А-239 объединенный институт ядерных исследований

Million and

= 6341.15

Дубна

P-2814

Beparenne Hentrennen ensm

В.Агеев, Я.Врзал, А.Клименко, Я. Липтак, В.Майданюк, Я.Урбанец, А.Феоктистов

Usb. AH CCCP, cop. pus, 30/11

1968, T. 32, NI, C.119-121

ИССЛЕДОВАНИЕ ИЗЛУЧЕНИЯ Re¹⁸⁴

В.Агеев, Я.Врзал, А.Клименко, Я.Липтак, В.Майданюк, Я.Урбанец, А.Феоктистов

ИССЛЕДОВАНИЕ ИЗЛУЧЕНИЯ В. 184

Введение

За последнее время исследованню взлучения Re^{184} был посвящен целый ряд работ. В работах^{/1-6/} был исследован спектр конверсионных электронов на магнитных β -спектрометрах, в работе^{/7/} изучался γ -спектр на сцинтилляционном спектрометре, наконец, исследовались $\gamma - \gamma$ ^{/1,7,8/}, $e - e^{-(9,10)/2}$ и $e - \gamma$ ^{/11/} совпадения.

Результаты этих работ, по-видимому, надежно устанавливают следующую схему распада Re¹⁸⁴.

1. У Re¹⁸⁴ имеется изомерное состояние с энергней 188 кэв с характеристиками 8⁺. Этот уровень с $T_{\frac{1}{2}} \approx 160$ дн. распадается либо электронным захватом на уровни W¹⁸⁴, либо двумя каскадными переходами 83,3 кэв М4^{/4,6,10/} и 104,7 кэв M1+E2^{/6,9/} через промежуточный уровень 104,7 кэв (4-) на основное состояние Re¹⁸⁴ (3-). С основного состояния Re¹⁸⁴ с $T_{\frac{1}{2}} \approx 38$ дн электронным захватом распадается на уровни W¹⁸⁴.

2. Для W¹⁸⁴ известны следующие уровни InK:

а) 0 (0+0); 111,2 (2+0); 384,0 (4+0); 748,2 кэв (6+0) - уровни ротационной полосы основного состояния.

6) 904,4 (2+2); 1006,8 (3+2); 1134,7 кэв (4+2) - уровни у - вибрационной полосы.

в) Re¹⁸⁴ в основном распадается на у - вибрационную полосу W¹⁸⁴, в то время как распад Re^{184m} преимущественно идет через изомерный переход 83,3 кэв.

В ряде работ^{/1,2,4,6,7,11/} вводились дополнительные различные возможные уровни W¹⁸⁴, однако, как нам кажется, наиболее обоснованная, котя и далеко не полная, схема уровней W¹⁸⁴ предложена Харматцем и Хандлеем^{/6/}. Кроме ротационной полосы основного состояния и у -вибрационной полосы, вводятся уровни 1223,03-; 1286, 7 5-; 1448, 0 6-; 1503, 3 7-. Уровень 1223,0 кэв вводился ранее в работах Джонсона^{/7/} и Бисгарда и др.^{/11/}, а уровень 1286,7 - в работах Джонсона^{/7/} и Джелепова и др.^{/4/}. Хорошо обосновано и введение уровней 1448,0 и 1503,3 кэв. Одиако нет прямых экспериментальных данных о четности этих уровней, есть только

данные, свидетельствующие, что все они, по-видимому, одинаковой четности. С целью установления четности этих уровней, а также получения более широкой информации о распаде Re¹⁸⁴ и поставлена эта работа.

Подготовка источников

Источник Ro¹⁸⁴ получался путем облучения натуральной вольфрамовой фольги дейтонами с энергией 13,6 Мэв на циклотроне ИФ АН УССР. Для у - спектроскопин использовались два источника. Один из них был облучен приблизительно 4 года назад, для простоты его назовем "старый" источник, а другой, назовем его "свежий", облучен за 3,5 месяца до измерений. Для исследования конверсионного спектра использовались "свежий" источник и "промежуточный", облученный приблизительно за 8 месяпев до измерений. Активность "старого" источника была недостаточна для измерений на магнитном спектрометре.

