C 3 (04) + C 344.1 0-292

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

P - 2843

АННОТАЦИИ СООБЩЕНИЙ НА XVII СОВЕЩАНИИ ФОТОЭМУЛЬСИОННОГО КОМИТЕТА

Варна, 4-7 мая 1966 г.

АННОТАЦИИ СООБЩЕНИЙ НА XVII СОВЕЩАНИИ ФОТОЭМУЛЬСИОННОГО КОМИТЕТА

Варна, 4-7 мая 1966 г.

YSIG/, yg.

in the method and an and the state of the second state of the seco STATE CONCRETENSION A SERA

P - 2843

УПРУГОЕ РАССЕЯНИЕ ПРОТОНОВ НА ДЕЙТОНАХ В ОБЛАСТИ ВЫСОКИХ ЭНЕРГИЙ

Л.С.Золин, Л.Ф.Кириллова, В.А.Никитин, В.А.Свиридов, М.Г. Шафранова

В настоящей работе сообщаются дальнейшие результаты исследования упругого pd рассеяния на малые углы в интервале энергий I-IO Гэв /I,2,3/. Опыт проводился методом, в котором регистрируется медленный дейтон отдачи от мишени-иленки из вещества $(CD_2)_{n}$. Исследуеими диапазон ивадратов переданных импульсов 3.10⁻³ < |t| < 0,15 (Гэв/с)². Статистическая ошибка измерения дифференциального сечения составляет 3%, точность абсолютного мониторирования. 7%.

Если предположить, что вклад спинозависящих членов в амплитуду рассеяния невелик, то можно вычислить отношение $\mathcal{L}_{pd} \approx \frac{Re \ A_{od}(O)}{\mathcal{J}_m \ \mathcal{A}_{pd}(O)}$ по формуле Бете /4/. Результаты показаны на рис. I. Важно отметить, что основную информацию о величине \mathcal{L} дает область малых углов рассеяния, где наблюдается интерференция кулоновского и ндерного рассеяний.

Существенный интерес для физики высоких энергий представляет величина $\mathcal{A}_{PR} = \frac{Re \mathcal{A}_{PR}(O)}{\mathcal{I}_{m} \mathcal{A}_{PR}(O)}$. Мы вычислили \mathcal{A}_{PR} на основании формализма, развитого Глаубером /5/ и Глаубером и Франко /6/ аналогично тому, как это сделано в нашей предндущей работе/3/. Проведен также анализ вкспериментальных данных по $Pd, \rho p$ и np рассеянию на основании различных моделей дейтона. Сравнение результатов этого анализа с теоретическими расчетами по дисперсионным соотношениям /7/ и согласно полюсным моделям /8/ можно видеть на рис.2.

Литература

І. В.А.Никитин и др. ПТЭ, № 6, 18, 1963.

 Л.Ф.Кириллова и др. XII международная конференция по физике высоких энергий, Дубна, 1964.

3. Л.С.Золин и др. ЖЭТФ (письма в редакцию) т.Ш. вып. 1,1966.

4. H.A. Bethe. Ann. Phys., 3, 190 (1958).

5. R.I.Glauber. Phys. Rev., 100, 242 (1955).

6. V.Franco, R.I.Glauber. Preprint Lyman Laboratory of Physics Harfard, Univ. Cambridge.
7. А.А.Garter, D.V.Bugg. Резерфордовская даборатория, препринт RPP/H/I2.

8. V.Barger, M.Olsson. University of Wisconsin. Preprint.

Ответственный за выпуск-С.И. Любомилов

Рукопись поступила в издательский отдел 1 августа 1966 г.

двойная перезарядка Гслезонов с энергией 50-176 Мэв в фотоэмульсии

При просмотре эмульсионных камер было зарегистрировано 500 событий двойной перезарядки П - мезонов на ядрах в фотоэмульсии.

На основании этих случаев измерены полные сечения для шести значений энергии в интервале от 50 до I70 Мэв.

Наблидается возрастание величины полного сечения с ростом знергим первичных мезонов. Отмечается, что сечение двойной перезарядки X⁻ -мезонов во всем исследуемом интервале энергий остается ниже, чем сечение двойной перезарядки X⁺мезонов.

Измерены также энергетические и угловые распределения вторичных мезонов.

В работе приведены результаты расчетов исследуемого процесса по схеме последовательных соударений с нуклонами ядра.

