

196.

Н.А. Бонч-Осмоловская, Я. Врзал, Е.П. Григорьев, Я. Липтак, Я. Урбанец

P-2817

СХЕМА РАСПАДА 160 Но

yros/2 yr

Н.А. Бонч-Осмоловская, Я. Врзал, Е.П. Григорьев, Я. Липтак, Я. Урбанец

СХЕМА РАСПАДА 160 Но

160 Dy является сильнодеформированным ядром, многие из свойств которого объясняются обобщенной моделью. Уточнение схемы уровней, их квантовых характеристик, вероятностей переходов необходимо для определения параметров модели и установления области ее применимости. Одним из методов изучения ¹⁶⁰ Dy является исследование распада ¹⁶⁰ Ho.

Как показали исследования спектра электронов внутренней конверсии, при распаде ¹⁶⁰ Но возникает около 130 у-переходов ^{/1/}. Гамма-лучи наблюдались ранее по фотоэлектронам лишь для самых интенсивных переходов, люминесцентные же спектры имели недостаточную разрешающую способность, чтобы раздэлить отдельные линии. Информация о у -лучах имеет большое значение для установления очень сложной схемы распада ¹⁶⁰ Но

В настоящей работе измерялся у -спектр ¹⁶⁰Но на полупроводниковом у спектрометре с германиевым детектором. Рабочий объем детектора коаксиального типа составлял 5 см³, шеряна линий на половине высоте в данных измерениях равиялась 5,5 кэв в области 1 Мэв. Регистрация проводилась 2048-канальным анализатором. Источником служил ¹⁶⁰ с , который находился в равновесии с дочеринм ¹⁶⁰Но Препарат был получен в реакции взаимодействия протонов с р = 660 Мэв с танталовой мишенью на синхропиклотроне ОИЯИ.

Результаты намерения у-спектра ¹⁶⁰ нь приведены в таблице 1. Энергин большинства переходов были измерены в ^{/1/} с точностью 0,05%, поэтому они были приняты по этой работе. В области энергий 2500-2800 кэв градуировочная кривая для у спектра была получена по энергиям наиболее интенсивных линий внутренней конверсия ^{/1/} энергии более слабых у -переходов определялись по положению линий в у -спектре. Относительная точность измерения интенсивностей у -линий составляла 10% для сильных у -лучей. Кроме пиков полного поглошения, в спектре наблюдались пики, соответствующие вылету одного и двух аннигиляционных квантов. Последние сильно затрудиили анализ спектра в области 1500-1700 кэв, так как здесь расположены пики

от довольно сильных у -переходов 2500-2700 кэв. Для примера на рис. 1 приведены два участка у -спектра ¹⁶⁰Но.

Интенсивности конверсионных электронов в таблице 1 приведены в единицах, где 1 (К 197) составляет 1000 единиц. Шкала интенсивностей у-лучей выбрана таким образом, чтобы для известных чистых Е2-переходов 197, 728, 880 и 966 кэв отношения $\frac{l_k}{l_y}$ были бы как можно ближе к величине a_k ^{Teop} (E2). Величина (l_k/I_y)/ a_k (E2) была получена путем усреднения этих отношений для четырех указанных переходов. В этом случае величины I_k/I_y будут равны экспериментальным коэффициентам конверсии. Разброс значений a_k ^{Sucn} по отношению к a_k (E2) невелик для реперных переходов, и не замечено регулярного отклонения в зависимости от энергии. Это обстоятельство является свидетельством правильности определения интенсивности как конверсионных лений, так и у -лучей.

В таблице і приведены некоторые новые данные о спектре конверсионных электронов, полученные в результате совместного анализа со спектром у -лучей. Уточнены интенсивности ряда линий, даны оценки интенсивностей линий тех переходов, которые впервые обнаружены в спектре У -лучей.

Полученная информация позволяет сделать новые заключения и служит проверкой сделанных в /1/ предположений и выводов о схеме уровней Dy .

Уровни второй ротационной полосы с $K^{\pi} = 2^+$

В работе /1/ установлены уровни со спинами до 6 ротационной полосы, основанной на состоянии 965,6 кэв 2⁺ (у -вибрационная полоса, рис. 2).

