

BUCOKMX HEPTH

BHAGUAG

4964

P - 2842

Я.Бэм, В.Г. Гришин, А.Г. Кривенцова, М.М. Муминов, З. Трка

идентификация заряженных частиц по ионизации и δ –электронам в пропановой пузырьковой камере

P - 2842

Я.Бэм, В.Г. Гришин, А.Г. Кривсицова, М.М. Муминов, З. Трка

ИДЕНТИФИКАЦИЯ ЗАРЯЖЕННЫХ ЧАСТИЦ ПО ИОНИЗАЦИИ И 8 – ЭЛЕКТРОНАМ В ПРОПАНОВОЙ ПУЗЫРЬКОВОЙ КАМЕРЕ

§ 1. Введение

Идентификация вторичных заряженных частиц (например, протонов, $\pi - u$ К – мезонов) является одной из основных методических задач при изучении взаимодействия элементарных частиц с помощью пузырьковых камер. В настоящее время ионизационные измерения позволяют разделять протоны и π^+ -мезоны с импульсами рс ≤ 1 Гэв $^{1-6/}$.

Однако при исследования $\pi N -$, NN - и других взаимодействий, когда налетающие частицы имеют энергии ~10 Гэв, большая доля вторичных частиц имеет рс >1Гэв. В связи с этим представляют большой интерес другие способы идентификации частиц. Для этой цели можло использовать δ -электроны, образованные заряженными частицами в эффективном объеме камеры 7.8. Этот метод особенно перспективен для больших пузырьковых камер, в которых вторичные частицы проходят путь длиною 2-3 метра и образуют достаточное для идентификации количество δ -электронов. В этом случае возможно разделение, например, протонов и π^+ -мезонов с импульсами до 2-3 Гэв/с.

В настоящей работе описываются результаты ионизационных измерений вторичных положительных частии, образованных в *п*р -взаимодействиях при рс = 4,00 ±0,06Гэв (§ 2). События регистрировались с помочью 24-литровой пропановой пузырьковой камеры ЛВЭ ОИЯИ.

В § 3 приведены результаты вычислений пробегов и ионизационных потерь электронов и позитронов в пропане для Е < 8 Мэв.

В § 4 даны результаты расчетов плотности δ -электронов, образованных различными частицами, в зависимости от их импульса (рс > 1 Гэв), а также приведены результаты соответствующих измерений.

В Приложении описана программа для идентификации частиц по δ -электронам.

§ 2. Ионизационные измерения

1. В работах^{/1-5/} описаны различные способы определения ионизации заряженных частиц в пузырьковых камерах. Нами был использован метод подсчета плотности просветов между пузырьками. Средняя плотность просветов , длина которых больше l₀, определяется выражением :

$$\overline{n} = \frac{N(\ell > \ell_0)}{\Gamma} = ge^{-g\ell_0} ,$$

(1)

где N($l > l_0$) – число просветов с $l > l_0$ на длине следа L , g – величина, характеризующая нонизацию. Измерения проводились на микроскопах МБИ-9 с окулярным микрометром при общем увеличении 15 х 8. На рис. 1 приведены распределения велячины $l_n N(l > l_0)$ в зависимости от l_0 , полученные на следах первичных π^- -мезонов (pc = 4 Гэв) для двух различных циклов фотографирования (кривые 1 и 2). Различие в форме этих кривых связано с непостоянством рабочих условий в камере (см. работу^{6/6/}). В связи с этим необходимо определять ионизацию измеряемого следа относительно первичного трека на той же фотографии. Из рис. 1 также видно, что число просветов с $l_0 \leq 100$ м.к. явно занижено. Это обстоятельство связано с трудностью регистрации промежутков с $l_0 \leq 100$ м.к., так как диаметры пузырьков меняются от 20-110 мк. Поэтому целесообразно выбрать $l_0 \geq 100$ м.к. в масштабе пленки.

2. Для измерений отбирались вторичные положительные частицы с импульсами от 400 до 1000 Мэв/с, образованные в $\pi^- p$ -взаимодействиях при pc = 4,0 Гэв. Всего было измерено 310 положительных треков с L \geq 8 см. Для каждого из них были известны импульс и угол погружения. Вычисления g по формуле (1) с учетом угла погружения проводились для измеряемого и калибровочного треков частии, и определялась относительная ионизация $g^* = -\frac{g}{gcr}$. На рис. 2 приведены результаты измерений, а также теоретические кривые, рассчитанные по формуле Бете-Блоха. Предполагалось, что π^- -мезоны с pc = 4 Гэв имеют минимальную ионизацию. Как видно из рисунка, теоретические кривые хорошо описывают экспериментальные данные для $pc \leq 1$ Гэв. Отсюда также можно сделать вывод о том, что увеличение ионизация π^- -мезонов при pc = 4 Гэв на 27% по сравнению с минимальной, которое ожидается по формуле Бете-Блоха (пунктирная линия), отсутствует в пропановой пузырьковой камере (см. также работу /^{6/}).