<u>МЕТОД ФОТОЗМУЛЬСИЙ В ИМПУЛЬСНОМ МАГНИТНОМ ПОЛЕ И ЕГО ПРИМЕНЕНИЕ К ИССЛЕДОВАНИЮ</u> ЯЛЕРНЫХ ВЗАИМОЛЕЙСТВИЙ ВЫСОКОЙ ЭНЕРГИИ

Д.А.Галстян, Г.Б.Жданов, М.И.Третьякова, М.М.Чернявский, М.Н.Цербакова

Обдучение фотоэмульсий в протонном или мезонном пучке при наличик сильного импульсного магнитного поля (~200 кз) позволяет существенно расширить возможности определения основных карактеристик ядерных взаимодействий не только по сравнению с фотоэмульсиями в отсутствие магнитного поля, но в некоторых отношениях и по сравнению с пузырьковыми камерами.

Для ориентировки в точностях измерений отметим, что при длинах следов I см точности достигают I5-20% по импульсам отдельных частиц, 5-7% по эффективным массам не очень тяжелых нуклонных изобар и ~ 2% по ионизациям.

Наши исследования проводились на 10 круглых эмульсионных слоях типа Ильфорд G 5 / β бсм, толщина 600 мк/, облученных в ЦЕРНе пучком протонов с импульсов 24 Гэв/с. Всего было измерено около I80 звезд типа № 53, № 51, причем определения т.наз.масс мишеней показали,что только при множественности № 7 примесь взаимодействий более чем с одним нуклоном ядра становится существенной.

- 5

Рассмотрены различные характеристики, позволяющие разграничить взаимодействия периферического и непериферического типа. Показано, что периферические события отличаются в среднем примерно вдвое более низкой множественностью и почти полным отсутствием козффициентов неупругости, превышающих 70%.

ИЗУЧЕНИЕ ПРОЦЕССА ДИФРАКЦИОННОЙ ГЕНЕРАЦИИ ЧАСТИЦ НА ЯДРАХ МЕТОДОМ ФОТОЭМУЛЬСИЙ В МАГНИТНОМ ПОЛЕ

Г.Б. Жданов, В.И. Максименко, М.И. Третьякова, М.М. Чернявский, М.Н. Щербакова

Фотовмульсия, экспонируемая в импульсном магнитном поле, обеспечивает регистрацию самых незначительных возбуждений остаточного ядра, с одной стороны, надежные измерения и идентификацию вторичных заряженных частиц, с другой. Изложены результаты, полученные нашей группой за последние два года, в основном при обработке вмульсий, облученных в ЦЕРНе в магнитном поле 180 кв протонами с импульсом 24 и 21 Гэв/с. Анализ распределений по величине $S = \sum sin \Theta$ позволил обнаружить избыток случаев с $S < \mathcal{A}^{-5}$ для "чистых" случаев типа 0 + 0 +3р (без ядра отдачи и электронного следа). В 3 отобранных по S случаях из 12 среди заряженных частиц нет протона, а в 2 случаях возможно наличие \mathcal{T}° -мезона ($\sum \rho_L < 0.75 \rho_{\circ}$). Определены эффективные массы системы, диссоциирующей на 3 частицы ($\tilde{M}_{3}\phi = 1.5$ Гэв/с²), и соответствующие энергетические пороги процесса (13 и 23 Гэв на легких и тяжелых ядрах, соответственно). Характер распределения 12 отобранных случаев по величине Δ^2 дает указание на избыток над "фоном" в области $\Delta^2 < 0.2$ (Гэв/с)², которому соответствует средняя длина пробега $\lambda_{quop} = 50 \frac{+50}{25}$ метров.

НЕУПРУГИЕ ПИОН-НУКЛОННЫЕ ВЗАИМОДЕЙСТВИЯ ПРИ ЭНЕРГИИ 17 ГЭВ

З.В. Анзон, А.Х. Виницкий, М. Избасаров, И.С. Стрельцов, Ж.С. Такибаев, И.Я. Часников, Ц.И. Шахова

Изучались неупругие плон-нуклонные взаимодействия, образованные в ядерной эмульсии на свободных и квазисвободных нуклонах. Есего было найдено 448 случаев. Распределение по числу лучей этих взаимодействий представлено в табл.