Прямые вэмерения интенсивностей у -лучей позволяют определить отношение приведенных вероятностей у -переходов, идущих на основную полосу. В таблице 2 приведены полученные результаты. Следует заметить, что мультипольность перехода с энергией 857 кэв оказалась E1, это, по-видимому, два близких по энергии перехода, и между уровнями θ_2^+ и θ_0^+ идет E2-компонента этого дублета. Ее долю определить трудно ввиду того, что велика погрешность из-за малой интенсивности перехода.

Коэффициенты конверсии остальных переходов, идущих с этой полосы, соответствуют значениям а, электрических квадрупольных переходов.

В работе Иошизава и др.²⁷ определена приведенная вероятность возбуждения уровня 966 кэв В (Е2; 0 + 2) = 0,069 <u>+</u>0,020) е² · 10⁻⁴⁸ см⁴, что соответствует его периоду полураспада по отношению к переходу 966 кэв 2⁺ → 0⁺, T_{y} =4,8 · 10⁻¹² сек и фактору ускорения F = 2,7. Период полураспада уровня 966 кэв равен 1·10⁻¹¹ сек. Ускорение в несколько раз обычно для Е2 — переходов, идущих в деформированных четно-четных ядрах с у -вибрационных уровней.

Уровни третьей ротационной полосы с К = 4

Для уровней ротационной полосы, основанной на состоянии 1694 кэв 4⁺ (рис. 2), проведен такой же анализ, как и для уровней второй полосы. Мультипольности переходов, идущих с уровней 4⁺ и 5⁺, которые проявились в у -спектре, оказались Е2. В таблице 3 даны отношения их приведенных вероятностей. Результаты, полученные по интенсивностям у -лучей, близки к выводам^{/1/}, но их надежность выше, так как предположение о мультипольности Е2 стало экспериментальным фактом.

Следуя анализу вероятностей у -переходов на полосу с К $\pi = 2^+$ и переходов внутри полосы с К $\pi = 4^+$, проведенному в ^{/1/}, можно определить период полураспада уровня 1694 кэв T_{4} (1694 кэв) = 1,6 $\cdot 10^{-11}$ сек,и парциальный период полураспада относительно перехода 728 кэв T_{4} (728 кэв) = 2,7 $\cdot 10^{-10}$ сек. Е2-переход 728 кэв оказался заторможенным в 5,1 раза по сравнению с предсказаниями одночастичной модели. Это позволяет с определенной вероятностью исключить интерпретацию уровня 1694 кэв как двухфононного вибрационного состояния. В последнем случае следовало бы ожидать ускорения переходов на однофоновные состояния. По-видимому правильна интерпретация его как двухквазичастичного состояния п $3/2^-$ [521] n $5/2^-$ [523].

Уровни 0⁺ и 2⁺ β-вибрационной полосы

Из таблицы 1 следует, что мультипольность перехода 1263 кэв должна быть выше, чем М2. Маловероятно найти изомерный переход с такой большой энергией в схеме уровней ¹⁶⁰ Dy , поэтому можно предположить, что переход 1263 кэв сложный и одна его компонента относится к ЕО-переходу, идушему между состояниями 0⁺ \rightarrow 0⁺. В у -спектре обнаружен цереход 1176 кэв, который может быть размещен между уровнями 1263 кэв 0⁺ и 86,8 кэв 2⁺. Ввиду малой интенсивности и близости другах переходов установить его мультипольность не удалось. Можно оценить ядерный параметр ρ^2 для 0⁺ \rightarrow 0⁺ перехода, зная, что интенсивность конверсионной линии К 1263 примерно в 100 раз меньше, чем у 1176, и принимая одночастичную величину вероятности для Е2-перехода 1176 кэв ($T_{y} = 4,8\cdot10^{-12}$ сек).

В этих предположениях значение ρ^2 получается равным 0,024, что не выходит за пределы обычно встречающихся значений.

