A(v)$ we obtain:

$$
\begin{equation*}
A(v)=\frac{f(v)}{f(\theta)} A_{o r}(v) \tag{13}
\end{equation*}
$$

It $1 s$ seen from (13) that $A(\mathcal{V})$ by $\mathcal{O} \neq 0^{\dagger}$ is different from A of $(\mathcal{F})_{\text {sine the usual opt- }}$ al consideration does not take into account secondary waves radiated (emitted) by elementeary scatterers at the angles $Q_{\neq 1} 0$. In forward scattering from (13) we have:

$$
A(D)=A_{0 \delta^{\circ}}(D) \quad \text { that is clear from the }
$$

physical point of $v i e w$, since the introduction of K_{1} just takes into account the super position of all secondary waves radiated forward. The difference between $A(V)$ and A os (B) vanishes if the scattering on an elementary centre is isotropic, but may be essential if there is an anisotropy.

From (13)

$$
\begin{equation*}
\sigma(v)=\frac{\sigma_{0}(v)}{\sigma_{0}(0)} \sigma_{o s}(v) \tag{14}
\end{equation*}
$$

Here

$$
\sigma_{0}(v)=|f(\theta)|^{2}
$$

$$
\sigma_{o v}(l)=\left|A_{o \delta .}(v)\right|^{2}
$$

 $\sigma_{e l}$ will be less than an analogous usual one $\sigma_{\ell l}$ of. It follows from $A(0)=A$. (0) and from the well-known optical theorem $\sigma_{t}=4 \pi t \operatorname{Im} A(O)$ that the total cross sectson σ_{t} are identical. From here the total inelastic cross section $\sigma_{i n}=\sigma_{t} \rightarrow \sigma_{\ell l}$ is greater than an analogous usual one $\sigma_{\text {in }} 0 \%$.

$$
\sigma_{i n}=\sigma_{t}-\sigma_{e l}=\int \sigma_{25}(\delta) d \Omega+\sigma_{i n, 0 \delta}-\int_{\sigma_{0}(0)}^{\sigma_{1}(s)} \sigma_{0 s}(s) d \Omega
$$

$$
1 . e ., \quad \sigma_{i n}=\sigma_{i n . n \delta}+\int \sigma_{0 .}(\forall)\left[1-\frac{\sigma_{0}(v)}{\sigma_{0}(0)}\right] d \Omega
$$

The previous consideration was conducted in the nonrelativistic ouse. From the standpoint of physical meaning all what has been said but a concrete form of an integral deter-
mining $f(V)$ and $f(v)$ is referred also to a relativistic case.
Formula (14) is referred to the scattering on heavy elementary centres, ide. is cor:rect in the lab.system. It can be easily seen that in case of small scattering angles it has the same form in any coordinate system. Indeed, it is known that the quantity $\sigma^{*}(\Omega) d \Omega^{*}$ is an invariant*

Then

$$
\sigma(v)=\sigma^{*}\left(v^{*}\right) \frac{d \Omega^{*}}{d \Omega}=\frac{\sigma_{0}^{*}\left(v^{*}\right)}{\sigma_{0}^{*}(0)} \sigma_{\Delta}^{*}\left(v^{*}\right) \frac{d \Omega^{*}}{d \Omega}
$$

but

$$
\sigma_{o \delta}^{*}\left(\Omega^{*}\right) \frac{d \Omega^{*}}{d \Omega}=\sigma_{o \delta}(\gamma), \sigma_{0}^{*}(0)=\sigma_{0}(0) \cdot\left(\frac{d \Omega}{d \Omega^{*}}\right)_{0}
$$

and

$$
\sigma_{0}^{*}\left(v^{*}\right)=\sigma_{0}(\vartheta)\left(\frac{d \Omega}{d \Omega^{*}}\right)_{v}
$$

Therefore, $\sigma(v)=\frac{\sigma_{0}(v)}{\sigma_{0}(0)} \sigma_{0 \delta}(v) \cdot\left(\frac{d \Omega^{*}}{d \Omega}\right)_{0} /\left(\frac{d \Omega^{*}}{d \Omega}\right)_{\theta}$
If the angles are small, then $\left(\frac{d \Omega^{*}}{d \Omega}\right)_{0} /\left(\frac{d \Omega^{x}}{d \Omega}\right) \approx 1-\alpha \Omega^{2}$,
where $\mathcal{\alpha}$ is equal to $1 / 2$ if the mass of the scattered particles is equal to a mass of elfmentary scatterers and $\alpha \ll 1$ in light particle scattering on heavy ones.

Thus, finally we again obtain the form of (14).
§4. The experiments on quick electron scattering on nuclei $|4|$ have been performed. The analysis of experimental data was made by formula (11) by substituting the
coulomb scattering amplitude on a point charge for $f(v)$. Thus, the obtained function $\rho_{e}(\vec{\Delta})$ is characteristic for the charge density distribution in a nucleus.