<u> </u>	2	4	6	8	10	12	3	5	7	9	<u> </u>
%	26 <u>+</u> 3,4	35 <u>+</u> 4,8	23 <u>+</u> 3,2	I2 <u>+</u> 2,3	2 <u>+</u> 0,9	2 <u>+</u> 0,9	57 <u>+</u> 5,I	24 <u>+</u> 3,3	I2 <u>+</u> 2,2	7 <u>+</u> I,8	

Большая доля 3-лучевых событий, вероятно, обусловлена когерентным взаимодействием \mathcal{R} мезонов на ядрах фотоэкульсия.

Идентификация частиц проводилась с помощью измерения ионизации, многократного рассеяния и S – электронов. Для частиц имеющих угол погружения в плоскости емульсии больше 8⁰, вводился статистический вес.

Угловое распределение *Л* - мезонов асимметрично с преимущественным выдетом вперед в СЦМ. Степень асимметрии для них падает с ростом множественности.

Угловое распределение протонов также асимметрично, практически почти все протоны детят назад в СЦМ.

В импульсном распределении протонов имеется различие в спектрах для пион-нейтронных и пион-протонных взаимодействий. В четно-лучевых взаимодействиях ($\mathcal{T}\rho$) преобладают протоны с большими импульсами в СЦИ, а в нечетно-лучевых ($\mathcal{T}n$) - с малыми.

Соответственно средний импульс протонов из Пр взаимодействий равен 1,58±0,06 Гэв/с, а вПл-0,8±0,04 Гэв/с.

Вид импульсного распределения протонов из Пр взаимодействий в основном согласуется с данными, полученными на пузырьковых водородных камерах /I/. Небольшое отличие, которое находится в пределах ошибок, относится к высокознергичной части протонов в ЛСК. Это различие, возможно, связано с тем, что идентификация высокознергичных протонов в пузырьковых камерах затруднена, а также тем, что идентификация высокознергичных протонов в пузырьковых камерах затруднена, а также тем, что идентификация высокознергичных протонов в пузырьковых камерах затруднена, а также тем, что часть Пр взаимодействий в ядерных змульсиях происходит не на свободных, а на связанных в ядре нуклонах. Суммарный ке спектр протонов из всех пион-нуклонных взаимодействий имеет двухгорбур структуру. Наличие второго максимума обусловлено в основном протонами из писи-нейтронных взаимодействий.

Литература

I. J.Bartk P, H.Piotrowska, A.Trabucco De Marco. Acta Physica Polonica, XXVII, 868, 1965.

ИССЛЕДОВАНИЕ НЕУПРУГИХ Р-Р ВЗАИМОДЕЙСТВИЙ ПРИ ЭНЕРГИИ 20 ГЭВ

Э.Г.Боос, К.Г.Зайцев, Н.П.Павлова, Г.Я.Руськина, X.С.Такибаев, Р.А.Турсунов .

В ядерных эмульсиях, обдученных в ЦЕРНе протонами с P=19,8 Гэв/с, проведена идентификация вторичных частиц из 300 2-4-6 – лучевых взаимодействий. Среднее число протонов на взаимодействие (< n_p > = 0,8) не зависит от наблидаемой множественности. Угловое распределение протонов резко анизотропно, симметрично и слабо меняется с увеличением множественности. Импульсный спектр протонов в СЦМ существенно меняется: в 6-лучевых событиях преобладают малие импульсы, а в 2-лучевых событиях наблюдаются протоны с большими импульсами.

6

Рассмотрены различные характеристики, позволяющие разграничить взаимодействия периферического и непериферического типа. Показано, что периферические события отличаются в среднеш примерно вдвое более низкой множественностью и почти полным отсутствием козффициентов неупругости, превышающих 70%.