Если состояние 1263 кэв является β -вибрационным, то на нем должна быть ротационная полоса. Моменты инерции ядра в β -вибрационных и основных состояниях обычно близки, и первый ротационный уровень следует искать около 1350 кэв. В спектре есть переход с энергней 1349 кэв и с мультипольностью Е2; он может идти в основное состояние. Тогда на первый возбужденный уровень пойдет переход 1263 кэв, кото-

рый проявился в у -спектре. С заметной интенсивностью должен идти переход на уровень 283,8 кэв 4⁺. В спектре конверсионных электронов на подъеме линий 1069 кэв наблюдалось превышение числа импульсов над контуром линии, которое может быть вызвано переходом 1067 кэв.

Сложность спектра не позволяет точно установить интенсивности переходов и сопоставить их с теоретическими предсказаниями.

Уровни Ду с отрицательной четностью

Подтвердился вывод работы ^{/1/}, что при распаде ¹⁶⁰ но заселяются те же четыре уровия с отридательной четностью, что и при распаде ¹⁶⁰ть.

а) Уровень 1284,4 кэв. Отношение интенсивностей у 215 : у 1178 ≈ 0,2 близко к полученному в ряде работ по изучению ¹⁶⁰Ть (см. ^{/S/}) эначению 0,21-0,22. Линия К 1178 в спектре конверсионных электронов не наблюдалась ввиду ее малой интенсивности.

б) Уровень 1286,6 кэв. Подтвердилось, что мультипольность идущего с него перехода 1200 кэв - Е1.

в) Уровень 1358,4 кэв. Подтверждено, что мультипольности переходов 310, 392 и 1272 - Е1 и отношение у 392 : у 1272 = 0,2 такое же, как и полученное при изучение распада ¹⁶⁰ Ть (см. ^{/3/}).

г) Уровень 1398,6 кэв. Подтверждено, что мультипольности переходов 1115 кэв и 1312 кэв - Е1 и отношение у 1115 : у1312 = 0,6 близко к значениям 0,7-0,8 в 160 тв.

Другие уровни, возникающие при распаде Но

В правой части схемы распада показано большое количество новых уровней ¹⁶⁰ Dy Критериями для введения этих уровней были: 1) известная энергия распада ¹⁶⁰ Но 3386 <u>+</u> 15 кэв; 2) совпадения энергий прямых и каскадных переходов; 3) мультипольности переходов (они показаны на рис. 2); 4) данные о е-у и у - у - совпадениях ^{/4,5/}. Отношения интенсивностей переходов, особенно E1, не могут быть хорошим критерием для определения характеристики высоких уровней, так как смешивание состояний может эначительно нарушить правила интенсивностей. Некоторые из состояний предлагались в более ранних работах (см. ^{/1/}).

Следует отметить тот факт, что мультипольность большей части переходов из группы 1200-1500 кэв оказалась Е2 или М1, а не Е1, как предполагалось в более ранных работах. Как следствие, ряду уровней в области 1400-2300 кэв приписана положительная четность.

Нужно сделать замечания об уровнях, изображенных на рис. 2. Уровни 1431, 1436, 1699, 1757 и 2086 ков введены по энергиям и мультипольностям переходов. Все они имеют положительную четность, а предполагаемые спины указаны на рис. 2.

Уровень 1699 кэв подтверждается совпадениями (L 88,8) (у 1610)^{/4/} и (у 197) § 1800-1450)^{/5/}.

Несколько ниже 1700 кэв должно быть состояние 1⁺, образованное теми же нейтронами 3/2⁻[521] и 5/2⁻[523], что и состояние 1694 кэв 4⁺, а также соответствующие ротационные уровни. Идентифицировать их довольно сложно ввиду возможного сильного смешивания состояний. Не исключено, что какие-либо из указанных уровней относятся к этой ротационной полосе.

Уровень 1805 кэв подтверждают (L 86,8) (у 1710) -совпадения^{/4/}. Переход 1806 кэв также может быть расположен в другом месте схемы, между уровнями 1893 кэв и 86,8 көв. В пользу этого варианта говорит наличие совпадений (К 187) (у 1810)^{/4/}.