Все источники были выделены из мишеней радиохимическими методами без носителя. Химическое выделение "старого" источника описано в работе /3/.

Методика выделения "свежего" и "промежуточного" источников Re¹⁸⁴ была подобна описанной в работе^{/11/}. Облученная мишень растворялась в 30% H₂ O₂. Основная часть W удалялась путем осаждения его в виде вольфрамовой кислоты из 1N по HCl раствора. Водная фаза пропускалась через колонку с DW 1 x 8 в Cl⁻-форме. На колонке Re отмывался от остатков W 1N HCl и смывался концентрированной HNO₈. После разбавления до 1N по HNO₈ раствор пропускался через колонку d 0,1 x 3 см. Колонка промывалась 0,5 NH₂SO₄,и активность смывалась 20N H₂SO₄. Для того, чтобы уменьшить объем электролита, из которого ведется электролиз, раствор разбавлялся до 3N по H₂SO₄ и пропускался через колонку с фторопластом, на который был нанесен TEФ. Активность десорбировалась водой и упаривалась досуха, после чего смывалась заранее приготовленным раствором (NH₄)₂SO₄ с pH=2 , из которого и велся электролиз на платиновую проволоку 6 0,1 x 1 см.

Кроме активности Re¹⁸⁴, "свежий" и промежуточный" источники содержали как мешающую примесь Re¹⁸³, имеющий Т_у = 68 дн. и плотный у - спектр с максимальной энергией у - лучей 406,6 кэв. /12/.

Таким образом, "свежий" источник содержал γ - переходы, интенсивности конверсионных и γ - линий которых спадали со временем с $T_{\frac{1}{2}} = 38$ дн. от распада Re¹⁸⁴, с $T_{\frac{1}{2}} = 160$ дн. от распада Re^{184m}, и с $T_{\frac{1}{2}} = 68$ дн. от распада Re¹⁸³ "Старый" источним давал линии, соответствующие практически лишь распаду изомерного состояния Re^{184m}.

V

Методика измерений

Измерення у - спектров проводились с помощью Ge(Li) детектора коаксиального типа, предоставленного нам Пражским ИФ TT. Детектор имеет форму цилиндра диаметром 21 мм, высотой 20 мм и чувствительный объем 5 см³.

Для усиления импульсов детектора применялся малошумящий усилитель на лампах E810F и транзисторный усилитель. Спектры у – лучей снимались с помощью 2048-канального транзисторного анализатора. Усиление всего тракта стабилизировалось с помощью реперного импульса от генератора точной амплитуды. Калибровка чувствительности детектора проводилась с помощью стандартных источников Св¹⁸⁷, Со⁶⁰ и Ra²²⁶. Для калибровки в области низких энергий применялся источник Уb¹⁶⁹. Для калибровки по энергии мы пользовались в основном источником Ra²²⁶. Измерения проводились в "хорошей геометрик", чтобы избежать появления суммарных пиков.

Для исследования конверсионного спектра использовался магнитный β - спектрометр типа кэтрон^{/13,14/}. Радиус построения прибора $\rho = 10$ см, телесный угол $\Omega = 0,3\%$, разрешение - 0,2% по H ρ , ширина приемной щели - 0,42 мм. Для уменьшения фона при регистрации слабых конверсионных линий использовались два разнесенных на четверть окружности счетчика Гейгера-Мюллера, включенных в схему совпадений. Собственный фон такой системы составляет 4 имп/час. Контроль за магнитным полем спектрометра осуществлялся с помощью датчика протонного магиитного резонанса. Однако прибор недостаточно хорошо отградуирован, поэтому точность определения энергий конверсионных линий составляет 0,2 кэв в низкознергетической области спектра и = 1 кэв для жестких линий. Градуировочными линиями служили линии Re¹⁸³/15/ и некоторые линии Re¹⁸⁴, определенные в работе Харматца и Хандлея^{/8/}.