ИЗУЧЕНИЕ ПРОЦЕССА ДИФРАКЦИОННОЙ ГЕНЕРАЦИИ ЧАСТИЦ НА ЯДРАХ МЕТОДОМ ФОТОЗМУЛЬСИЙ В МАГНИТНОМ ПОЛЕ

Г.Б. Жданов, В.М. Максименко, М.И. Третьякова, М.М. Чернявский, М.Н. Цербакова

Фотоэмульсия, экспонируемая в импульсном магнитном поле, обеспечивает регистрацию самых незначительных возбуждений остаточного ядра, с одной стороны, надежные измерения и идентификацию вторичных заряженных частиц, с другой. Изложены результаты, подученные напей группой за последние два года, в основном при обработке эмульсий, облученных в ЦЕРНе в магнитном поле I80 кв протонами с импульсом 24 и 21 Гэв/с. Анализ распределений по величине $S = \sum sin \Theta$ позволия обнаружить избыток случаев с $S < \mathcal{A}^{-5}$ для "чистых" случаев типа 0 + 0 +3р (без ядра отдачи и электронного следа). В 3 отобранных по S случаях из I2 среди заряженных частиц нет протона, а в 2 случаях возможно наличие \mathcal{T}° -мезона ($\sum \rho_{L} < 0.75 \rho_{\circ}$). Определены эффективные массы системы, диссоциирующей на 3 частицы ($\tilde{M}_{9\phi}$ = I,5 Гэв/с²), м соответствующие энергетические пороги процесса (I3 и 23 Гэв на легких и тижелых ядрах, соответственно). Характер распределения I2 отобранных случаев по величине Δ^2 дает указание на избыток над "фоном" в области $\Delta^2 < 0.2$ (Гэв/с)², которому соответствует средняя длина пробега $\lambda_{gu\phi}$ = 50⁺⁵⁰ метров.

НЕУПРУГИЕ ПИОН-НУКЛОННЫЕ ВЗАИМОДЕЙСТВИЯ ПРИ ЭНЕРГИИ 17 ГЭВ

3.В. Анзон, А.Х. Виницкий, М. Избасаров, И.С. Стрельцов, Ж.С. Такибаев, И.Я. Часников, Ц.И. Шахова

Изучались неупругие пион-нуклонные взаимодействия, образованные в ядерной эмульсии на свободных и квазисвободных нуклонах. Всего было найдено 448 случаев. Распределение по числу лучей этих взаимодействий представлено в табл.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1				-	· · · ·					
	2	4	6	8	10	12	3	· 5 ·	7	9	
%	26 <u>+</u> 3,4	3514,8	23 <u>+</u> 3,2	12 <u>+</u> 2,3	2 <u>+</u> 0,9	2 <u>+</u> 0,9	57 <u>+</u> 5,I	24 <u>+</u> 3,3	12 <u>+</u> 2,2	7 <u>+</u> I,8	

6

Большая доля 3-лучевых событий вероятно, обусловлена когерентным взаимодействием \mathcal{R} мезонов на ядрах фотозкульсии.

Идентификация частиц проводилась с помощьв измерения ионизации, многократного рассеяния и S - электронов. Для частиц имеющих угол погружения в плоскости вмульсии больше 8⁰ вводился статистический вес.

Угловое распределение *II* - мезонов асимметрично с преимущественным вылетом вперед в СЦМ Степень асимметрии для них падает с ростом множественности.

Угловое распределение протонов также асиметрично, практически почти все протоны летят пазад в СЦМ.

В импульсном распределении протонов имеется различие в спектрах для пион-нейтронных и пион-протонных взаимодействий. В четно-лучевых взаимодействиях (Пр) преобладают протоны с большими импульсами в СЦМ, а в нечетно-лучевых (Пп) - с малыми.

Соответственно средний импульс протонов из Пр взаимодействий равен 1,58±0,06 Гэв/с, а в Пп- 0.8+0.04 Гэв/с.

Вид импульсного распределения протонов из Првзаимодействий в основном согласуется с данными, полученными на пузырьковых водородных камерах /I/. Небольшое отличие, которое находится в пределах ошибок, относится к высокоэнергичной части протонов в ЛСК. Это различие, возможно, связано с тем, что идентификация высокоэнергичных протонов в пузырьковых камерах затруднена, а также тем, что часть Првзаимодействий в ядерных эмульсиях происходит не на свободных, а на связанных в ядре нуклонах. Суммарный же спектр протонов из всех пион-нуклонных взаимодействий имеет двухгорбур структуру. Наличие второго максимума обусловлено в основном протонами из пион-нейтронных взаимодействий.

Литература

I. J.Bartk P, H.Piotrowska, A.Trabuoco De Marco. Acta Physica Polonica, XXVII, 868, 1965.

ИССЛЕДОВАНИЕ НЕУПРУГИХ Р-Р ВЗАИМОДЕЙСТВИЙ ПРИ ЭНЕРГИИ 20 ГЭВ

Э.Г.Боос, К.Г.Зайцев, Н.П.Павлова, Г.Я.Руськина, Ж.С.Такибаев, Р.А.Турсунов .