Уровень 2006 кэв характерен тем, что все три перехода с него идут на уровни у -вибрационной полосы. Совпадения (у 963 + 966) (у 1050-1200) можно интерпретировать, следуя работе ^{/5/}, как (у 962) (у 1049) и (у 966) (у 1131). Отсутствие переходов на основную полосу можно объяснить К -запретом, и значение спина 4 кажется по этой чричине предпочтительнее, чем 3.

Некоторым подтверждением уровня 2209 кэв служат совпадения (у197) (у1900 – 2500)= = (у197) (у1925)^{/5/}. Эти же совпадения относятся к уровню 2270 кэв (у197) (у1986), а также возможные совпадения (у986) (у1304)^{/5/}.

Совпадения, наблюдавшиеся в ^{/5/} и интерпретированные как (у 197) (у 2002); (у 962) (у 1236) и (у 966) (у 1321), служат подтверждением уровня 2286 кэв.

С уровня 2469 кэв могут идти пять переходов, но два из них также размещены в другом месте схемы.

Группа уровней выше 2600 кэв вводшлась уже в ряде работ (см. /1/).

Установление мультипольностей переходов позволяет судить о квантовых характеристихах каждого из уровней. По-видимому, они заселяются путем разрешенных β -переходов при распаде изомерного состояния ¹⁶⁰ Но 2⁻. С уровня 2630 кэв, кроме двух сильных переходов на основную полосу, вдет переход 1665 кэв на у -вибрационное состояние. Это подтверждено (у 966) (у 1665) совпадениями⁷⁵⁷. Переход 1280 кэв хорошо укладывается между этим уровнем и состоянием 1350 кэв. Но его мультипольность - M2, и было бы крайне интересно установить, действительно ли он идет в конкуренции с тремя E1 У-переходами.

Возможно, что с уровней 2660, 2673, 2699 и 2733 кэв идут конкурирующие Е1 и М1-или Е2-переходы. В этом случае Е1 переходы значительно заторможены по отношению к одночастичным значениям.

По интенсивностям у -переходов была определена вероятность заселения каждого из уровней путем электронного захвата. За 100% была принята интенсивность всех переходов, идущих в основное состояние ¹⁶⁰ Dy (рис. 2). В единицах таблины 1 это составляет 4700. Величины lgft вычислялись в предположении, что они заселяются при β -распаде изомерного состояния ¹⁶⁰ Ho . Если уровень заселяется при распаде основного состояния ¹⁶⁰ Ho , то величина lgft будет на 1,0 меньше. Анализ полосы, основанной на уровне 1694 кэв 4⁺, проведен в ^{/1/}.

Значения вероятностей электронного захвата и $\ell g ft$ приведены на рис. 2. Большинство β -переходов можно отнести к разрешенным или первого запрешения. Из рис. 2 видно, что нет β -переходов с малыми значениями $\ell g ft$ (около 5). Видно также, что если бы заселение какого-либо из уровней происходило с $\ell g ft > 8$, то интенсивности соответствующих у-переходов были бы настолько малы, что они не проявились бы в спектре.

Авторы выражают благодарность В.А. Халкину и его сотрудникам за кимическое выделение препаратов эрбия, К.Я. Громову, Ж.Т. Желеву и Г. Музиолю за интерес к работе, Н.И. Пятову и С. Бьорнхольму за полезные обсуждения, а также авторам работы^{/1/} М.П. Авотиной, Б.С. Джелепову, А.В. Золотавину и В.О. Сергееву за предоставленную возможность заново проанализировать их экспериментальные результаты.

Литература

- 1. М.П. Авотина, Е.П. Григорьев, Б.С. Джеленов, А.В. Золотавин, В.О. Сергеев. Изв. АН СССР, сер. физ. 30, 530 (1966).
- 2. Y. Yoshizawa, B. Elbek, B. Herskind, B. M.C. Olesen. Nucl. Phys., 73, 273 (1965).
- 3. G.T. Ewan, R L. Graham, I.S. Geiger. Nucl. Phys., 22, 610 (1961).
- П. Бедросян, Т. Бедике, К.Я. Громов, В.А. Морозов. Программа и тезисы докладов XV ежегодного совещания по ядерной спектроскопии и структуре атомного ядра, Минск, стр. 61. Изд. "Наука", М-Л, 1965.