Результаты измерений и обсуждения

Результаты измерений представлены в таблипе 1. В первой колонке приведены энергии у - переходов, определенные либо из конверсионного спектра, если эти переходы наблюдались в конверсионном спектре, либо из у - спектра, если конверсионных данных нет.

Во второй и третьей колонках даются относительные интенсивности у - лучей для "старого" и "свежего" источников, при этом интенсивность у - 904,4 кэв принята за 100.

Следующая колонка дает отношение интенсивностей у - линий "старого" источника к интенсивностям у - линий "свежего". Отношение интенсивностей линий сильно связанных с электронным захватом Re¹⁸⁴ в основном состоянии для обеих источников равно ~ 1, в то время как для линий, связанных с электронным захватом Re¹⁸⁴

х/Институт физики твердого тела.

это отношение = 5. В работе Джелепова и др. ^{/4/} приведены кривые распада для некоторых линий. Так, например, интенсивности линий К 1172,6 кэв (1170), К 1110,1кэв (1106), К 384,2 кэв (382) спадают с Т_% = 160 дн, в то время как интенсивности линий К 1383,8 кэв (1373); К 1274,0 кэв (1265); К 1023,8 кэв; К 1011,1 кэв; К 904,4 кэв и некоторые другие спадают с Т_% = 38 дн. (Имеются в виду интенсивности линий, измеренные спустя два-три месяца после окончания облучения. В скобках указаны энергии у - переходов, определенные в работе Джелепова и др.) Измерения Джелепова и др. подтверждают возможность такого довольно четкого разделения переходов, связанных с электронным захватом Re¹⁸⁴ и Re^{184m}. Отношения для у -1122 и у -185 кэв получились много меньше 1, что требует дальнейшего объяснения после уточнения схемы распада.

Для у -962.5 кэв отношение получается 12.5. Такой медленный распад не может иметь места, потому что линие, спадающие с Ти = 160 дн., дают отношение ~5. у - линин 294 н 162 кэв на "свежем" источнике замаскированы линиями Re¹⁸⁸ . H их относительные интенсивности для "свежего" источника не приводятся. Все остальные переходы, для которых не определены относительные интенсивности "свежего" источника, связаны, по-видимому, с распадом Re^{184m} путем электронного захвата. У линии 540,4 и 537,8 кэв в у -спектре не разделились, на интенсивности получены из расчета суммарной интенсивности 8,23 для "старого" источника и 2,24 для "свежего"источника, о чем сказано дальше. Интенсивность у -364,4 кэв для "свежего" источника завышена из-за наложения у -365,5 кэв Re . Если вычесть интенсивность у - 365,5 кэв. используя относительные интенсивности у - лучей для Re¹⁸⁸, приведенные в работе Харматца и др. /12/, то получается, что у - 364,4 кэв относится к Re В спектре у - лучей имеются две области неразрушенных у - линий в районе 190-210 н 86-78 кэв.

В пятой колонке приведены относительные интенсивности К - конверсионных линий, причем интенсивность К 904,4 кэв принята за 100. Использовались данные, полученные на "промежуточном " и "свежем" источниках, причем для линий, имеющих отношение у - интенсивностей "старого" источника к интенсивностям "свежего", равное 5, относительные интенсивности определялись по отношению к К 384,2 кэв, для линий, имеющих это отношение, равное 1, - по отношению к К 904,4 кэв. Из работы Джелепова и др.^{/4/} следует, что для Re^{184m} отношение интенсивностей I_{К 884,2} : I_{К 904,4} = 48 : 100 . Такое отношение дает правильный коэффициент внутренней конверсии для К-384,2 кэв (у - переход - чистый Е2). Это отношение использовалось для связи интенсивностей линий, определенных относительно К 384,2 и К 904,4 кэв. Таким образом, нитенсивности конверсионных линий, приведенные в пятой колонке, относятся к распаду Re^{184m} и должны быть сопоставлены с интенсивностями у - лучей для "старого" источника.

