А-67 объединенный институт ядерных исследований

MCOKMX JHEPE

bide Lydes

and the second second

Дубна

P - 2849

М. Аникина, Г. Варденга, М. Журавлева, Д. Котляревский, Ю. Лукстыныш, Э. Оконов, Г. Тахтамышев, С. Хорозов, Л. Чхандзе

AP, 1967, T.S., Bun.S

C. 1042-1044

поиски "долгоживущих" л° -гиперонов

P - 2849

М. Аникина, Г. Варденга, М. Журавлева, Д. Котляревский, Ю. Лукстыньш, Э. Оконов, Г. Тахтамышев, С. Хорозов, Л. Чхандзе

YYOX 40-

поиски "долгоживущих" Л° -гиперонов

Направлено в журнал "Ядерная физика"

MICTIT OSTREPS NOL "最优成的""我是你 1**10**0

24 Λ° - events, for which the distance from the point of decay to the cloud chamber inner plate was more than 3 centimeters, were deflected from the direction to the target at angles exceeding 10 errors of angles measurement. Only for one Λ° this deflection was within 2 errors ($\Theta_{0} = 5.3^{\circ} \pm 3.5^{\circ}$). Poor measurability of this event makes it impossible to correlate it unambiguously with the nearest star.

The data obtained permit to estimate the upper limit of number of "long-lived" Λ° -decays in our chamber: $N_{\circ} \leq 1$. If one supposes the character of nonexponentiality in K_{\circ}° - and Λ° - decays to be similar and takes into account that under our conditions $\Lambda^{\circ}(\geq^{\circ})$ are generated twice as much as K_{\circ}° , then among 2660 K_{\circ}° - decays detected in the chosen volume of the cloud chamber one must have observed $N_{\Lambda^{\circ}}^{\prime} \approx 10$ decays of "long-lived" Λ° - hyperons.

The comparision of the expected number of "long-lived" Λ° -decays ($N_{10} = 10$) with the experimental value ($N_{10} \leq 1$) demonstrates as being very unlikely the models, which assume the $K^{\circ} = \pi^{+} \pi^{-}$ to be due to the nonexponentiality in unstable particles decays (the probability to find $N \leq 1$, having expected N=10, is: $\rho \leq 10^{-3}$). At the same time, as analysis of works^[1-5] has showen, the $K^{\circ} = \pi^{+} \pi^{-}$ decays at large distances from target are described very well by an exponential with the exponent, corresponding to the lifetime of K_{10}° - meson (see Fig. 2.). В некоторых теоретических работах (см., например,^{78,77}) делается попытка объяснить обнаруженный Принстонской группой распад долгоживущего К⁰ -месона на $\pi^{+}\pi^{-/8/}$ отклонением от экспоненциальности в распадах нестабильных частии. Против этих моделей имеются возражения теоретического характера^{/0/}, однако представляет витерес их прямая экспериментальная проверка.

С этой целью нами были предприняты поиски "долгоживущих" Λ^0 -гиперонов в условнях очень близких к тем, в которых наблюдался распад $K_L^0 \star \pi^+ \pi^-$. Метровая камера Вильсона, с помощью которой изучались распадные свойства K_L^0 -мезонов /10/, располагалась на расстояния 6,2 м от внутренней мишени синхрофазотрона, что соответствовало в наших условиях ~200 средним распадным пробегам Λ^0 -гиперона. Проходящий через камеру пучок нейтральных частии, рожденных в свинцовой мишени, формировался с помощью системы коллиматоров под углом 90°+1,5° к пучку протонов, ускоренных до 10 Гэв.

В результате трехкратного просмотра было обнаружено = 4500 K_2^0 -распадов, из которых 3200 были измерены и проанализированы по критериям распада $\Lambda^0 \rightarrow p + \pi^-$. Этим критериям удовлетворяло 122 события. Подавляющая часть зарегистрированных Λ^0 -гиперонов (110 распадов) рождается в результате взаимодействия K_2^0 -мезонов в пластинах камеры. Из этого числа было отобрано для дальнейшего анализа 13 Λ^0 -частиц, точки распада которых отстоят от пластии не меньше чем на 3 средних распадных пробега (3 < l < 5) (см. рис. 1). Отобранные 13 событий, а также 12 Λ^0 -распадов с l > 5 ^{x)} были проанализированы по углу вылета θ_{Λ^0} относительно направления на мишень. В 24 случаях отклонение от направления на мишень превышает десятикратную ошибку измерения, и лишь в одном случае это отклонение оказалось в пределах двукратной ошибки ($\theta_{\Lambda^0} = 5, 3^0 \pm 3, 5^0$). Плохая измеримость этого события не дает

3

112

х) Из числа событий с l > 5 в 10 случаях была зарегистрирована звезда в газе камеры, коррелирующая с направлением Λ⁰ -частицы; в двух других могло иметь место рождение Λ⁰ в безлучевой звезде. Ожидаемое число последних - 1 ÷ 2 события.

возможности установить однозначную корреляцию его с близлежащей звездой.

Полученный результат позволяет оценить верхний предел числа "долгоживущих" Λ^0 -частиц, которые могли бы родиться в мишени ускорителя и распасться в нашей 'камере: N_A $0 \le 1$.