5. Е.П. Григорьев, Г.С. Кватер, Е.Г. Линдберг, В.Б. Смирнов, В.А. Александров. Программа и тезисы докладов XV1 ежегодного совещания по ядерной 'спектроскопии и структуре атомного ядра, Москва, стр. 47. Изд-во "Наука", М-Л, 1966. Доклад на совещания.

Рукопись поступила в издательский отдел 30 июня 1966 г.

Таблица I (продолжение I)

Таблица I

Энергин и относительные интенсивности у - лучей и электронов внутренней коиверсии ¹⁶⁰Но + ¹⁶⁰ тЮ

Er,	I e	Ix	Коэффиц	NOHTH R	онверсия, х	103		Вывод о муль
кэв			OIIHT	EI	E2	MI	M2	типольности
I	2	5	4	5	6	7	8	9
86,8	Lm 6700	6100	II00 <u>+</u> 200	-	Lue III00			E2 ²
93,9	L, 8	-	-	-	-	-	-	
107,9	105	100	1000 <u>+</u> 200	210	940	I650	-	WI + 82 ²
117	-	20	-		-	-	-	
127	8	~10	800 <u>+</u> 300	135	600	1000		MI, E2
163	3	80	40+20	70	280	400	300	RT
189	≤3	≤30	-	-	-	-	-	
197	1000	5600	173 <u>+</u> 30	43	165	300	1600	E2#
215	I,8	< 70	> 26	34	130	230	1150	BIH
235	3	£ 40	≥ 70	27	98	195	850	NA RT
239	2,5	≤ 40	≥ 60	26	90	180	800	No PI
256	0,4	≤ 30	≥ I5	21	75	T50	650	ROM DI
282	0,4	≤30	≥15	17	60	TT5	470	132
297,2	18 J						410	E2ª
298,0	2,5	850	32+8	15	50	TOO	390	Exc.
298,6	6,6)					200	220	EI
310	I,5	I40	II <u>+</u> 4	13	44	88	340	PT
363	2,5	~ 70	~40	9.2	28	58	210	F2 A MT
590	0,47	230	E GIT C		07		210	(PT)
92	0,9]	20	5,011,0	1,0	25	47	160	EI
06	3,9	190	20+5	7.2	21	43	THE	FO
-66	0,12)		-			12	140	EIC.
68	0,30	~70	~ 9	5.I	14	29	92	
69	0,15)						26	-
90	0,7]	~ 70	A 13	4.0	70.0			FO
91	0,25	10 10	~1)	4,9	12,8	27	84	DC -
94	0,2	\sim IOO	~2	4.6	12.0	26	82	FT
13	6,9	660	I0,5+2	4.2	II.6	24	72	E2
38	21	1900	II+2	3,8	10.3	21	52	E2
40	0,57		_				20	
45	50 }	8800	6,8+I,4	2,5	6,7	13.5	37	R2
46	9,5)					72.42		E C
73	0,2	-		_	-			82

