

P - 2862

В.И. Кузнедов, Н.К. Скобелев, Г.Н. Флеров

ИЗУЧЕНИЕ СПОНТАННО ДЕЛЯЩИХСЯ ПРОДУКТОВ В ЯДЕРНЫХ РЕАКЦИЯХ

Th²³⁰ + B¹⁰ N Th²³⁰ + B¹¹

P - 2862

В.И. Кузнепов, Н.К. Скобелев, Г.Н. Флеров

ИЗУЧЕНИЕ СПОНТАННО ДЕЛЯЩИХСЯ ПРОДУКТОВ В ЯДЕРНЫХ РЕАКЦИЯХ

Th²³⁰ + B¹⁰ H Th²³⁰ + B¹¹

Направлено в ЯФ

,

AN ADA D BOLING HER LADOTTERY APARTSIX HECHENORUSE ほううれた 明日かっか

В работе^{/1/} указывалось, что при бомбардировке U²³³ вонами В ¹⁰ и В¹¹ наблюдается спонтанно делящийся продукт с Т $\gamma = (2, 6 + 0, 2)$ мин. Было высказано предположение, что этот продукт образуется в ядерных реакциях типа: U²³³ (В¹⁰, ахп) Аm^{239-хв} и Θ U²³³ (В¹¹, ахп)Аm^{240-хв}, причем наиболее вероятными продуктами реакций являются изотопы америция с массовым числом A ≤ 236 .

Справедливость этого предположения можно проверить, исследуя более простые ядерные реакции синтеза легких изотопов америция, идущие через составное ядро с последующим испарением нескольких нейтронов. Такие реакции должны осуществляться в процессе бомбардировки изотопа Th²³⁰ ионами В¹⁰ и В¹¹.

Измерения проводились, как и раньше, на пробнике с наклонной мишенью^{/2/}. В экспериментах использовался прерывистый режим работы ускорителя У-300, так что одновременно обеспечивались эффективная регистрация осколков спонтанного деления продуктов реакций и измерение периода полураспада.

Регистрания осколков спонтавного деления продуктов реакции начиналась спустя 23 сек после окончания цикла облучения, что исключало эффекты, обусловленные спонтанно делящимися продуктами с малыми временами жизни.

Время облучения в опытах варьировалось от 8 до 12 мин. В таких же пределах в соответствующих опытах менялось и время измерения.

Облучение мишени из Th²³⁰ проводилось конами В¹⁰ и В¹¹ в широком интервале энергий. Мишень приготовлялась методом нанесения активного вещества с органическими добавками на алюминий с последующим выжиганием органики.

Мишень содержала 250 мкг/см² Th²³⁰. Угол наклона мишени к пучку вонов был равен 12⁰. Таким образом, эффективная толщина мишени составляла 1,2 мг/см² Th²³⁰. Изотопный состав мишени: 50% – Th²³⁰ и 50% – Th²³², поэтому полная эффективная толщина мишени по торию была равной 2,4 мг/см², что соответствовало потерям энергии ионов B¹⁰ и B¹¹ в мишени ~ 1,5 Мэв.

В обоих случаях были зарегистрированы осколки спонтанного деления с периодом

полураспада $T_{\frac{1}{2}} = (2, 6 + 0, 2)$ мин, как и в работе $\frac{1}{2}$.

На рис. 1 представлен распад этих продуктов. Следует обратить внимание на то, что в реакции. Th²³⁰ + B¹⁰ при энергиях конов B¹⁰~82 Мэв и выше наблюдался новый спонтанно делящийся излучатель с Т ½ = (1,4 + 0,25) мин (рис. 2).

Поэтому для получения фуякции возбуждения 2,6 - минутного спонтанио деляшегося продукта в реакции Th²³⁰ + B¹⁰ необходимо исследовать вклад 1,4 -минутного излучателя. Такие опыты были проведены. На рис, 3 представлены функции возбуждения 2,6 минутного продукта, образующегося в реакциях Th²³⁰ + B¹⁰ и Th²³⁰ + B¹¹ с учетом фона детекторов, и 1,4 -минутного продукта.

Следует отметить, что максимумы выходов спонтанно делящихся продуктов в этих реакциях сдвинуты по шкале энергий конов примерно на 12 Мэв.

Так как ториевая мишень не молоизотопна, необходимо было провести контрольные опыты и выяснить, на каком именио изотопе образуется спонтанно делящийся продукт с периодом полураспада 2,6 мин.