В шестой колонке даны экспериментальные коэффициенты внутренней конверсии на К - оболочке, полученные из отношения интенсивностей конверсионных и у - линий. При этом для нормировки использовался теоретический коэффициент внутренней конверски на К - оболочке для у - 904,4 ков, взятый из таблиц Слява и Банд /16/. Переход у - 904.4 кэв - чистый Е2 и а К-904.4 = 0.0045. На рис. 1 представлены результаты сравнения экспериментальных коэффициентов внутренней конверсии с теоретическими. По-видимому, точность определения коэффициентов внутренней конверсии составляет 10-20%, с этой точностью экспериментальные коэффициенты внутренней конверсии хорошо ложатся на теоретические кривые. Исключение составляют переходы 1008,2; 1018.9 и 1122 кэв. для которых точность определения коэффициентов внутренней конверсии 20-40%. а К 537.8 определяется следующим образом. у - 540.4 кэв разряжает уровень 904,4 кэв, его интенсивность по отношению к у - 904,4 кэв со временем меняться не должна. Из схемы распада следует, что у -540.4 кэв - чистый Е2переход. При использовании теоретического коэффициента внутренней конверсии а К 540.4 и интенсивности К-540,4 ков вычислена его у - интенсивность по отношению к интенсивности у - 904,4 кэв. Эта интенсивность вычиталась из суммарной интенсивности у - 540,4 + у - 537,8 кэв.

В седьмой колонке указаны мультипольности переходов, следующие из коэффициентов внутренней конверсии. Кроме того, в примечаниях для отдельных переходов даются отношения K/L или L₁ +L₁₁ /L₁₁₁, либо то и другое. Полученные результаты согласуются со схемой уровней W¹⁸⁴, предложенной Харматцем и Хандлеем. Однако из сравнения у -интенсивностей "свежего" и "старого" источников следует, что переход 151,5 кэв не может разряжать уровень 1286,7 кэв.

Для уровней 111,2 кэв и 364 кэв получен хороший баланс интенсивностей, для более высоких уровней баланс интенсивностей сходится хуже, так как не учтены слабые переходы.

Дальнейшее исследование жесткой области конверсионного спектра с целью определения мультипольностей известных у - переходов, а также изучение мягких конверсионных линий позволит, по-видимому, расширить схему уровней ¹³⁴.

Авторы благодорны В. Козлову и Е. Больскому за облучение мишене:

Литература

- 1. C.Gallagher, D.Strominger and J.Unik. Phys. Rev., 110, 725 (1958).
- 2. B.Harmatz, T.H.Handley and I.Mihelich. Phys. Rev., 123, 1758 (1961).
- 3. Б. Джелепов, Г. Катыхин, В. Майданюк, А. Феоктистов. Изв. АН СССР, серия фиэнческая, <u>26</u>, 1030 (1962).
- 4. Б. Джелепов, Г. Катыхин, В. Майданюк, А. Феоктистов. Изв. АН СССР, серия физическая, 27, 1394 (1963).

- Н.Бадалов, С.Василенко, М.Каганский, Д.Каминский, А. Уразбаев. Программа и тезисы докладов XV совещания по ядерной спектроскопии и структуре атомного ядра. Изд-во "Наука", Минск, 1965.
- 6. B.Harmatz and H. Handley. Nucl. Phys., 56, 1 (1964).
- 7, N.R.Johnson. Phys.Rev., 129, 1737 (1963).
- 8. Toft, Physics Letters., 3, 130 (1962).
- Б. Джелевов, П. Тишин, И. Шишелов. Изв. АН СССР, серия физическая, <u>27</u>, 1281 (1963).
- 10. Б. Джелевов, П. Тишин, И. Шишелов, Изв. АН СССР, серия физическая, 29, 714 (1965).
- 11. K. Bisgard, C.Cook, P.Hornshoj and A.Knutsen. Nucl. Phys., 41, 32 (1968).
- 12. B.Harmatz, T.H.Handley and J.M.Mihelich. Phys.Rev., 128, 1186 (1962).
- 13. Б. Джеленов, А. Башилов. Изв. АН СССР, серия физич., 14, 263 (1950).
- 14. А. Феоктистов, В. Майданюк. Вестник КГУ, стр. 59 (1962).
- 15. S.HThulin, J.O.Rasmussen, C.J.Gallagher, J.W.G. Smith and J.M.Hollander. Phys. Rev., 104, 471 (1956).
- Л. Слив, И. Банд. Таблицы коэффициентов внутренней конверсии гамма-излучения, часть 1, изд. АН СССР, Москва-Ленинград, 1956.