I	2	3	4	5	6	7	8	9
682	I,0 ·	~140	~ 7	2,3	5,9	10,8	32	E2
707	I.O	~ 190	5,2+I	2,I	5,3	10,5	28	B2
728	70	13700	5,I+0,6	2,0	5,0	9,7	26	E2
753	5.7	IIIO	5.1+0.8	I,85	4,7	9,I	24	E2
765	7,4	1650	4,5+0,8	1,75	4,5	0,6	22	E2
826	0,70}	360	2,3 <u>+</u> I	1,52	3,8	7,2	19	EI,E2
827	0,13)			7.45	7 6	6 9	T7	MT
843	0,3	< 50	26	1,40	2,0	6 5	17	RT
857	0,37	280	1,3±0,5	1,40	2,2	6 2	TC	FO
872	8,5	3000	2,8+0,6	1,40	2,4	6,2	10	E.C.
879	27.5	8900	3.I+0.3	I,35	3,3	6,I	15,5	E2
94T	0.7	100	7+2	1,20	2,9	5,2	13,0	MI
962	21	8000	2.6+0.4	I,16	2,8	4,9	12,5	E2
966	22	8000	2.75+0.4	I,I4	2,75	4,8	12,5	E2*
1003	0.177	950	2 5+0 3	T 05	2.5	4.3	II.O	EI
[004	2.1	950	2,510,5	1,05	- 9.2		,-	E2
1048	I,I	370	3,0+0,6	0,93	2,4	4,0	10,0	MI
1069	2.8	1300	2,15+0,3	0,95	2,2	3,8	9,4	E2
III5	0,17	185	0,92+0,50	0,88	2,0	3,7	8,6	EI
TTST	I.I	490	2,2+0,4	0,87	2,0	3,5	8,3	E2
TT42	0.08	60	I.3+0.5	0,85	I,9	3,I	7,8	E2
TI54	0.167	TTO	2 2+1	0.85	Τ.9	3.T	7.8	E2
TI56	0.08	110	C 1 CTI	0,04	195	292	.,	-
1162	-	150	-	-	-	-	-	-
1176	-)	400	_	-		-	-	-
1178	-)	700						-
II82	-	80	-	-	-		-	-
1200	0,55	1000	0,55+0,2	0,73	I,75	2,9	7,0	EIT
(1216)	-	100	-	-	-	-	-	-
1236	-	170	-	-	-	-	-	-
(1250)	-	\leq IOO	-		-		-	-
(1256)	-	≤100	-	-	-	-	-	-
1245	-	180			-	-	-	-
1263	I,I	$\sim II0$	I0 <u>+</u> 3	0,71	I,60	2,5	6,I	EO
1272	0,9	I260	0,7I+0,I	0,70	I,55	2,5	6,0	EIT
1280	0.5	\sim 180	~2,8	0,70	I,55	2,4	5,9	(MI)
1286	0,55	780	0,7I+0,I	0,70	I,54	2,4	5,9	EI
1304	~ 0.05	I40	~0,4	0,65	I,47	2,3	5,6	EI
TST2	0.12	300	0.4+0.2	0.66	1,45	2,3	5,5	EI

10

I	2	3	h	p					
TZOT	0.50			>	6	7	8	9	
1321	0,12	100	I,2 <u>+</u> 0,5	0,66	I,45	2.3	5.5	RT E2	
1550	$\sim 0,1$	~ 50	~2	0,65	I,42	2.2	5.3	R2 NT	
1558	0,12	~70	~1,7	0,64	I,40	2.I	5.2	NT E2	
1344	0,16	~80	~2,0	0,64	I.40	2.1	5.2	WT PO	
1349	0,11	~70	~1,5	0,64	I.40	2.1	5.2	E2	
						-,-	242	EC.	
1369	0,20)							
1370	0,44	400	I,9+0,5	0,61	I.36	2.1	4 9	NT PO	
1371	0,13)				- 1-	7,7	ML , 54	
								-	
1374	0,10)							
I 375	0,26	190	2,3+0,8	0.61	T. 35	2 07	4 0	-	
1377	0,07)		- ,	- 900	2,07	4,9	MI	
I389	0,20	~40	~5	0.61	T 32	2 05			
1396	0,19	100	I.9+0.6	0.61	T 32	2,05	4,8	112	
				0,01	1,06	2,05	4,8	MI,E2	
I400]	0 17	220	0.0.0.0						
I402 \$	0,11	220	0,840,2	0,60	I,3I	2,00	4,7	EI	
I405	0.034	<100	>0.3	0.59	T 7T				
I409	0.10)	Too		0,55	1,51	2,00	4,7	-	
I4IO	0.24	~190	~1,8	0,59	I,30	2,00	4.6	-	
I4I5	0.14)							E2,MI	
I4I8	0.27	~190		0.50					
I420	0.07	200	10215	0,58	1,27	I,95	4,5	MI	
I425	0.08	-							
I43I	0.68)		-	-	-	-	-	-	
I433	0.09	450	I,7 <u>+</u> 0,4	0,57	I,26	I.90	4.5	MT F2	
	0,00)								
1436	$\left(2h \right)$								
T438	0 10	I40	2,5 <u>+</u> I	0,56	I.25	T.90	4 5	MI	
TAUT	0,10)	(700				-120	T 1 2	-	
T443	0 12	100	21	0,56	I,22	I,88	4,4	He EI	
T473	0,12	<100	>1,2	0,56	I,22	I,88	4,4	He EI	
T489	0,20	260	0,77+0,2	0,55	I,20	I,80	4.I	EI	
1405	-	100	-	-	-	-	-	_	
1518	0 70								
TEOE	0,12	-	-	-	-	-	-	_	
1600	0,025	-	-	-	-	-	-	-	
TETS	0,01	~	-	-	-	-		-	
TCOT	0,06	-	~	~	-	-	-	-	
1021	0,15	165	0,9 <u>+</u> 0,2	0,47	I,00	I.43	3.3	F2	
TCEE							-1-	DC .	
1620	0,09	205	0,44+0,08	0,45	0,95	I.35	3.T	PT	
10/0	0,17	170	I,0 <u>+</u> 0,2	0,45	0,95	I.35	3.I	R2	