В контрольных опытах использовалась мишень из Th²³² с эффективной толщиной ~ 5 мг/см². Облучение мишени из тория-232 проводилось ионами B¹⁰ при энергии, соответствующей максимальному выходу излучателя с Ту = 2,6 мии в реакции Th²³⁰ + B¹¹, и в том же самом режиме. Облучение ионами B¹⁰ проводилось при несколько меньшей энергии (рис. 3).

Эти опыты показали, что если в реакции $Th^{232} + B^{11}$ в этом диапазоне энергий и образуется спонтанно делящийся продукт, то граница его сечения образования $\sigma \leq 3 \cdot 10^{-35}$ см². Эта граница определялась фоном стеклянных детекторов, зависящим от суммарных нейтровяых потоков и составляющим ~ 6% от эффекта.

Расчеты величия сечения образования 2,6-минутных продуктов в обекх исследуемых реакциях дают следующие величины: при облучении Th²³⁰ ионами B¹⁰ с энергией $E_{g^{10}} = 71$ Мэв получена величина $\sigma = (5,7\pm0,5).10^{-34}$ см², а в реакции Th²³⁰ + B¹¹ получено сечение образования этого же продукта $\sigma = (5,4\pm0,5).10^{-34}$ см² при $E_{g^{10}} = 81$ Мэв.

Вид функции возбуждения этого продукта в вышеупомянутых реакциях подтверждает ранее высказанное предположение о возможности испарительных реакций с испусканием 8 или 7 нейтронов из возбужденного компаунд-ядра.

Это подтверждается также оценками положения максимумов функций возбуждения реакций Th²³⁰ (B¹⁰, 6n) Am²³⁴ и Th²³⁰ (B¹¹, 7n) Am²³⁴, хорошо согласующимися с экспериментальными значениями максимумов ($E_{B^{11} pact} \approx 82$ Мэв и $E_{B^{10} pact} \approx 70,5$ Мэв), при этом температура ядра принималась равной 1,5 Мэв. Массы ядер брались из таблиц Камерона^{/3/} и Зигера^{/4/}. Предполагалось, что положение

максимумов функций возбуждения реакций Th²³⁰ (B¹⁰, 6n) и Th²³⁰ (B¹¹, 7n) с образованием америция-234 не зависит от того в основном или изомерном состояниях образуются эти ядра.

Из совокупности этих данных следует, что наиболее вероятным продуктом, испытывающим спонтаниое деление с $T_{ij} = (2, 6 + 0, 2)$ мин является Am²³⁴.

Для объяснения столь высокой вероятности спонтанного деления по сравнению с предсказываемым значением на основании различных систематик можно предположить, что наблюдается спонтанное деление из изомерного состояния Am²³⁴.

Эта гипотеза не является единственной. Например, не исключена возможность запаздывающего деления, если при К -захвате Am²³⁴ образуется ядро Pu²³⁴ с большой энергией возбуждения.

Авторы весьма признательны Б.А. Гвоздеву, Ю.С. Короткину за приготовление мишеней. Авторы благодарят В.П. Перелыгина и сотрудников его группы за подготовку и обработку детекторов, А.Г. Пилькова и Б.В. Шитова за помощь в работе.

Литература

- В.И. Кузнепов, Н.К. Скобелев, Г.Н. Флеров. Преприят ОИЯИ, Р-2499, Дубиа, 1965; Ядериая физика, <u>4</u>, 99 (1966).
- В.И. Кузнепов, Н.К. Скобелев, Г.Н. Флеров. Препринт ОИЯИ, Р-2435, Дубна, 1965; Ядерная физика (в печати).

3. A. Cameron, Report CRP - 690 (1957).

핚

4. P.A. Seeger. Nuclear Physics, 25, 1-135 (1961).

Рукопись поступила в издательский отдел З августа 1966 г.

Рис. 1. Распад спонтанно делящихся продуктов, образующихся при бомбардировке Th^{230} ионами В¹⁰ и В¹¹ (**ф р** - E_B¹⁰ 70 Мэв, **ф** - E_B¹⁰ 76Мэв, **ф** - E_B¹¹ ≈ 79 Мэв, **ф** - E_B¹¹ ≈ 85 Мэв).

Рис. 2. Кривая распада продуктов реакции Th²³⁰ + В¹⁰ при высоких энергиях ионов В¹⁰ (т - Е_в10≈ 82 Мэв, т - Е_в10≈ 95 Мэв).

¥) 1

Рис. 3. Функция возбуждения 2,6-минутного спонтанно деляшегося продукта, образую-щегося при облучении Th²³⁰ ионами В¹⁰ и В¹¹.

`:**`**;