Для определения экспериментальной ошибки в величине g* было измерено 197 вторичных п⁻-мезонов с рс = 400 ÷ 100 Мэв.^{X/} Таким образом, результаты наших ионизационных измерений показывают, что можно хорошо разделять протоны и п⁺-мезоны с рс ≤ 1 Гэв и L ≥ 8 см в пропановой пузырьковой камере.

 $\frac{x}{10}$ Полученная отсюда ошибка в определении g* оказалась равной $\sigma = 0,14$ при g* = 0,96.

§ 3. Ионизационные потеры и пробегы электронов и позитронов в пропане (С₂H₀)

Для идентификации частиц с рс > 1 Гэв по δ -электронам необходимо измерять элергию электронов. Методика измерения энергичных электронов и позитронов (E > 20 Мэв) описана в работе⁽⁸⁾. Энергию относительно медленных e^{\pm} ($E \le 10$ Мэв) имеет смысл измерять по их пробегу (R^{\pm}) до остановки в пропане, т.к. радиационные потери в этом случаи несущественны ($\le 3\%$).

Расчет ионизационных потерь е * в пропане проводился по формуле:

$$\left(\frac{dE}{dx}\right)_{C_{3}H_{8}}^{\pm} = \frac{36}{44} \left(\frac{dE}{dx}\right)_{C}^{\pm} + \frac{8}{44} \left(\frac{dE}{dx}\right)_{H}^{\pm} , \qquad (2)$$

где $\left(\frac{dE}{dx}\right)_{C}^{\pm}$ и $\left(\frac{dE}{dx}\right)_{H}^{\pm}$ - вонизационные потери e^{\pm} в углероде и водороде в (Мэв.см²/г), которые были взяты из работы¹⁰ для $E \leq 8$ Мэв. В этих вычислениях пренебрегалось эффектом плотности (\leq 1%) и радиационными потерями энергии в пропане (\leq 3%)¹¹. Суммарная ошибка в вычислении ($\frac{dE}{dx}\right)_{C_8 H_8}$ не превышает \pm 3% для $E \leq 8$ Мэв.

Пробеги е [±] в пропане вычислялись на ЭВМ-20 по формуле:

(3)

Суммарные ошибки в вычислении R^{\pm} не превышают (2-3)% для $E \leq 8$ Мэв. Результаты вычислений приведены в таблице 1. На рис. 3 показана: зависимость пробегэнергия для электронов в пропане с $\rho = 0.43$ г/см³.

 $R^{\pm} = \int_{0}^{E} - \left(\frac{dE}{dx}\right)^{-1} dE'.$

§ 4. Идентификация частиц по 8 -электронам

 Если вторичные частицы имеют рс > 1 Гэв, то их можно идентифицировать по δ -электронам. Как известно, максимальная передача энергии δ -электрону частицей с массой m и импульсом р равна:

$$E_{\max}^{\delta} \approx 2m_{e}c^{2} \frac{p^{2}c^{2}}{m_{e}c^{4} + m^{2}c^{4} + 2m_{e}c^{2}(p^{2}c^{2} + m^{2}c^{4})^{\frac{1}{2}}}$$
(4)

Как видно из формулы (4), E_{max}^{δ} уменьшается с увеличением массы частицы. В связи с этим можно идентифицировать те вторичные π-мезоны, которые образовали δэлектрон в эффективном объеме камеры с $E \stackrel{\delta}{\geq} E \stackrel{\delta}{} (p)$. Однако вероятность образования такого δ -электрона мала. Для примера укажем, что для π -мезонов с рс = 1,3 Гэв плотность δ -электронов с $E^{\delta} > E_{max}^{\delta}(p)$ на 1 см пути в пропане D = 0.01 см⁻¹. Таким образом, только в случае использования пузырькосоставляет вых камер больших размеров этот метод становится эффективным.

2. При решении целого ряда физических задач представляет большой интерес определение, например, доли протонов среди вторичных положительных частиц с рс >1 Гэв.