Таблица I (продолжение 2)

1718	0,31	400	0,8+0,2	0,44	0,90	I,25	2,8	<u>B2</u>
1771	-	200		-	-	-	-	-
1787	0,17	160	I,I <u>+</u> 0,3	0,40	0,87	1,15	2,6	B2,MI
1801	0,05	~50	~I	0,39	0,83	1,13	2,5	MI,E2
1806	0,16	120	I,3 <u>+</u> 0,3	0,39	0,83	I,I3	2,5	MI
1819	0,05	120	0,4+0,I	0,39	0,82	I,I2	2,5	EI
1861	0,06	< 50	>1,2	0,36	0,77	I,OI	2,2	(MI)
1871	0,07	< 50	>I,4	0,36	0,76	I,00 -	2,2	MI,M2
1921 1925	0,05	230	0,9+0,2	0,35	0,72	0,98	2,1	(EI) E2.MI
1953	0.14	<40	>3.5	0.34	0.71	0.94	2.I	(EO)
1986	40,03	IIO	≤0,3	0,33	0,69	0,91	2,0	EI
1998	0,08]	TOO	T 440 6	0 33	0 69	0.90	2.0	He EI
2002	0,06)	100	19410.0	0,00	0,00	0,00	2,0	
2006	-	80	-		-	-	-	-
2069	0,07	205	0,34+0,08	0,31	0,64	0,84	I,80	EI
2086	0,09	100	0,9+0,4	0,30	0,63	0,82	I,75	MI,E2
2138	-	~ 100	-	-	-		-	-
2164	-	~ 100	-	-	-	-	-	-
2184	0,07	340	0,21+0,07	0,29	0,60	0,75	I,62	EI
2382	-	100	-	-	-	-	-	-
2428	0,020 }	TOO	0.4+0.2	0.24	0.5	0.6	1.3	-
2433	0,025	200	0111012	0,21	0,0	0,0	- 15	
2542	0,11	450	0,24+0,05	0,225	0,46	0,54	1,12	EI
2559	0,015	100	0,15+0,08	0,223	0,45	0,53	I,II	EI
2574	0,020	100	0,20+0,08	0,220	0,44	0,52	I,I0	EI
2586	0,015	60	0,25+0,08	0,220	0,44	0,51	I,08	EI
2612	0,10	420	0,24+0,5	0,218	0,43	0,50	I,05	BI
2630	0,10	480	0,21+0,04	0,215	0,43	0,49	I,03	EI
2646	0,068	230	0,03+0,07	0,212	0,42	0,48	I,00	EI(+M2)
(2654)	-	≤ I00	-	-	-	-	-	-
2673	0,15	560	0,27+0,05	0,210	0,41	0,47	0,96	EI(+M2)
2680	0,02	~ 100	~ 0,2	0,210	0,41	0,47	0,96	(EI)
(2719)	-	~ 20	-	-	-	-	-	-
2734	0,022	70	0,32+0,10	0,205	0,39	0,45	0,94	EI,E2
2763	0,026	55	0,47+0,15	0,200	0,38	0,44	0,92	(MI)
2855	-	$\sim I0$	-		-	-	-	-

Таблица I (продолжение 3)

Интенсивности конверсионных электронов и у - лучей приведены в одинаковых единицах. Нормировка произведена по козфициентам конверсии E2-переходов 197,728,880 и 966 ков. Т Мультипольность этих переходов изместна из распада 160 Ть.