Рукопись поступила в издательский отдел 30 июня 1966 г. Таблица І

Энертия	Относительные интен- сивности у - лучей		Отноше- ние ин-	Относит интенси	в.	Ожидае-	
у – лу– чей у кэв	"старый" источ- ник	"Свежий" Источ- НИК	тенсив. у - лучей источни- ков "ста- рого" к "свежему"	енсив. конвер- - лучей сионных сточни- к -линий ов "ста- Для ого" к истарого" свежему" ника		мые мульти- польнос- ти	∐риме— чание
1	2	3	4	5	6	7	8
I458	0,145	0,I45	I				
1383,8	0,273	0,278	I	0,11	I,8.10 ⁻³	E 2	
1312	0,024	0,026	I				
1274	0,368	0,375	I	0,2	2,4.I0 ⁻³	E2	
I220	0,104	-	-				
II72 , 6	3,24	0,665	4,9	3,4	4,7.I0 ⁻³	MI,MI+E2	$\frac{K}{L} = 7,5$
II30	0,022	-	-				
II22	0,068	0,135	0,5	0,08	5,4.IO ⁻³	MI	
IIIO,I	I,6I	0,288	5,6	0,4	I,I.I0 ⁻³	EI	
I034	0,137	-	-				
1023,8	I,68	I,47	I , I4	I,20	3 ,2. 10 ⁻³	E2	
1018,9	0,16			0,17	4,8.I0 ⁻³	E2,MI+E2	
IOII,I	0,221	0,236	0,94	0,46	9,4.I0 ⁻³	Ш	
1008,2	0,3	-	-	0,17	2,6.10 ⁻³	E2,EI+M2	
971,5	0,146	-	-				
962,5	0,442	0,035	12,6				
954	0,217	0,05	4,34				
922,2	20,I	3,92	5,13	9,2	2,I.I0 ⁻³	EI+M2	
904,4	100	100	I	100	4,5.IO ⁻³	E2	
896	43.,4	44,9	I	47	4,9.10 ⁻³	E2	
882	0,181	-	-				
858	0,464	0,091	5 , I				

I	2	3	4	5	6	7 8
852,5	0,44I	0,09	4,9			
82I	0,136	0,034	4			
816,5	0,176	0,034	5,2			
812,5	0,134	0,084	I,6			
806	0,066	0,083	0,8		7	
793,4	95,5	95,3	I	132	6,2.10-3	E2
770,5	2,09	I,97	I,06	2,7	5,8.10-3	E2
642,5	4,9I	4,96	I	10	9,2.10-3	E2
540,4	0,73	0,73	I	2,I	1,3.10-2	E2
537,8	7,5	I,5I	5	12	7,2.10-3	EI+M2
384,2	7,73	I,5I	5,I	48	2,8.10-2	E2 $\frac{K}{L} = 3,3; \frac{L_1 + L_{11}}{L_{111}} = 4,3$
364,4	0,281	0,108	2,6	3,4	5,5.10-2	MI+E2
318	14,0	2,67	5,2	64	2,1.10-2	EI $\frac{k}{L} = 7,5$
294	0,118	-	-			
275	0,128	0,13	I			
252,8	34,9	12,2	2,9	670	9.6.10-2	$E2\frac{K}{L} = 1,7; \frac{L_1 + L_{11}}{L_{11}} = 2,8$
226,5	4,45	1,19	3,7			
216	34	6,6	5,I			
185	0,04	0,30	0,13			
180	0,08	-	-			
170	0,09		_			
162	17,9	-	-			
151,5	0,II	0,II	I			
126,5	0,21	-	-			
III,2	49	47,3	I,04	7780	7,1.10-1	E2 $\frac{L_1 + L_{11}}{L_{111}} = 1.8$
104,7	32,7	6,7	4,9			