В этом случае также возможно воспользоваться δ -электронами. Такой метод статистического разделения π^{\pm} -мезонов и протонов использовался в работах /7,8/ Вероятность образования δ -электронов с кинетической энергией Ε α следе /12/ бесслиновой частицы с массой т равна :

$$P(E, E^{\delta}) dE^{\delta} = \frac{2Cm_{e}c^{2}}{\beta^{2}} \frac{dE^{\delta}}{(E^{\delta})^{2}} (1 - \beta^{2} \frac{E^{\delta}}{E^{\delta}_{mex}}).$$
(5)

 $C = \pi N \frac{z}{A} r_e^2 = 0,150 \frac{z}{A} cm^2/r.$

Здесь Е -кинетическая энергия падающей частицы, $\beta = \frac{v}{c}$,

Для частицы с массой т и спином 1/2

$$P(E, E^{\delta}) dE^{\delta} = \frac{2 Cm_{e} c^{2}}{\beta^{2}} \frac{dE^{\delta}}{(E^{\delta})^{2}} \left[1 - \beta^{2} \frac{E^{\delta}}{E^{\delta}} + \frac{1}{2} \left(\frac{E^{\delta}}{E + mc^{2}}\right)^{2}\right].$$

Отсюда легко получить плотность δ -электронов на следе частицы с $E^{\delta} > E_{min}^{\delta}$

6)

(7)

 $D = \int_{E\delta}^{E_{max}} P(E, E^{\delta}) dE^{\delta}.$

Соответствующие вычисления дают

$$= \frac{K}{\beta^2} \left[\frac{1}{E_{\min}^{\delta}} - \frac{1^*}{E_{\max}^{\delta}} - \frac{\beta^2}{E_{\max}^{\delta}} \ln \frac{E_{\max}^{\delta}}{E_{\min}^{\delta}} \right]$$
(8)

для частицы со спином ноль и

 $D = \frac{K}{\beta^2} \left[\frac{1}{E^{\delta}} - \frac{1}{E^{\delta}} - \frac{\beta^2}{E^{\delta}} \ln \frac{E_{max}^{\delta}}{E^{\delta}} + \frac{1}{E^{\delta}} + \frac{1}{E^{\delta}} \ln \frac{E_{max}}{E^{\delta}} + \frac{1}{E^{\delta}} + \frac{1}{E^$ $+ \frac{E_{max}^{\delta} - E_{min}}{2E_{max}^{2}}]$

(9)

для частицы со спином половина. Здесь К = 2 C m c², для пропана с ρ = 0,43 г/см³ К = 0,039 Мэв/см. На рис. 4 приведены зависимости плотности δ -электронов от импульсов протонов и π -мезонов для $E_{min}^{\delta} = 1,2$ и 2 Мэв. Кривые рассчитаны для пропана с $\rho = 0,43$ г/см³. Как видно из рис. 4, имеется существенное различие между вероятностями образования δ -электронов для протонов и п -мезонов вплоть до импульсов (4-5) Гэв/с. В связи с этим можно "статистически" разделить протоны и – п-мезоны в этой области значений импульсов, если регистрировать δ -электроны с $E_{\min}^{\delta} \geq 1$ М эв.

3. Проверка метода "статистического" разделения частиц была проведена нами с использованием треков первичных л-мезонов с рс=4,00+0,060 Гэв и вторичных л-мезонов, имеющих импульсы в интервале 1-3 Гэв/с. Ошибка в измерении импульса в торичных 🚛-мезонов была меньше 20%. Энергия δ -электрона определялась по пробегу (см.§ 3). Пробеги δ -электронов измерялись на репроекторе по длине следа и на микроскопе МБИ-9 путем подсчета числа пузырьков. Оба метода дали одинаковые результаты. Величина пробега δ-электрона, измерен ная на микроскопе, определялась по формуле $R^{-}(CM) = \frac{n}{\overline{n}_{0}}$, где \overline{n}_{0} -средняя плотность пузырьков на 1 см релятивистского следа в эффективной области камеры (по = 10,4+0,3). В таблице 2 приведены результаты измерений D и теоретические значения этих величин. Расчеты проводились на ЭВМ-20 (описание программы см. в Приложении). Как видно из таблицы 2, имеется удовлетворительное согласие (в рамках + 10%) между теоретическими и экспериментальными величинами.

Таким образом, метод "статистического" разделения может быть использован для оденок доли протонов среди вторичных частиц с рс > 1 Гэв.

7

Нам приятно поблагодарить за полезные обсуждения Б.Чадраа и лаборантов группы просмотра за помощь в измерениях.

ПРИЛОЖЕНИЕ

Программа идентификации частиц по δ - электронам.

Определяется доля протонов (R) среди всех положительных частиц по формуле:

$$R = \frac{N_{\pi} - N_{\Im KC.}}{N_{\pi} - N_{p}}, \quad \Delta R = \frac{\sqrt{N_{\Im KC.}}}{N_{\pi} - N_{p}}, \quad (1)$$