В ядерных эмульсиях, облученных в ЦЕРНе протонами с P=19,8 Гэв/с, проведена идентификация вторичных частиц из 300 2-4-6 - лучевых взаимодействий. Среднее число протонов на взаимодействие (< n_p > = 0,8) не зависит от наблядаемой множественности. Угловое распределение протонов резко анизотропно, симметрично и слабо меняется с увеличением множественности. Импульсный спектр протонов в СЦМ существенно меняется: в 6-дучевых событиях преобладавт малие импульсы, а в 2-лучевых событиях наблядавтся протоны с большими импульсами. Угловое распределение *П*[±]-мезонов более анизотропное. Импульсный спектр *П*[±]- мезонов несущественно меняется с увеличением множественности. Вид спектра можно описать в рамках статистической теории лишь в предположении, что происходит возбуждение нуклонов до изобар с T=3/2.

Существенная особенность экспериментальной ситуации состоит в том, что при относительно сильных взаимодействиях нуклонов (коэффициент неупругости в СЦМ для 4-6-лучевых взаимодействий равен 0,7-0,8), сопровождающихся большими потерями четырехмерного импульса (для 4-6-дучевых событий < $\Delta^2 > \approx 2$ Гэв/с²), нуклоны остаются резко коллимированными в направленим вперед-назад в СЦМ.

В настоящее время продолжается дальнейший аналиэ Р-Р-событий.

ядерная эмульсия БР-3

С.И.Любомилов

В Лаборатории высоких энергий ОИЯИ были испытаны два опытных образца мелкозернистой ядерной эмульсии релятивистской чувствительности (тип БР-3), недавно разработанной Радиографической лабораторией НИКФИ.

Эмульсионные спои формата IOx20 см² толщиной 400 мк были облучены протонами с энергией IO Гэв и проявлены в амидоловом проявителе в стандартном режиме ЛВЭ (рН=6,7) без предварительной наклейки на стекло. Слои поступили в обработку через 8 часов после облучения. От каждой партии эмульсии было испытано по 3 споя.

В таблице приводятся результаты испытания.

Чувствительность эмульсии БР-3 № 4812 (в слустках на IOO мк следа, начиная от матовой поверхности) в зонах по 20 мк:

0-20	20-40	40-60	60-80	80-100	100-120	I20-I40	I40-I60	I60-I80	
25,7	27,6	28,6	29,5	28,5	28,7	29,3	28,5	29,7	• .
<u>+</u> 0,66	<u>+</u> 0,68	±0,69	<u>+</u> 0,70	<u>+</u> 0,69	<u>+</u> 0,69	<u>+</u> 0,70	± 0,68	<u>+</u> 0,70	

Зерновая вуали	. (к-во зерен в объеме I	00 мж ³)
	у матовой поверхности	3,4 ± 0,09 ,
	в середине слоя	2,6 <u>+</u> 0,08 ,
	у глянцевой поверхности	3,0 <u>+</u> 0,08

Измерения вуали производились от самых поверхностей с отступом лишь на 2-3 мк.

Чувствительность эмульсии № 4814 на 2-3 сгустка меньше, вуаль меньше на 0,5 зерна при одинаковых условиях обработки. Диаметр проявленного зерна эмульсии БР-3 примерно в I,5 раза меньше чем на эмульсиях типа БР-1 и БР-2.

> ИССЛЕДОВАНИЕ ЭЛЕКТРОРОЖДЕНИЯ И ФОТОРОЖДЕНИЯ СТРАННЫХ ЧАСТИИ НА ПРОТОНАХ ФОТОЭМУЛЬСИОННЫМ МЕТОДОМ

D. Т.Борзунов, И. А. Грипаев, В. И. Никифоров, И. Д. Рудь, К. Д. Толстов, Б. И. Праменко

Предполагается исследовать генерацию странных частиц в столиновенных с протонами У- квантов и электронов с максимальной энергией до 2 Гэв, получаемыми от линейного ускорителя электронов Харьковского физико- технического пиститута.

Диаметр пучка у -квантов не более 30 мм.