More direct and suitable characteristic valid for comparison with the results of
other experiments is the nucleon density in a nucleus.
Then by formula (11") we have

$$
\begin{equation*}
\sigma_{e x p}^{Q}=\sigma_{e \times \rho}^{P} \cdot f_{q}^{2} \tag{16}
\end{equation*}
$$

where $\sigma_{\text {exp }}^{g}$ is the experimental cross section for electron scattering on a nucleus, $\sigma_{\text {exp }}^{P}$ is the experimental cross section f or electron soattering on a proton

$$
F_{Q}=\int \rho(\Delta) \psi(\vec{\Delta}) e^{-i k_{0} \vec{n} \Delta} d \tau
$$

and $\rho_{H}(\vec{\Delta})$ is the nucleon density in a nucleus. on the other- hand, the authors of the

[^0]paper $|4|$ believed
$$
\sigma_{\text {exp }}^{g}=\sigma_{\text {MOT }} F_{\text {g. HOP }}^{2}
$$
where 6 mot is the cross section for electron scattering by a point charge (Mott scat-: taring") and $F_{9} \frac{15}{}$ the form-factor obtained from (16^{\prime}). Making the right-hand sides of (16) and (16') equal we obtain
$$
F_{: q}^{2}=\frac{\sigma_{\text {MoT }} F_{H O f}^{2}}{\sigma_{\text {eXP. }}^{2}}
$$

If the magnetic scattering is absent then $\sigma_{\exp }^{P}=\sigma_{\text {MoT }} F_{P}^{2}$, where $F p$ is the formfactor of a proton. Finally one gets

$$
F_{g}=\frac{F_{q}, H \rho}{F_{q}}
$$

For small angles in the Bohr approximation we have ${ }^{14 \mid} \mathrm{F}=1-\frac{p_{2}^{2}}{6} \sqrt{r^{2}}$ where $\hbar \vec{q}$ a transferred momentum $\left(|q|=K_{0} Q\right)$ and $\bar{r}^{2} 1 s$ the romes. radius. Expanding all the form-factors in a series we get from (17)

$$
\begin{equation*}
\overline{\eta^{2}}={\overline{\eta^{2}}}_{\text {R.hof }}-\overline{\eta^{2}} \tag{18}
\end{equation*}
$$

The difference in the root-mean-square radii $\sqrt{\tau_{9}^{2}}$ and $\sqrt{r_{4}^{2}}$ try.
is 5.5% for carbon.

Analogous considerations ought to be taken into account also in the analysis of π meson and nucleon $|5-8|$ scattering. It is necessary to start from the density distribution in a nucleus and to take into account the cross section $\sigma_{0}(\mathcal{O})$ of ementary interaction treating the experimental data in accordance with (11") or (14) and not simply by a usual optical model. In this connection the paper 151 should be mentioned in which there is a conclusion about a possible difference between the quantities $\overline{Z^{2}}$ in scattering of electrons and T-mesons on nuclei. The existence of the above-mentioned effect gives rise to some doubts from an experimental point of view.

At any rate when discussing this effect it is necessary to take into account the considerations stated above. Unfortunately, this was not done by the authors in an explicit form.

To introduce the oorreotion it is necessary to expand the generalized form-factor (II') In a series by q^{2}. In the limiting asa of small absorptions the expansion has the form

$$
1-\frac{q^{2} z^{2}}{6}
$$

In the opposite, limiting case of very strong absorption (over the whole nucleus) there practically occurs a diffraction on a black sphere and $\sigma(v)=2 \sigma_{00}(0) \frac{J_{1}^{2}\left(K_{0} R \sin v\right)}{K_{0}^{2} R^{2}(\sin V)^{2}}$

Then the expansion for small angles is of the form $1-\frac{q^{2}}{2^{2}}$, Thus, in the general case the coefficient at $q^{2} \bar{Z}^{2} \quad$ is likely to confine between $1 / 6$ and $1 / 8$.

To obtain the oorrections it is also necessary to expand the elementary cross seotions $\pi-p$ and $p-p$ interactions in a series by q^{2}.

These expansions are as follows
$\sigma_{0}(0)=\sigma_{0}(0)\left(1-\frac{q^{2} R^{2}}{6}\right)$, at $E_{T_{1} p} \approx(1 \div 3) \operatorname{Bev}$ and $R=1,2 \cdot 10^{-13} \mathrm{om}$.
making the planned calculations for carbon
When making the planned calculations for carbon nuclei the correctiou in $\overline{r^{2}}$ of about 6.5% is obtained.

The authors are grateful to S.M. Bilenky, G.V. Efimov, V.I. Ogievetsky and R.M.Ryndin who took part in the discussions.

References

1. H. Mott, G. Massey. The Theory of Atomic Collisions. I.I. (1951).
2. Mott Proc.Roy.Soc. A 127, 658, 1930.
3. H. Bethe Ann. of Phys. 3, 190, 1958.
4. R. Hofstadter Rev. Mod. Phys. 28, 214, 1956.
5. J.W. Cronin, R. Cool and A. Abashian Phys.Rev. 107, 1121, 1957.
6. T. Bowen, M. Di. Corato, W.H. Moore and G. Tagliaferri. Nuovo Cimento IX, 908, 1958.
7. R.B. Begzhanov JETP 34, 775 (1958).
8. R.B. Begzhanov JETP 34, 1013 (1958).

The Russian variant of this paper was received by Publishing Department on January 26, 1959.

[^0]: * The asterisk denotes the quantities referring to the moving coordinate system.