где N_{3KCH} – число δ – электронов с $E^{\delta} \ge E_{min}^{\delta}$, найденных на суммарной длине L всех следов положительных частиц; $N_{\pi}(\bar{N}_{p})$ – теоретически вычисленное число δ – электронов с $E^{\delta} \ge E_{min}^{\delta}$ на длине L в предположении, что все частицы являются π – мезонами (протонами). Эта формула справедлива в предположении, что средние длины следов π – мезонов и протонов в дайной области импульсов одинаковы. Для каждого следа (с импульсом p_{i} и длиной L_{i}) вычисляются $D_{p}(p, E_{min}^{\delta})$ и $D_{\pi}(p, E_{min}^{\delta})$ по формулам, приведенным в тексте, и суммируются для всех следов. В результате получаем:

$$N_{\pi} = \sum_{i} \ell_{i} \times D_{\pi i} \left(p_{i}, E_{\min}^{\delta} \right) , \qquad (2)$$

$$N_{p} = \sum_{i} \ell_{i} \times D_{p_{i}} (p_{i}, E_{min}^{\delta}) .$$
(3)

В ЭВМ-20 вводятся следующие данные:

1) Набор Е
$${\delta \atop {min}}$$
, для которых искались δ -электроны (до 12 значений Е ${min}$).

2) Набор N эксп. с $E^{\delta} \geq E^{\delta}_{min}$ из набора E^{δ}_{min} .

3) Характеристики следов (р₁ и L₁) (вводится сразу для 30 следов).

Выдача результатов:

	1) Суммарная длина следов.	5)	Набор	ΔR.	
	2) Набор E_{min}^{δ} .	6)	Набор	N ₇₇ .	
	3) Набор N	7)	Набор	N _n .	
	4) Набор R		-	P	
для	BCEX N H E_{min}^{δ}).		,		

8

Литература

- 1. Г.А. Блинов и др. ЖЭТФ, <u>31</u>, 762 (1956); ПТЭ, <u>5</u>, 21 (1957).
- 2. М.Ф. Ломанов, Б.В. Чириков. ПТЭ, 5, 21 (1957).
- 3. И. Врана. Препринт ОИЯИ, 796, Дубна, 1961.
- 4. C. Dilworth et al. Nuovo Cim., 32, 1432 (1964).
- 5. Ю.А. Александров и др. Пузырьковые камеры, Москва, 1963.
- 6. Б.П. Банник, Ким Хи Ин, А.А. Кузнедов, Н.Н. Мельникова, Б. Чадраа. Препринт ОИЯИ, 2617, Дубиа, 1966.
- 7. L.O. Roelling, D.A. Glaser. Phys. Rev., 116, 1001 (1959).
- 8. М.А. Зельдович. Дипломная работа, МГУ, 1961.
- 9. В.Г. Гришин, Э.П. Кистенев, Л.И. Лепилова, В.И. Мороз, Му Цзюнь. Препринт ОИЯИ, P-2277, Дубна, 1956.

10. Energy Loss and Range of Electrons and Positrons. NBC Circular 577, Washington, 1956.

11. Studies in Penetration of Charged Particlis in Matter. Nuclear Science Series, Report N 39, Washington, 1964.

9

12. Б. Росси. Частицы больших энергий. ГИТТЛ, М., 1965.

Рукопись поступила в издательский отдел 1 августа 1966 г.

Ион	изационные потери и проб	erm e ⁻ m e ⁺	в пропане	
	:			
Е (Мэв)	$-\left(\frac{dE}{dx}\right)$ Mab.cm ² /r	R (r/cm ²)	$-\left(\frac{dE}{dx}^{+}\right)$ Mab.cm ² /r	R ⁺ (r/cm ²)
-				
0,25	2,83	0,056	2,86	0,055
0,50	2,27	0,157	2,25	0,156
0,75	2,12	0,272	2,09	0,272
1,00	2,08	0,391	2,04	0,394
2,00	2,10	0,872	2,05	0,886
3,00	2,16	I,34	2,11	I,36
4,00	2,22	1,79	2,17	I,83
5,00	2,27	2,24	2,22	2,28
6,00	2,31	2,68	2,26	2,73
8,00	2,38	3,53	2,33	3,60

.

Таблица 1

Таблица 2

Е ^δ min (Мэв)	Ngc E ^S >E ^S	D(M ⁻¹), эксперимент	D(M ⁻¹), теория
1,2 Мэ	в 122±11	3,53±0,32	3,21 Первичные мезоны с рс = 4,0 Гэв
2,0 Ma	рв 70±8	2,0±0,24	2,02
I,2 Ma	эв 42±6,5	3,0+0,46	3, I Вторичные т - мезоны с
2,0 м	эв 23-5	1,64-0,33	¹ ,8 рс = 1-3 Гэв

Рис. 2. Результаты измерений _в* для вторичных положительных частии с рс = 400-1000 Мэв.

Рис. 3. Пробеги электронов R⁻ (см.) в пропане ($\rho_{c_8 H_8} = 0,43 \text{ г/см}^3$).

Рис. 4. Плотности δ -электронов D (см.⁻¹) с E $\delta \ge$ 1,2 и 2 Мэв в зависимости от импульсов протонов (р) и π -мезонов в пропане ($\rho = 0,43$ г/см³).