Оценям теперь, какое количество распадов "долгоживущих" Λ^0 -частиц мы могли бы ожидать, если характер предполагаемой неэкспоненциальности в распаде K_5^0 -мезона такой же, как в распаде Λ^0 -гиперона. Имеющиеся экспериментальные данные /11,12,13/ показывают, что на тяжелых ядрак подавляющее число странных частиц рождается в результате вторичных взаимодействий пионов ($\bar{E}_{\pi} \approx 1 \div 2$ Гэв), образованных в ядре первичной частицей. В этом случае основной вклад дают реакции с рожденнем пар $\Sigma K \equiv \Lambda^0 K$. Отсюда следует, что Λ^0 -частиц, рожденных в прямой реакции и возникающих за счет перехода $\Sigma^0 \to \Lambda^0$, приблизительно в 2 раза больше, чем K_1^0 -мезонов. При этом надо иметь в виду, что угловые распределения Λ^0 -частиц в лабораторной системе шире, чем K^0 -мезонов, так что в нашем случае под углом 90° Λ^0 -частиц летит больше, чем каонов.

ext

of

c hi

th

11

th

or

wł

4

Ci W

1

1

٦

٦

Таким образом, среди 2660 K_2^0 -распадов, зарегистрированных нами в выделенном объеме камеры, с учетом среднего значения величины $\frac{W(K_L^0 \rightarrow \pi + \pi^-)}{W(K^0 \rightarrow 3a p \pi \pi,)} =$ = $(2,04\pm0,13) \times 10^{-3}$ /14/, мы могли бы ожидать $N'_{\Lambda^0} = 10\pm1$ распадов "долгоживущих" Λ^0 - гиперонов. При этом мы считаем импульсные распределения $K^0 - \mu \Lambda^0$ -частиц примерно одинаковыми, имея в виду совпадающие поперечные импульсы рожденных K^0 -мезонов н Λ^0 - гиперонов ($\bar{P}_{\chi^0} = \bar{P}_{\Lambda^0} = 400$ Мэв/с)^{/12/}. Следует подчеркнуть, что величина N'_{Λ^0} не очень чувствительна к спектру Λ^0 , так как предполагаемая неэкспоненциальность, судя по имеющимся экспериментальным данным^{/1-5/}, должна была бы охватывать широкий интервал времен жизни (90÷400), что соответствует в наших условиях $P_{\Lambda^0} \approx 200 \div 1000$ Мэв/с.

Из сопоставления ожидаемого числа распадов "долгоживущих" Λ° -гиперонов ($N'_{\Lambda^0} = 10$) с экспериментальным значением ($N'_{\Lambda^0} \le 1$) следует, что модели, объясняющие процесс $K^{\circ} \rightarrow \pi^+ \pi^-$ неэкспоненциальностью распада нестабильных частиц, представляются весьма маловероятными^x.

С другой стороны, как показывает акалез результатов работ $^{/1-5/}$, распады $K^0 \rightarrow \pi^+ \pi^$ на большом расстояния от мишени хорошо описываются экспонентой с показателем, соответствующим времени жизни K_{μ}^0 -мезона (см. рис. 2).

В заключение авторы выражают благодарность А.Н. Мествиришенли, Д. Нягу, Н.И. Петрову, В.А. Русакову в У Цзун-фаню за помощь в работе в группе лаборанток за обработку экспериментального материала.

х) При ожидаемом числе распадов N'= 10 вероятность обнаружить N \leq 1 не пре-восходит 10^{-3} .

4

- 1. T. de Bourd et al, Phys. Lett, 15, 58 (1965)
- 2. M..Bott-Bodahausen et al.Phys. Lett , 20,212 (1965).
- 3. W. Galbraith et al. Phys. Rev. Lett., 14, 383 (1965).
- 4. J. Cronin. Oxford Int. Conf. on Elem. Part, 205 (1965).
- 5. В. Thevenet. Симпознум по слабым взавмодействиям в Балатонвилагош, 1966 (в печати).
- 8. A. Peres. Preprint of Israel Institute of Technology, Haifa, 1965.
- 7. Л.А. Халфин. ДАН СССР, 1<u>65</u>, 541 (1965).
- 8. J. Christenson et al. Phys. Rev. Lett., 13, 138 (1964).
- 9. М.В. Терентьев. УФН, <u>86</u>, вып. 2, 231-262 (1965).
- 10. Д. Котляревский и др. Препринт ОИЯИ, Р-1919, Дубиа, 1964.
- 11. В.А. Беляков и др. Препринт ОИЯИ "Р-1584, Дубиа, 1964.
- 12. Е. Богданович и др. ЯФ, 3, вып. 1, 73 (1966).
- 13. T. Bowen et al., Phys., Rev., 119, 2030, 2041 (1960).
- 14. J. Bell, J. Steinberger, Oxford Inter, Conf. on Elem . Part. (1965).

Рукопись поступила в издательский отдел 1 августа 1968 г.

3,

Рис. 2. Кривая распада $K^0 \rightarrow \pi^+ \pi^-$ на больших расстояниях от мишени, построенная по данным работ . Вычисленное по ней среднее время жизни $K^0_{L} \rightarrow 2\pi^+$ $r = (4, 4 + 1, 1) \times 10^{-9}$ сек.