Интенсивность - 10¹² эквивалентных *у*-квантов при Е_{мах} =1700 Изв. В первом опыте тонкостенная индководородная кишень типа ИВ-З, разработанная приогенным отделом ЛВЗ ОИЛИ, будет облучена пучком *у*-квантов диаметром 30 мм, проходящим по центру мишени с сечением 50х80 мм и длиной 250 мм. Эмульсионная камера размером 5 х 10 х 20 см помещается вплотную к грани импени длиной 250 мм. Сторона эмульсионной камеры с длиной 20 см ориентируется по направлению пучка *у*-квантов. В камере будут регистрироваться распады при остановках К⁺-мезонов и распады гиперонов. На основании опыта, имеющегося, например, по работе /1/, предполагается регистрация распадов К⁺-мезонов при фоне зараженных частиц > > 10⁵см⁺². Во втором опыте при геометрических условиях, совпадающих с первым опытом, водородная импень будет облучена пучком электронов с энергией до 2 Гъв и с интенсивностью, превышающей в 10-100 раз интенсивность пучка *у*-квантов в первом опыте.

В ближайшее время будет проведен методический опыт с пенопластовой модельв водородной мишени для выбора оптимальной интенсивности и условий наблюдения. В опытах предполагается исследовать дифференциальные сечения, угловые и импульсные спектры странных частиц, генерируемых на протонах X -квантами и электронами.

Литература

I. В. А.Беляков, В.В.Глаголев, Л.Ф.Кириллова, Н.Н. Мельникова, М.Сук, К.Д.Толстов. Преприят ОЛЯИ.Р-434 (1959).

9

ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ АН УССР, г.Харьков. Объединенный институт ядерных исследований, г.Дубна.

ПОГЛОПЕНИЕ МЕЗОНОВ ЯДРАНИ И СТРУКТУРА ЯДРА

А.О.Вайсенберг

	Настоящай довлад	составлен на	основании	pador,	виподненных	В	ИТЭФ	Э.Д.Колгановой,
Ħ. B.	Рабиным и автором	локлала /I/.						

Изучение явлений, возникащих при захвате мезонов ядром, является средством определения ядерной структури. В частности, популярная в последние годи проблема "кластерной" структуры ядра может бить исследована, если произвести анализ свойств вторичных частиц, испускаемых при таких захватах. Имея это в виду, мы произвели измерение масс вторичных частиц, испускаемых ядрами эмульсии после поглодения пионов и моонов.

Для этих работ была использована эмульсия типа НИКФИ-Р и НИКФИ-К, толщиной 400 мк, размером IO x IO см. облученная в соответствущемх пучках синхропиклотрона ОИЛИ.

Определение масс вторичных заряженных частиц производилось различеным методами в зависимости от величины остаточного пробега (см. таблицу).

 Ilpode	г втори	чной ч	астицы	Методы измерения массы				
	R≥	I אמע		Кулоновское постоянной счет числа	рассеяния (метод сагитты) 8 -частиц			
	R≤	IW	-	Ионизация (Счет числа	счет сгустков) 8 -частиц			

Для калибровки эмульски специально облучались в пучках медленных протонов. Это облучение происходидо непосредственно после основного облучения в мезонном пучке. Разделение собитий на легких и тахелых ядрах эмульсии (группа ядер C, N, O и группа Ag, $B\iota$) производилось по обычным критериям кудоновского барьера и наличия электронов Окс. Полученные в этих исследованиях результаты для звезд, образованных захватом пионов, приведены в таблице.

STDS SHAFFCAA	Вторичные частицы, в 5					
HAPC SEJADUAN	Протоны	Дейтоны	Трятий			
C, 0	49 <u>+</u> 2	31 <u>+</u> 2	20 <u>+</u> 2			
Ag, Br	59 <u>+</u> I	26 <u>+</u> 2	15 <u>+</u> 3			

Из таблици следует, что число протонов составляет только около половины всех вторичных частиц; остальные однозарядные частицы - это дейтоны или ядра трития. Обнарукенные явления одинаково хороно выражены во всех интервалах рассмотренных пробегов вторичных частиц от 200 микрон до 5 юм. Указанное обстоятельство очень важно, так ках исключает возможность испарительного механизма этого явления.

Соответствующие данные для мюонных звезд приведены в таблице:

STDA SWYTLCHN	Вторичные частицы				
ittpo omjasona	ρ	d+t			
C, 0	44 ± 15	56 <u>+</u> 15			
Ao Br	86 <u>+</u> 15	I4 <u>+</u> 6			
С,О,Ад,Вг	79 <u>+</u> 6	21 <u>+</u> 6			

Таким образом, это явление оказывается общим как для моонных, так и для пионенх звезд, хотя для тяжелых ядер в моонных звездах оно выражено слабее.