Таблица З

Таблица 2

Экспериментальные и теоретическые отношения приведенных вероятностей Е2 - переходов в $I_{60}D_{\gamma}$ между полосами с К^{π} = 2⁺ и К^{π} = 0⁺

Переходы	Оп	ĨT	Теория		
•	по у – дучам	по конверсионным электронам /1/	без попревки	с поправной Z = 0,03	
$\frac{2_2 \longrightarrow 0}{2_2 \longrightarrow 2_0}$	0,55 <u>+</u> 0,06	0,60 <u>+</u> 0,06	0,70	0,58	
$\frac{2_2}{2_2} \xrightarrow{4_0} \frac{4_0}{2_2} \xrightarrow{2_0} \frac{2_0}{2_0}$	0,056 <u>+</u> 0,010	0,074 <u>+</u> 0,0I0	0,05	0,072	
$\frac{5_2}{3_2} \xrightarrow{4_0} 4_0$	0,65 <u>+</u> 0,I0	0,68 <u>+</u> 0,10	0,40	0,59	
$\frac{4_2}{4_2} \xrightarrow{4_0} \frac{4_0}{2_0}$	5,4 <u>+</u> I,0	5,3 <u>+</u> I,0	3,0	4,7	
$b_2 \longrightarrow b_0$	I,38 <u>+</u> 0,3	I,26 <u>+</u> 0,3	0,57	1,26	
$\frac{5_2}{5_2} \xrightarrow{4_0} \frac{4_0}{6_0}$	0 ,06<u>+</u>0, 02	0,19 <u>+</u> 0,06	0,27	0,164	

Экспериментальные и теоретические отношения приведенных вероятностей Е2 - переходов в ^{IGO} Dy между полосами с К^{W^{*}} = 4⁺ и К^{W^{*}} = 2⁺

		OINT	Теория	Теория		
	Переходы	по % - лаят	по конверсионным электронам /1/	без поправки	с попр а, =	
2	$\frac{4_4 \longrightarrow 3_2}{4_4 \longrightarrow 2_2}$	0,98 <u>+</u> 0,I5	1,00 <u>+</u> 0,10	0,56	1,00	
	$\frac{4_4 \longrightarrow 4_2}{4_4 \longrightarrow 2_2}$	0,62 <u>+</u> 0,07	0,67 <u>+</u> 0,07	0,196	0,62	
	$\frac{4_4 \longrightarrow 5_2}{4_4 \longrightarrow 2_2}$	0,26 <u>+</u> 0,04	0,25 <u>+</u> 0,04	0,040	0,2	
	$\frac{4_4 \longrightarrow 6_2}{4_4 \longrightarrow 2_2}$	0,4	0,06	0,0036	0,0	
	$\frac{5_4 \longrightarrow 4_2}{5_4 \longrightarrow 3_2}$	-	2,6 <u>+</u> 0,5	I,0	2,5	
	$\begin{array}{c} 5_4 \longrightarrow 5_2 \\ \hline 5_4 \longrightarrow 3_2 \end{array}$	4,0 <u>+</u> I,0	3,4 <u>+</u> 0,7	0,48	2,5	
	$5_4 \longrightarrow 6_2$ $5_4 \longrightarrow 3_2$	2,4 <u>+</u> I,0	2,9 <u>+</u> 0,9	0,428	4,2	

Рис. 16. Гамма-спектр ¹⁶⁰ но в жесткой области энергий 2500-2800 кэв.

Рис. 2. Схема распада 160 но .

18

160 Ho