Последним экспериментальным результатом, рассматриваемым в докладе, является спектр вторичных частип, испущенных при расцеплении мягких и тяхелых ядер пионами. Этот спектр приведен на рисунке для захватов на легких ядрех.

Рассмотренные выше результаты представляют интерес с точки эрения дисперсионной теории ядерных реахций, развитой в работах И.С. Шапиро и В.И.Колыбасова /2/. Она является прямым доказательством существенной роли \mathscr{A} -частичного захвата при расцепления ядер пионемия. Действительно, предполагая, что захват \mathscr{A} -частичного захвата при расцепления ядер пионемия. Действительно, предполагая, что захват \mathscr{A} -частичного заквата при расцепления ядер пионемия. Действительно, предполагая, что захват \mathscr{A} -частичного ваквата при расцепления ядер процессом, эти авторы вычислили вероятность испускания ρ , \mathscr{A} и t и нашли, что в этом случае с хорошей степенью точности должно иметь место равенство вероятностей испус кания ρ , \mathscr{A} и t при захвате пионов гелием и ядром углерода. Поэтому сравнение данных, полученных при захвате пионов гелием, с нашим данным дает возможность проверки этой теории. Известные в настоящее время экспериментальные данные о пионных звездах B $\mathcal{H}e$ приведены в таблице:

10

II

Futher Remarks on the Investigation of Diffraction Decay of Pions on Nuclei

STED O	Вторичные	частицы	_
	p+d	t	-
He	77 <u>+</u> 5	23 <u>+</u> 4	

Они находятся в хорошем согласии с намими данными о захватах пионов дегкими ядреми эмудьсин.

Дополнительные указания на хорошее согласие наших экспериментальных денных с рассматриваемой теорией следуют из рассмотрения спектров. Тах, например, на рис. (б) и (в) покезан спектр дейтонов ядер трития. Мы видим, что этот спектр хорошо согласуется с предсказаниями теории для \mathcal{L} -частичного механизма захвата.

Литература

I. Вайсенберг, Колганова, Рабин. ЕЗТФ, 47, 1226, 1964; Ямерная физика, I, 652, 1965.

2. И.С. Шапиро, В.М. Колыбасов, ЖЭТФ, 44, 270, 1963.

3. Ammiraju, Lederman. Nuovo Cimento, 4, 283, 1956.

U.Krecker and F.Wysotzki

Forschungsstelle für Physik hoher Energien der DAW Zeuthen bei Berlin

Our method of investigation of the diffraction decay at 7.5 GeV is described in a report on the preceding session of the emulsion committee (Dubna preprint No.2623,1966). Nethods for indication or selection of coherent events are the following:

1) Comparison of the $\Sigma \sin \Theta_i$ distributions for clean 3- or 5- prong events with corresponding distributions for dirty events (with small energy transfer to the nucleus) or corresponding events in the hydrogen bubble chamber by means of statistical tests¹).

2) Determination of the diffraction decay cross section by elimination of the background from π -nucleon interactions (all tracks must be measured).

a) Comparison of the q_1 - distribution of olean events with energy balance with those of dirty events¹⁾ or corresponding hydrogen bubble chamber events.

b) Determination of the t = Δ^2 -distribution for olean events. The background subtraction goes via the extrapolation of the π -neutron t-distribution towards lower t (diffraction region)²).

The comparison of our cross section at 7.5 GeV in emulsion with that of Allard²⁾ at 6 GeV seems to give $\sigma \sim \Lambda^{\frac{2}{3}}$ but not $\sigma \sim \Lambda^{\frac{2}{3}}(as in 1)$ at 16 GeV). The distribution of longitudinal momentum transfer $q_{\parallel} \approx M^{\frac{32}{2}/2} k_{\circ}$. varies with the incident momentum k_{\circ} , because the invariant three pion mass distribution $(M^{\frac{3}{2}})$ depends not critically on k_{\circ} (and on the target nucleus). Therefore it is impossible to select coherent events • by means of $q_{m} \ll \frac{1}{R}$ (see for example³). The lower limit of the $M^{\frac{31}{2}}$ - distribution is always given by $m_{\chi} + m_{g}$, because diffraction into three pions is dominated by ρ -production.

References

1) A.Caforio et al. Nuovo Cim., 32, 1471 (1964) .

2) I.F. Allard et al. Phys.Lett., 19, 431 (1965) .

3) M.A.Abolins et al. Phys.Rev.Lett., 15, 125 (1965).

13

12